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Karl Popper developed a theory of deductive logic in the late 1940s. In his approach, logic is a metalinguistic theory
of deducibility relations that are based on certain purely structural rules. Logical constants are then characterized in
terms of deducibility relations. Characterizations of this kind are also called inferential definitions by Popper. In this
paper, we expound his theory and elaborate some of his ideas and results that in some cases were only sketched by him.
Our focus is on Popper’s notion of duality, his theory of modalities, and his treatment of different kinds of negation.
This allows us to show how his works on logic anticipate some later developments and discussions in philosophical
logic, pertaining to trivializing (tonk-like) connectives, the duality of logical constants, dual-intuitionistic logic, the
(non-)conservativeness of language extensions, the existence of a bi-intuitionistic logic, the non-logicality of minimal
negation, and to the problem of logicality in general.

1. Introduction
We investigate Popper’s theory of deductive logic that he developed in the late 1940s,1 focusing

on his treatment of different kinds of negation. An explanation of Popper’s treatment of negation
needs to take his conception of duality into account. While Popper did not declare himself
explicitly on the subject of duality, it is still possible to give a rigorous formal definition of duality
that completely agrees with Popper’s use of the notion in propositional logic, extending into
the treatment of several kinds of negation, as well as into the domain of modal logic. This wide
applicability is only possible because his notion of duality does not depend on truth functions
but is based on deducibility, and it illustrates the importance of Popper’s notion of duality as a
structuring principle in various areas of logic.

Moreover, we will show that some important results obtained by Popper foreshadow later
developments in logic:

• Anticipating the discussion of connectives like tonk2, Popper considered a tonk-like connective
called the opponent of a statement, which leads, if it is present in a logical system, to the
triviality of that system.

• He suggested to develop a system of dual-intuitionistic logic, which was then first formulated
and investigated by Cohen (1953).

• He already discussed (non-)conservative language extensions. He recognized, for example,
that the addition of classical negation to a system containing implication can change the set of
deducible statements containing only implications, and he gave a definition of implication with
the help of Peirce’s rule that together with intuitionistic negation yields classical logic.

1 See Popper 1947a,b,c, 1948a,b, 1949. A collected edition of Popper’s works on logic is currently prepared by Peter Schroeder-
Heister and the authors; it will appear in 2017.

2 Cf. Prior 1960.
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• He also considered the addition of classical negation to a language containing intuitionistic
as well as dual-intuitionistic negation, whereby all three negations become synonymous. This
is an example of a non-conservative extension where classical laws also hold for the weaker
negations.

• Popper was probably the first to present a system that contains an intuitionistic negation as
well as a dual-intuitionistic negation. By proving that in the system so obtained these two kinds
of negation do not collapse (i.e., do not become synonymous), he gave the first formal account
of a bi-intuitionistic logic.

• He provided an analysis of logicality, in which for example minimal negation3 and subminimal
negation (as it is now called4) turn out not to be logical constants.

The philosophical interpretation of Popper’s theory that we will follow is closest to the one
given by Schroeder-Heister (2006), who gave a reconstruction of Popper’s theory in terms of the
system developed by Koslow (1992). This reconstruction yielded important insights into Popper’s
approach,5 and helped to better locate Popper’s theory in the history and philosophy of logic.

In our investigation, however, we will not attempt to reconstruct Popper’s theory in terms of a
more modern system. Instead, we will stay as close as possible to Popper’s terminological setting.
Our aim is to present Popper’s theory in its own terms in a hopefully concise and clear manner,
and to elaborate some of Popper’s ideas and results on negation that in some cases were only
sketched by him.

Popper’s formal treatment of negation might help to elucidate questions that arise in Popper’s
philosophy of science, or to answer questions on the relation between his treatment of negation
in the context of deductive logic and the role of falsifications in the enterprise of empirical
science. These questions are, however, outside the scope of this paper. Another limitation in scope
concerns the logical constants: We restrict ourselves to propositional and modal logic, and do not
consider first-order quantifiers.

1.1. Short survey of the literature
Reviews of Popper’s articles on logic were written by Ackermann (1948, 1949a,b), Beth (1948),

Curry (1948a,b,c,d, 1949), Hasenjaeger (1949), Kleene (1948, 1949) and McKinsey (1948).
While several of these reviews give only a summary, the reviews by Curry (1948a), Hasenjaeger
(1949), Kleene (1948) and McKinsey (1948) contain some serious criticisms of certain aspects of
Popper’s approach. An in-depth discussion of these criticisms can be found in Schroeder-Heister
1984 (§3), which also contains further references to discussions of Popper’s works on logic.
Some of these criticisms will be discussed here, too. Brouwer, on the other hand, responded quite
positively.6 Detailed investigations of Popper’s theory are given in the articles of Lejewski (1974)
and Schroeder-Heister (1984, 2006), and in an unpublished thesis by Cohen (1953).7

Lejewski (1974) pursues an indication of Bernays, who stated that Popper’s theory bears
a close relationship with Tarski’s theory of consequence developed in the 1930s.8 Lejewski
then reconstructs both Popper’s and Tarski’s theories in the logical system of Leśniewski. As a

3 See Johansson 1937.
4 See e.g. Dunn 1999 and the references therein.
5 See also Lejewski’s (1974) reconstruction in the system of Leśniewski.
6 See Brouwer’s (December 10th, 1947) letter to Popper: ‘Your duality construction and your new definition of intuitionistic negation

have delighted me, and I have presented your last paper on November 29th.’ Brouwer presented Popper 1947c on October 25th,
1947 and Popper 1948a,b on November 29th, 1947 to the Koninklijke Nederlandse Akademie van Wetenschappen.

7 See also the two unpublished theses by Brooke-Wavell (1958) and by Dunn (1963); cf. Schroeder-Heister 1984. A more recent
contribution is Bar-Am 2009. We thank Mrs. Cohen for making Cohen 1953 available.

