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Introduction
Microbial pyrite oxidation coupled to denitrification is regarded as

a natural nitrate attenuation process in limestone aquifer belonging to

Ammer catchment. However, the poor solubility of pyrite at low

temperature raises questions regarding the bioavailability and

mechanism of pyrite oxidation.
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Results

Methods
Autotrophic nitrate-dependent Fe(II)-oxidizing (NRFeOx) culture

enriched from the aquifer (Fig 2.) was incubated in medium

containing nitrate, pyrite (91.7% of 56Fe(II)) and 57Fe-labeled siderite

(Fig 3.).

Conclusions
We conclude that in anoxic aquifers, where multiple sources of Fe(II)-

bearing minerals are present, microbially driven lithoautotrophic oxidation

of bioavailable Fe(II) coupled to denitrification can lead to the production of

Fe(III), which drives a positive feedback loop causing more indirect pyrite

oxidation and increasing denitrification. However, the extent of this process

is limited to the bioavailability of Fe(II).

Goal
Here we investigate whether the presence of more bioavailable Fe(II)-

bearing minerals – which, when processed through microbial nitrate-

reducing Fe(II) oxidation, act as a source of Fe(III) as oxidant – can

further drive indirect oxidation of pyrite and influence overall rates of

denitrification (Fig 1.).
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57Sid+Cells 0.22 ± 0.17 0.88 ± 0.13 0.07 ± 0.17 - 0.25

Pyrite+Cells 0.80 ± 0.14 0.00 ± 0.02 0.72 ± 0.23 1.11 -

Pyrite+57Sid+Cells 0.80 ± 0.03 0.66 ± 0.13 0.70 ± 0.09 1.14 1.2

Pyrite+Sid+Cells 0.89 ± 0.05 0.80 ± 0.04 0.60 ± 0.12 1.49 1.1

Abiotic+Pyrite+57Sid+Cells 0.04 ± 0.05 0.00 ± 0.06 0.09 ± 0.07 - -

Fig 3. Experimental setup and controls.

Fig 1. Potential 

processes 

governing 

microbially driven 

oxidation of pyrite 

in the aquifer.  

Fig 4. Concentration of HCl-extracted Fe(III) (A), nitrate (B) and sulfate (C) over time 

of the experiment.  
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Fig 5. Decrease of NO3
- and formation of HCl-extractable Fe(III) and SO4

2-,

stoichiometries of NO3
- reduction and SO4

2- formation, and NO3
- reduction.

Fig 6. Mössbauer spectra of

‘Pyrite+57Sid+Cells’ setup at

the beginning of the

experiment (A) and after 8

days (B) showing decrease of

pyrite and siderite abundance

and formation of short-range

ordered (SRO) Fe(III)-phases

as a result of oxidation.

Fig 7. NanoSIMS high spatial resolution

analysis of the reaction product of

‘Pyrite+57Sid+Cells’ setup at the 8th day of

incubation; the spatial distribution of two

isotopes of iron 56Fe (A) and 57Fe (B) along with
32S(C) distribution in combination with SEM (F)

imagining. High 56Fe/57Fe (D, E) ratio correlated

with the distribution of sulfur indicates pyrite

while the absence of sulfur indicates products

of pyrite oxidation.
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Fig 2. Microbial community composition of NRFeOx culture enriched from the

aquifer used in this study (A) and a heatmap of KEGG-annotated genes (B) in

MAGs from the culture showing metabolic potential of enriched microbes to

perform i.a. CO2-fixation (autotrophy), denitrification and thiosulfate oxidation.
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