8 The remark of Bernays can be found in Popper 1947b (fn on p. 204), where Bernays refers to Tarski 1930a. Lejewski also considers
Tarski 1930b, 1935, 1936b.
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result, certain assumptions that were used only tacitly by Popper could be made explicit. Popper
(1974) acknowledged the technical merit of Lejewski’s work but added that it did not capture the
philosophical and foundational spirit of his articles.9

Schroeder-Heister (1984) considers Popper’s works as a contribution to the problem of dis-
tinguishing between logical and non-logical signs that arises in Tarski’s (1936a) analysis of the
concept of logical consequence. For Popper, he argues, a logical constant is an operation that can
be characterized by an inferential definition. He therefore proposes to read Popper’s inferential
definitions not as definitions, but as adequacy conditions for logical constants. Schroeder-Heister
(1984) also discusses objections against Popper’s foundationalist claims that were put forth by
the reviewers and by Lejewski. He ultimately agrees with these objections and concludes that
Popper’s theory cannot be considered to be a new foundation for logic.

Schroeder-Heister (2006) revises his former interpretation in certain aspects. He now sees
Popper’s approach not only as a contribution to the problem of the logicality of constants but,
more importantly, as ‘a structuralist approach according to which logic is a metalinguistic theory
of deducibility relations, in terms of which logical operations are characterized’ (ibid., p. 17). He
discusses the characterization of the deducibility relation by the rules of a basis, and compares
these rules to Gentzen’s structural rules. Moreover, he outlines Popper’s characterization of
classical negation by using deducibility with multiple succedents (i.e. Popper’s notion of relative
demonstrability). We will elaborate on these topics in Sections 2.4 (see also Appendix A) and 6.

Cohen’s (1953) unpublished thesis is not considered in any of the works mentioned so far,
despite being of great importance to the matters here discussed. Its second part concerns the
development of a system of dual-intuitionistic logic.10 Cohen starts from Gentzen’s observation
that intuitionistic logic can be obtained from the sequent calculus for classical logic by restricting
the number of formulas occurring in the succedent of sequents to at most one. He then formulates
a sequent calculus where the number of formulas occurring in the antecedent of sequents is
restricted to at most one (without restricting succedents), which he calls the dualintuitionistic
restricted predicate calculus GL2. The idea of developing this system was suggested to him by
Popper.11 The inception of dual-intuitionistic logic can thus be attributed to Popper, and Cohen
was the first to develop and investigate a system of dual-intuitionistic logic. Cohen’s sequent
calculus GL2 is, however, not exactly dual to intuitionistic logic, since it contains rules for both
the anti-conditional and the conditional.12

1.2. Overview
In Section 2 we describe the general framework of Popper’s definitions of logical constants.

We comment on the kind of object languages Popper has in mind, the status of his fundamental

9 Popper (1974, p. 1095) writes: ‘[. . .] he has not brought out, or even briefly hinted at, what my intentions were in writing these bad
and ill-fated papers. By putting them in Leśniewski’s language he has, in fact, done something extremely interesting, but at the
same time something that goes contrary to my intentions.’

10 Popper (2004, fn 8, p. 431f.) cites this system as an answer to his question ‘whether we can construct a system of logic in which
contradictory statements do not entail every statement.’ However, ‘[i]n [Popper’s] opinion, such a system [which lacks e.g. modus
ponens] is of no use for drawing inferences.’

11 As remarked by Cohen (1953, p. 188). Popper (2004, fn 8, p. 431f.) first refers to his 1948a, 1948b, and then mentions that
‘[. . .] Cohen has developed the system [of dual-intuitionistic logic] in some detail.’ In fact, Cohen also gave a full analysis of this
system, including a proof of cut elimination. Popper (ibid.) has ‘a simple interpretation of this calculus. All the statements may be
taken to be modal statements asserting possibility.’ This interpretation can already be found in Popper’s (July 28th, 1953) letter
to Cohen, where he interprets every statement a as ‘a is possible’ or, equivalently, as ‘a is satisfiable’. In this letter Popper says
that he ‘consider[s] publishing these results’, without, however, doing so. Cohen (1953, p. 208f.) names Popper’s (1948a, p. 181)
interpretation of sequents in terms of relative demonstrability (cf. Section 3.4) as the most suitable.

12 Cohen (1953, part II, §3) first formulates the system GL1, which includes the rules FS and FA for the conditional. This system is
then extended to his dualintuitionistic restricted predicate calculus GL2 by adding the rules GS and GA for the anti-conditional; see
Cohen 1953 (part II, §4). Cf. Kapsner et al. 2014 and Kapsner 2014 (p. 128, fn 6).
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concept of deducibility, the means employed in the metalanguage and the characterization of
the deducibility relation by a basis. Popper’s Basis I will be our main interest; other bases are
discussed in Appendix A. In Section 3 we present central properties and relations of object
languages that are based on Popper’s notion of deducibility. They belong to what Popper calls the
general theory of derivation.13 In Section 4 we consider Popper’s special theory of derivation,
which deals with definitions of logical constants. In Section 5 we propose a certain interpretation
of Popper’s notion of duality, which we make precise by use of a duality function, and we give an
account of Popper’s theory of modalities. Based on that, we give a detailed account of Popper’s
theory of negations in Section 6.

2. Popper’s framework
Popper considers pairs of an object language L and a deducibility relation defined on L.14

The set of axioms characterizing a deducibility relation is called basis. Popper uses mainly two
alternative bases, called Basis I and Basis II, which also occur in different versions. We use a
version of Basis I as the foundation for the rest of this paper.15 The axioms of the basis as well as
subsequent inferential definitions are formulated in a restricted metalanguage.

2.1. Object languages
In distinction to modern approaches that proceed by giving an alphabet of the object language

under consideration and either a grammar or inductive definition of those expressions that are to
be counted as terms and formulas of the object language, Popper’s approach does not presuppose
any knowledge about the form or syntactic structure of the object language under consideration.16

It is indeed supposed to be an approach that is not only applicable to formally defined languages
but also to natural language. For example, the conjunction of two statements a and b of the object
language need not have any particular syntactic form like ‘a∧b’ or ‘a and b’.17

We will write L for an object language and use small Latin letters a,b,c, . . . (also with indices)
as variables ranging over L. The members of an object language are assumed to be statements so
that it makes sense to say that some of them are deducible from others. Popper (1947b, p. 204)
calls them ‘expressions of which we might reasonably say that they are true or that they are
false’.18 We furthermore assume that any object language considered is nonempty.

13 See Popper 1947b (§3.2).
14 Schroeder-Heister (2006) uses the term ‘deducibility structure’ for such pairs.
15 This version of Basis I can be found in Popper 1947b.
16 Popper is aware of this difference; he gives a sketch of the classical approach at the beginning of Popper 1949. The idea that logical

analysis is not only applicable to formally specified languages is still present later, in Popper 2004 (addendum 5 from 1963), where
he stresses this fact in the context of discussing Tarski’s theory of truth: ‘It has often been said that Tarski’s theory of truth is
applicable only to formalized language systems. We do not believe that this is correct. Admittedly it needs a language—an object
language—with a certain degree of artificiality; and it needs a distinction between an object-language and a meta-language [. . .]
[N]ot every language which is subject to some stated rules, or based on more or less clearly formulated rules [. . .] need be a fully
formalized language. The recognition of the existence of a whole range of more or less artificial though not formalized languages
seems to me a point of considerable importance, and specially important for the philosophical evaluation of the theory of truth.’

17 See Popper 1947b (p. 205): ‘[Forming the conjunction of a and b] is done, in English, by linking them together with the help of the
word “and”. But we need not suppose that any such word exists: the link may be effected in very different ways; moreover, the new
statement need not even contain the old ones as recognizable separate parts (or “components”).’
To make this point clearer, we consider as an example the propositional language containing only signs for negation (¬) and
disjunction (∨) together with a calculus in which all classically valid formulas of this restricted language are derivable. This
language nevertheless contains for any two formulas φ and ψ a conjunction of φ and ψ . One such conjunction may be ¬(¬φ ∨¬ψ);
but other variants are possible, and there is in general no way to specify the canonical form of conjunction in that language.

18 He states explicitly (ibid.): ‘Nothing is presupposed of our a,b,c, . . . except that they are statements, and our theory shows, thereby,
that there exists a rudimentary theory of inference for any language that contains statements, whatever their logical structure or lack
of structure may be.’
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2.2. The concept of deducibility
Popper’s approach is based on the concept of deducibility (resp. derivability). It is the only

undefined notion as far as propositional and modal logic are concerned.19 Deducibility is a relation,
written with the solidus /, that ranges over the object language and holds between finitely many
premises (including the case of no premises) a1, . . . ,an and exactly one conclusion b. In /-notation,
Popper writes

a1, . . . ,an/b

to express that the statement b can be deduced from the statements a1, . . . ,an. The /-notation is
introduced as a horizontal variant of the notation

a1...
an
b

that is often used to state rules of inference like, for example,

If A, then B
A
B

which says that from the premise ‘If A, then B’ together with the premise A the conclusion B can
be deduced.20 The case n = 0, in which no premises occur, was not yet considered in Popper
1947b. It was added later in Popper 1948a, where the so-called D-notation is introduced. In this
notation, D(a1,a2, . . . ,an) stands for a2, . . . ,an/a1, and the special case D(a1) corresponds to
/a1, meaning that a1 is deducible without premises.

In the context of deducibility neither the order of premises nor the multiplicity of identical
premises is relevant, since deducibility enjoys the following structural properties:

Lemma 2.1 :

(1) Exchange of premises: If a1, . . . ,ai,ai+1, . . . ,an/b, then a1, . . . ,ai+1,ai, . . . ,an/b.
(2) Contraction of premises: If a1, . . . ,ai,ai, . . . ,an/b, then a1, . . . ,ai, . . . ,an/b.

These properties are consequences of Popper’s characterization of deducibility by his Basis I.21

Premises a1, . . . ,an can thus be understood as a set {a1, . . . ,an}.

2.3. The metalanguage
In order to formulate rules that characterize the concept of deducibility and to give definitions

of logical constants, Popper has to make use of a metalanguage. To improve readability, we use
the following symbolic notation for it, which is similar to Popper’s:

Symbol → ↔ &
∨

(a) (∃a)
Meaning if-then if and only if and or for all a there is an a

The quantifiers (a) and (∃a) range over statements a of the object language. Popper notes that
as long as one does not want to introduce modal connectives, one can do without disjunction.22

19 An operation of substitution is added for the treatment of first-order logic, which, however, is not considered in this paper.
20 See Popper 1947b (p. 194).
21 Cf. also Popper 1947b.
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He also notes that the introduction of modal connectives requires metalinguistic negation.23

Interestingly though, negation is not used in defining them, whereas disjunction is indeed essential.
We have therefore omitted metalinguistic negation in our list of symbols.

Due to the fact that the metalanguage is quite restricted and does not contain negation, the
following lemma holds:

Lemma 2.2 : In any nonempty object language with a trivial deducibility relation (i.e.
a1, . . . ,an/b holds for any a1, . . . ,an,b) every formula of the metalanguage is satisfied.

Proof By a simple induction on formulas of the metalanguage. �

Hence, even if a definition stated in the metalanguage trivializes the deducibility relation / on
the object language, this definition cannot make the metalanguage inconsistent.24

For certain formulas of the metalanguage Popper uses a special vocabulary. Atomic formulas
of the form

a1, . . . ,an/b

are also called absolute rules of derivation, and formulas of the form

a1, . . . ,an/b→ c1, . . . ,cm/d

and iterated versions thereof, are also called conditional rules of derivation or just rules of
derivation. Note that rules of derivation are not rules in a calculus, understood as a proof system.
Popper does not develop a calculus in this sense, and what he calls rules of derivation are
metalinguistically formulated statements about the deducibility relation.25 We follow Popper in
using the term rule to speak about metalinguistic formulas.

2.4. The characterization of deducibility by a basis
So far, the deducibility relation / has only been defined by saying that it ranges over an object

language L. The next step consists in providing what Popper calls a basis for this relation.26

A basis is a complete and independent set of rules, formulated in the metalanguage, that
axiomatizes the deducibility relation /. Completeness is here defined with respect to Popper’s
notion of absolute validity, which is similar to the notion of validity obtained by allowing only
structural rules of inference.27 Popper’s idea seems to be that even if we abstract away from

22 See Popper 1947c (p. 1216): ‘[. . .] it may be mentioned that the only logical rules needed in the metalanguage (except where we
treat modalities) are those of the positive part of the HILBERT–BERNAYS calculus of propositions as far as they pertain to “if-then”,
“if, and only if”, and to “and” [. . .], and the rules for identity. The rules for negation need not be assumed [. . .]; but we need rules
for universal quantification, especially the rule of specification [. . .].’

23 See Popper 1947c (p. 1223): ‘For the development of the theory of modality, metalinguistic negation is also needed, together with
at least its intuitionistically valid rules.’

24 This will become relevant in the discussion of the logical constant opp later on. Another simple example is the metalinguistic
formula (∃a)(` a &

∠

a), where ` a stands for the demonstrability of a and

∠

a for the refutability of a (see Sections 3.2 and 3.3).
This formula is also only true for object languages with a trivial deducibility relation, although it is a satisfiable formula of the
metalanguage.

25 Popper (1948b, p. 327) once uses the term ‘metalinguistic calculus’.
26 Popper 1947c is an exception to this approach: The requirement to specify a basis for the deducibility relation is dropped, and the

burden of making sure that the logic has certain structural properties is shifted to the definitions of the logical constants. For this
reason he uses an extended definition of conjunction, called basic definition (DB2), to ensure reflexivity and transitivity of / as well
as exchangeability of premises. Unfortunately, (DB2) corresponds to the defective Basis II of Popper 1947b, and is therefore just as
problematic (cf. Appendix A).

27 Popper gives his analysis of absolute validity in terms of so-called statement preserving interpretations in Popper 1947a, where he
writes about absolutely valid inferences (ibid, p. 274): ‘There are inferences which are valid according to all our definitions, in spite
of the fact that the logical form of the statements involved is irrelevant.’
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any concrete logical system (containing a specific set of logical constants) under consideration,
we still have a rudimentary residuum of deduction consisting of structural28 inferences, like the
inference from a statement a to the statement a.

Popper’s Basis I is given by a generalized reflexivity principle, called (Rg), together with a
generalized transitivity principle, called (Tg):29

a1, . . . ,an/ai (1≤ i≤ n) (Rg)
a1, . . . ,an/b1

& a1, . . . ,an/b2
...

...
& a1, . . . ,an/bm

→ (b1, . . . ,bm/c→ a1, . . . ,an/c) (Tg)

The principle (Tg) is not a rule in the strict sense, but rather a schematic rule. This means that
(Tg) has, depending on the value of m, many other rules as instances. There is therefore no way to
directly express the content of (Tg) by means of a single formula of the metalanguage. This fact
was very unsatisfactory for Popper. He searched for a replacement of (Tg) that could be expressed
directly in his metalanguage. We discuss his proposals and their problems in Appendix A.

3. The general theory of derivation
Popper’s general theory of derivation does not refer to any logical signs of the object language.

It studies properties of statements and relations on statements that can be defined using only
the deducibility relation. Examples of such properties are being a theorem in the deducibility
structure, i.e. being a demonstrable statement, or being a statement that is refutable.

We discuss the following properties and relations: mutual deducibility, complementarity,
demonstrability, contradictoriness, refutability and relative demonstrability. Our focus is on
mutual deducibility and relative demonstrability. Relative demonstrability in particular contains
the notions of complementarity, demonstrability, contradictoriness and refutability as special
cases.

3.1. Mutual deducibility
The relation of mutual deducibility // is explicitly defined as follows:

a//b ↔ (a/b & b/a) (D//)

It is an equivalence relation, as one can see by checking the rules of Basis I. Two mutually
deducible statements a and b are said to have the same logical force.30 The equivalence classes
induced by // are thus logical forces.

Popper (1947b, p. 203) calls two mutually deducible statements also logically equivalent, and
then calls (D//) the substitutivity principle for logical equivalence. The following substitution
lemma holds:

Lemma 3.1 : If a and b are mutually deducible, then we may substitute b for a in every deducibil-
ity relation, i.e. the following two statements are true:

28 Although Popper does not use the term ‘structural’.
29 See Popper 1947b.
30 See Popper 1947a (p. 282).
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(1) a//b→ (a1, . . . ,an/a→ a1, . . . ,an/b).
(2) a//b→ (a1, . . . ,an,a,an+1, . . . ,am/c→ a1, . . . ,an,b,an+1, . . . ,am/c).

Proof (1) follows directly from (Tg), and (2) follows from (Tg) and Lemma 2.1. �

Popper also considers the following definition of //:31

a//b ↔ (c)(a/c ↔ b/c) (D//′)

For this alternative definition we can prove the following lemma:

Lemma 3.2 : In the presence of (Tg) and (Rg), (D//) is equivalent to (D//′).

Proof We have to show that (a/b & b/a) ↔ (c)(a/c ↔ b/c) is true. The proof from left to right
uses (Tg), and the proof from right to left uses (Rg). �

3.2. Complementarity and demonstrability
The notion of complementarity for statements a1, . . . ,an, written ` a1, . . . ,an, is given as

follows:

` a1, . . . ,an ↔ (b)(c)((a1/c & . . . & an/c)→ b/c) (D`1)

If we let n = 1, we obtain the definition of a self-complementary or demonstrable statement,
written ` a:

` a ↔ (b)(c)(a/c→ b/c) (D`1′)

Intuitively, what is expressed by the complementarity of the statements a1, . . . ,an is that at least
one of them has to be true, i.e. that taken together they exhaust all possible states of affairs. This
idea is captured by saying that if the statements a1, . . . ,an are complementary, then any statement
c that follows from each of the statements a1, . . . ,an individually follows from any statement b.
From (D`1′) one can thus obtain

` a ↔ (b)(b/a)

by instantiating c by a and by using basic rules. A demonstrable statement is thus a statement
that follows from any statement whatsoever.32

3.3. Contradictoriness and refutability
The notion of contradictoriness for statements a1, . . . ,an, written

∠

a1, . . . ,an, is given as
follows:

∠

a1, . . . ,an ↔ (b)(c)((b/a1 & . . . & b/an)→ b/c) (D

∠

)

For n = 1 we get the notion of refutability of a statement a, written

∠

a:

∠

a ↔ (b)(c)(b/a→ b/c) (D

∠′)

31 See Popper 1947c (def. (DB1)) or Popper 1947a (def. (7.1)).
32 For the definition of demonstrability see Popper 1947b (def. (D8.2+)) or Popper 1947c (def. (D11)). For the definition of

complementarity see Popper 1948a (def. (D3.1)).
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The intuition lying behind these notions is the following: A statement is refutable if it is false no
matter the state of affairs, and a sequence of statements a1, . . . ,an is contradictory if its members
cannot be true together. Contradictoriness of the statements a1, . . . ,an is therefore defined by
saying that any statement b that implies each of the statements a1, . . . ,an individually implies any
statement c.33 From (D

∠′) one can thus obtain

∠

a ↔ (c)(a/c)

by substituting a for b and by using basic rules. This is the definition of a self-contradictory
statement, i.e. of a refutable statement. From such a statement any other statement follows.

3.4. Relative demonstrability
Complementarity and contradictoriness can be combined in one relation that holds between

statements a1, . . . ,an and b1, . . . ,bm. This relation is called relative demonstrability (or relative
refutability), written a1, . . . ,an ` b1, . . . ,bm. One of the definitions given by Popper is:34

a1, . . . ,an ` b1, . . . ,bm ↔ (c)((b1/c & . . . & bm/c)→ a1, . . . ,an/c) (D`2)

For technical reasons, which are explained in Appendix B, we will use the following slightly
modified definition35 of relative demonstrability in the remainder of this paper:

Definition 3.3 : Relative demonstrability a1, . . . ,an ` b1, . . . ,bm is defined by

a1, . . . ,an ` b1, . . . ,bm ↔

(c)(d1) . . .(dk)((b1,d1, . . . ,dk/c & . . . & bm,d1, . . . ,dk/c)→ a1, . . . ,an,d1, . . . ,dk/c)
(D`3)

Note that in distinction to Popper’s (D`2) the definiens in (D`3) is now formulated with
additional context statements d1, . . . ,dk for 0≤ l ≤ k, which occur as additional premises in each
of the deducibility relations. Definition (D`3) is thus more general than (D`2).

Lemma 3.4 : The concept of relative demonstrability contains, as special cases, the concepts of
complementarity, demonstrability, contradictoriness and refutability.

Proof Let k = 0. For complementarity, let n = 0. For demonstrability, let n = 0 and m = 1. For
contradictoriness, let m = 0. For refutability, let n = 1 and m = 0. �

Lemma 3.5 : For all a1, . . . ,an,b: a1, . . . ,an/b ↔ a1, . . . ,an ` b.

Proof For m = 1 in (D`3) we have to show that (c)(d1) . . .(dk)(b1,d1, . . . ,dk/c →
a1, . . . ,an,d1, . . . ,dk/c) is equivalent to a1, . . . ,an/b1. Let k = 0. Instantiating c by b1 yields
b1/b1→ a1, . . . ,an/b1, and by (Rg) we get a1, . . . ,an/b1. Likewise for the other direction. �

This lemma allows us to replace / by ` in all formulas of the metalanguage. This will be
necessary further on to bring some of Popper’s definitions into a form that makes them dualizable.

33 For the definition of refutability, see Popper 1947b (def. (D8.3)) or Popper 1947c (def. (D12)). For the definition of contradictoriness,
see Popper 1948a (def. (D3.2) and (D3.2′)).

34 See Popper 1948a (def. (D3.3′)).
35 Cf. Schroeder-Heister 2006 (app. 2).
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Note that, conversely, ` can only be replaced by / if ` has exactly one succedent b. For mutual
deducibility we have a//b ↔ (a ` b & b ` a).

Lemma 3.6 : The following structural rules hold for a1, . . . ,an ` b1, . . . ,bm:

(1) Weakening on the left (LW) and weakening on the right (RW):

a1, . . . ,an ` b1, . . . ,bm→ a1, . . . ,an,an+1 ` b1, . . . ,bm (LW)

a1, . . . ,an ` b1, . . . ,bm→ a1, . . . ,an ` b1, . . . ,bm,bm+1 (RW)

(2) Exchange on the left (LE) and exchange on the right (RE):

a1, . . . ,ai,ai+1, . . . ,an ` b1, . . . ,bm→ a1, . . . ,ai+1,ai, . . . ,an ` b1, . . . ,bm (LE)

a1, . . . ,an ` b1, . . . ,b j,b j+1, . . . ,bm→ a1, . . . ,an ` b1, . . . ,b j+1,b j, . . . ,bm (RE)

(3) Contraction on the left (LC) and contraction on the right (RC):

a1, . . . ,ai,ai, . . . ,an ` b1, . . . ,bm→ a1, . . . ,ai, . . . ,an ` b1, . . . ,bm (LC)

a1, . . . ,an ` b1, . . . ,b j,b j, . . . ,bm→ a1, . . . ,an ` b1, . . . ,b j, . . . ,bm (RC)

(4) If there are i, j (for 1≤ i≤ n and 1≤ j≤m) such that ai = b j, then a1, . . . ,an ` b1, . . . ,bm.
(5) The cut rule:

a1, . . . ,an ` b1, . . . ,bm,c→ (c,a1, . . . ,an ` b1, . . . ,bm→ a1, . . . ,an ` b1, . . . ,bm) (Cut)

Proof Consider the definiens of a1, . . . ,an ` b1, . . . ,bm:

(c)(d1) . . .(dk)((b1,d1, . . . ,dk/c & . . . & bm,d1, . . . ,dk/c)→ a1, . . . ,an,d1, . . . ,dk/c).

(1) We can always strengthen the antecedent of the implication or weaken its succedent. Left
weakening of / follows from Basis I. We thus get (LW) by weakening the succedent
a1, . . . ,an,d1, . . . ,dk/c to a1, . . . ,an,an+1,d1, . . . ,dk/c. The antecedent can be strength-
ened by adding the conjunct bm+1,d1, . . . ,dk/c, which gives us (RW).

(2) Exchange on the left (LE) is due to Lemma 2.1 (1). Exchange on the right (RE) follows
from the commutativity of metalinguistic conjunction.

(3) Contraction on the left (LC) is due to Lemma 2.1 (2). Consider a,a/b; by (Rg) we
have a/a, and (Tg) yields a/b. By replacing / by ` and subsequent applications of
weakening and exchange we obtain (LC). Contraction on the right (RC) follows from the
idempotence of metalinguistic conjunction.

(4) For ai = b j we have ai/b j by (Rg). Lemma 3.5 gives ai ` b j. By applications of (LW),
(RW), (LE) and (RE) we get a1, . . . ,an ` b1, . . . ,bm.

(5) See Appendix B, Theorem B.3. �

Relative demonstrability a1, . . . ,an ` b1, . . . ,bm can be interpreted as derivability of the disjunc-
tion of b1, . . . ,bm from the conjunction of a1, . . . ,an. This interpretation is justified by the fact
that for object languages containing conjunction ∧ and disjunction ∨ one can show the following:

a1, . . . ,an ` b1, . . . ,bm ↔ a1∧ . . .∧an ` b1∨ . . .∨bm
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This is a consequence of Lemma 5.3, proved below. The concept of relative demonstrability gives
thus an interpretation of Gentzen’s (1935) sequents.36

4. The special theory of derivation
The subject of Popper’s special theory of derivation are definitions of logical constants. In

distinction to the general theory, which studies relations on statements defined by deducibility, the
special theory deals with relations between logically complex statements and their components.

4.1. Definitions of logical constants
Since object languages L are not specified syntactically, it is not possible to introduce logical

connectives by stipulating that for any two statements a and b in L there exists a statement having
some specific syntactic form, say a∧b. Instead, logical constants have to be characterized by
definitions in terms of the role they play with respect to the deducibility relation /. Popper calls
such definitions inferential definitions, and a sign of an object language L is a logical constant if,
and only if, it can be defined by an inferential definition.37

In Popper’s special theory, definitions of logical constants have the following form (we use ◦
as a placeholder for an arbitrary binary connective):

a//a1 ◦a2 ↔ R(a,a1,a2) (D◦)

where the right partR(a,a1,a2) is a formula of the metalanguage containing (among others) the
statements a,a1,a2 and as relations the deducibility relation / as well as the defined relations `
and

∠

. In the course of a logical argument, definitions of logical constants containing ` and

∠

can
always be replaced by definitions that contain only /.38 Popper calls (D◦) an explicit definition of
the connective ◦. But these explicit definitions are not always very handy to work with, so we
will often consider only the right part of them, replacing a by a1 ◦a2 inR:

R(a1 ◦a2,a1,a2) (C◦)

This is called the characterizing rule (C◦), which corresponds to the definition (D◦).

4.2. A remark on the use of the notation a◦b
Throughout his articles Popper uses notation like a∧ b, a∨ b and a > b to speak about

conjunctions, disjunctions and implications, respectively, of some object language L. The use
of this notation was criticized, for example, by Kleene (1948). Lejewski (1974, §§5–6) and
Schroeder-Heister (1984, §3.1; 2006, §2.2) discuss the problem of the interpretation of a∧b at
some length. We add some further remarks, using ∧ as a representative example.

The symbol ∧ cannot be thought of as a symbol of the alphabet of L, since Popper’s approach
does not specify anything about the object language L under consideration apart from the fact
that it consists of statements. Neither can it be a kind of abstract replacement for a symbol of
conjunction of L, because he does not require that a language that contains a conjunction for any

36 See Popper 1948a (p. 181); cf. Cohen 1953 (p. 69f. and p. 208f.).
37 See e.g. Popper 1947a (p. 286). In his terminology, logical constants are called formative signs, in distinction to what he calls

descriptive signs, such as ‘mountain’ or ‘elderly disgruntled newspaper reader’; see Popper 1947a (p. 257). According to Popper
(1947a, p. 286), ‘inferential definitions [. . .] are characterized by the fact that they define a formative sign by its logical force which
is defined, in turn, by a definition in terms of inference (i.e. of “/”).’

38 Whenever ` is replaced by its definiens, an appropriate choice for the number k of context statements has to be made.

11



two statements also contains a sign of conjunction. Indeed, he allows the use of expressions like
a∧b for languages that do not contain a sign for conjunction at all.

Reading a∧ b as a kind of definite description of the statement of L that is the conjunction
of a and b does not work either, since object languages may not only have one conjunction for
any two given statements a and b but several. In these cases the uniqueness condition of definite
descriptions cannot be fulfilled.

Schroeder-Heister (1984, p. 85) proposes to read a∧ b as an abstract term denoting the
equivalence class of conjunctions of a and b. But as this interpretation would not justify the use
of a∧b in a deducibility statement (e.g. a∧b,c/d), he goes on to say that in the context of such a
deducibility statement the term a∧b denotes an arbitrary representative of the equivalence class
of conjunctions.

Elaborating on this idea we propose to read a∧b as an ε-term as used in the epsilon calculus
of Hilbert, i.e., a∧b is defined as εcR∧(c,a,b). This means that a∧b just picks one element, if
it exists, of the equivalence class defined by the inferential definition of ∧. To avoid non-denoting
terms, we therefore demand that the use of a∧ b requires a theorem or postulate about the
non-emptiness of the equivalence class of conjunctions of a and b. But once the availability of a
conjunction for any two statements a and b is guaranteed, the use of a∧b and the instantiation of
universally quantified formulas of the metalanguage with terms of the form a∧b is no longer
problematic. Reading a∧ b as an ε-term also makes the existential presupposition explicit in
cases where a∧b is the result of an instantiation of a universal quantifier of the metalanguage.

4.3. Popper’s definitional criterion of logicality
The question we are facing now is what form characterizing rules likeR(a1 ◦a2,a1,a2) might

be allowed to take. Should certain rules be disallowed because their use in a definition of form
(D◦) does not in fact define a logical constant, or does any rule R give rise to a definition of a
logical constant?

One can find seemingly conflicting utterances on this question in Popper’s articles. On the one
hand, he writes that the definitions have to meet no restrictions whatsoever. He thus allows, for
example, the following definition for ‘opponent’ (opp), with its characterizing rule:

a//opp(b) ↔ (c)(b/a & a/c) (Dopp)

(c)(b/opp(b) & opp(b)/c) (Copp)

This obviously trivializes any system, since it implies (c)(b/c). But this does not lead Popper
to reject (Dopp) as a definition.39 Historically, it is interesting to note that the connective opp is
quite similar to the connective tonk, which was later introduced into the philosophical discussion
by Prior.40

Lejewski (1974, p. 644) considers an even stronger version of opp, which is also discussed by
Schroeder-Heister (1984, p. 89), where it is called opp∗. This supposed logical constant not only
turns the object language inconsistent but also the metalanguage. Its definition and characterizing

39 See Popper 1947a (p. 284): ‘We need not make sure, in any other way, that our system of definitions is consistent. For example, we
may define (introducing an arbitrarily chosen name “opponent”): [see (Dopp)]. This definition has the consequence that every
language which has a sign for “opponent of b” [. . .] will be inconsistent [. . .]. But this need not lead us to abandon [(Dopp)]; it only
means that no consistent language will have a sign for “opponent of b”.’

40 Prior (1960) cites Popper 1947a, but only for giving an example of what he understands by an analytically valid inference. He does
not mention the fact that Popper (1947a) discusses the tonk-like connective opp. Neither did Belnap (1962) and Stevenson (1961)
notice this in their responses to Prior’s article, even though they both also explicitly mention Popper’s article. It is noted, however,
by Merrill (1962).
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rule is supposed to be:

a//opp∗(b) ↔ (c)(b/a & ¬(b/c)) (Dopp∗)

(c)(b/opp∗(b) & ¬(b/c)) (Copp∗)

The definition (Dopp∗) is formulated with metalinguistic negation (¬). This contrasts with all
definitions considered by Popper, who never uses negation in his metalinguistic definitions of
logical constants. So while it is true that the definition of opp∗ would turn any metalanguage
inconsistent in which it is stated, this criticism cannot be applied to the system of Popper.
Furthermore, in view of Lemma 2.2, there can be no such trivializing definition in the restricted
metalanguage specified in Section 2.3.

On the other hand, there is one condition that Popper seems to consider to be essential for any
definition of a logical constant, namely uniqueness.41 He uses the expression ‘fully characterizing
rule’ to single out those rules that allow us to establish that any two statements satisfying the rule
are interdeducible.42 In other words, fully characterizing rules are exactly those rules that satisfy
uniqueness. They can be defined as follows:

Definition 4.1 : A ruleR(c,a1, . . . ,an) is fully characterizing if, and only if

(R(a,a1, . . . ,an) &R(b,a1, . . . ,an))→ a//b.

In other words, if, and only if, a ruleR characterizes a statement c up to mutual deducibility (i.e.
if c is unique), thenR is fully characterizing c.

It is the existence of fully characterizing rules that distinguishes logical constants from non-
logical constants, and it is this criterion of logicality that leads Popper to reject e.g. minimal
negation as a logical constant (see Section 6.5). For an extensive discussion of Popper’s criterion
of logicality we refer to Schroeder-Heister 1984, 2006.

Another question concerning the form of definitions of logical constants is the following: For
two given alternative rules, sayR andR′, that are equivalent, is one preferable over the other in
defining a logical constant?

Popper often considers more than just one possible definition of a logical constant, showing (or
in some cases only indicating) that these alternative definitions are equivalent. There seems to be
no logical or philosophical criterion that makes Popper prefer one definition rather than another,
equivalent definition. Often, it seems, he just prefers the brevity of some definition, or the ease
with which he is able to explain it.43

This contrasts with more modern approaches concerning definitions of logical constants.
Especially in the tradition of Gentzen, Prawitz and Dummett there is a strong sense of preferring
one special kind of rules (either introduction rules or elimination rules) as being constitutive of the
meaning of logical constants. Such considerations play no part in Popper’s definitions of logical
constants. For example, Popper’s (1947b, p. 228) definition of the universal quantifier resembles
its elimination rule, while his definition of the existential quantifier resembles its introduction
rule.

41 Cf. the discussion in Schroeder-Heister 2006 (p. 20) on the uniqueness condition (1.4) and the existence condition (1.5). According
to Schroeder-Heister (2006, p. 31), ‘Popper’s theory is a radical structuralist theory in that just the inferential role of logical
compounds is uniquely described without any further constraints.’

42 See Popper 1948b (p. 324).
43 This is in contrast to the theory of Koslow as presented by Schroeder-Heister (2006, p. 21): ‘In Koslow’s theory inferential

characterizations [. . .] have a specific syntactic form. They provide inferential conditions corresponding to elimination rules in
natural deduction and then require [the characterized statement] to be the weakest object satisfying these conditions.’
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But the fact that Popper does not have a philosophical criterion for preferring one form of
definition over another does not preclude the possibility that he has a logical one. In the more
mature version of his theory presented in Popper 1948a,b, he sometimes states definitions of
logical constants in a form that highlights the duality of certain of his definitions. We will follow
this lead and give the definitions in a way that allows for the formulation of a duality function
that transforms any definition of a logical constant into a definition of a dual logical constant.

5. Popper’s notion of duality
Although Popper makes frequent use of duality,44 he nowhere gives an explanation of his

notion of duality. We think such an explanation is needed, since Popper does not only discuss
duality in the context of classical logic, where the well-known duality based on truth functions
can be applied, but also in the context of non-classical logics such as intuitionistic logic, where a
different notion of duality is called for.

We propose to understand his notion of duality as being based on his concept of relative demon-
strability (`). More precisely, an inferential definition is said to be dual to another inferential
definition, if it results from exchanging all statements on the left side of ` with the statements
on its right side, i.e. by transforming a1, . . . ,an ` b1, . . . ,bm into b1, . . . ,bm ` a1, . . . ,an.45 In the
case of binary connectives we have to swap the arguments to produce its dual.46 We make this
understanding of the notion of duality precise by using a duality function, defined as follows:

Definition 5.1 : Let ? be a unary connective and ◦ a binary connective. The duality function δ

is defined by the following clauses (where Γ and Π are lists of statements; Γδ means that δ is
applied to each member of Γ):

aδ =df a, (?a)δ =df ?
δ aδ , (a◦b)δ =df bδ ◦δ aδ and (Γ `Π)δ =df Π

δ ` Γ
δ .

There are no clauses for / and //. This does not restrict the range of applicability of δ , since /
can always be replaced by ` (cf. Lemma 3.5). In the following we show that the function δ maps
definitions of logical constants to definitions of what Popper considers to be their duals. We do
this for conjunction and disjunction, conditional and anti-conditional, and for modal connectives.

5.1. Conjunction and disjunction
As was already mentioned, Popper gives several characterizing rules for conjunction (∧). We

choose the following definition:

a//b∧ c ↔ (d)(a ` d ↔ b,c ` d) (D∧)

44 He uses expressions like ‘. . . is the dual of . . .’ and ‘. . . is a kind of dual to . . .’, or speaks of a ‘dual notion / rule / definition’.
45 Cf. Kapsner 2014 (p. 76), who also mentions this possibility. There is, however, a difference between the semantical concept |=

that Kapsner considers and Popper’s defined concept `.
Note that it is in general not possible to invert the direction of the sign of derivability (/), for it allows multiple statements on
the left but only one statement on the right (for alternative versions see Appendix A). As already mentioned in Section 3.1, the
replacement of / by ` is allowed. One can therefore formulate definitions of logical constants in terms of relative demonstrability
instead of deducibility. This allows us to make the duality of logical constants obvious. To our knowledge, Popper mentions this
duality based on relative demonstrability only once, in Popper 1948a (p. 181): ‘For certain purposes — especially if we wish to
emphasize the duality or symmetry between “`” and “

∠

” — the use of “(. . .) `” turns out to be preferable to that of “

∠

(. . .)”.’
46 Our definition of duality resembles Cohen’s (1953, p. 82): ‘We define the dual of a postulate of any Gentzen-type system as

the result of writing each sequent p1, . . . ,pm 
 q1, . . . ,qn as qn,qn−1, . . . ,q1 
 pm,pm−1, . . . ,p1, of interchanging K p q with A q p
(hence also interchanging A p q with K q p), of interchanging F p q with G q p (hence also interchanging G p q with F q p) [. . .], and
of reversing the order of premises whenever the postulate is a rule of inference having two premises.’ Here K stands for conjunction,
A for disjunction (‘alternative’), F for the conditional, and G for the anti-conditional.
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b∧ c ` d ↔ b,c ` d (C∧)

If we apply our duality function δ to the characterizing rule (C∧), we obtain:

d ` c∧δ b ↔ d ` b,c (C∧)δ

which is equivalent to Popper’s definition of disjunction (∨):47

a//b∨ c ↔ (d)(d ` a ↔ d ` b,c) (D∨)

d ` b∨ c ↔ d ` b,c (C∨)

We immediately obtain the following introduction and elimination rules for conjunction and
disjunction:

Lemma 5.2 : The following rules for conjunction and disjunction hold:

(1) a∧b/a (4) a/a∨b
(2) a∧b/b (5) b/a∨b
(3) a,b/a∧b (6) (c)((a/c & b/c)→ a∨b/c)

Proof For (1) consider the substitution instance a∧ b ` a ↔ a,b ` a of (C∧); a,b ` a holds
by (Rg). Thus a∧b ` a. Rules (2)–(5) are shown analogously. For (6) consider the substitution
instance a∨b ` a∨b ↔ a∨b ` a,b of (C∨); a∨b ` a∨b holds by (Rg). Thus a∨b ` a,b. From
definition (D`3) we get (c)((a/c & b/c)→ a∨b/c). �

Lemma 5.3 : Conjunction and disjunction can be introduced and eliminated within contexts, i.e.
the following equivalences hold:

a1, . . . ,an,b,c ` d ↔ a1, . . . ,an,b∧ c ` d

a1, . . . ,an ` b1, . . . ,bm,c,d ↔ a1, . . . ,an ` b1, . . . ,bm,c∨d

Proof For the first equivalence consider the following two instances of (Tg):

a1, . . . ,an,b∧ c ` a1
& a1, . . . ,an,b∧ c ` a2
...

...
& a1, . . . ,an,b∧ c ` an
& a1, . . . ,an,b∧ c ` b
& a1, . . . ,an,b∧ c ` c


→ (a1, . . . ,an,b,c ` d→ a1, . . . ,an,b∧ c ` d)



a1, . . . ,an,b,c ` a1
& a1, . . . ,an,b,c ` a2
...

...
& a1, . . . ,an,b,c ` an
& a1, . . . ,an,b,c ` b∧ c


→ (a1, . . . ,an,b∧ c ` d→ a1, . . . ,an,b,c ` d)

For the second equivalence we first show the direction from left to right:

47 Our definitions (D∧) and (D∨) correspond to Popper’s (1948a) rules (3.71) and (3.72), respectively.
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(1) From a1, . . . ,an ` b1, . . . ,bm,c,d and two applications of (Cut) with c/c∨d and d/c∨d
we obtain a1, . . . ,an ` b1, . . . ,bm,c∨d,c∨d.

(2) By (RC) we obtain a1, . . . ,an ` b1, . . . ,bm,c∨d.

For the direction from right to left:

(1) Assume a1, . . . ,an ` b1, . . . ,bm,c∨d.
(2) This is equivalent to (e)((b1/e & . . . & bm/e & c∨d/e)→ a1, . . . ,an/e).
(3) Assume b1/e to bm/e, c/e and d/e.
(4) From c/e and d/e follows c∨d/e.
(5) From b1/e to bm/e and c∨d/e we get a1, . . . ,an/e from (2).

Thus a1, . . . ,an ` b1, . . . ,bm,c,d ↔ a1, . . . ,an ` b1, . . . ,bm,c∨d. �

Lemma 5.4 : Conjunction and disjunction are logical constants, i.e. their rules are fully charac-
terizing.

Proof For conjunction we have to show that

((d)(a1 ` d ↔ b,c ` d) & (d)(a2 ` d ↔ b,c ` d))→ a1//a2

is true. Assuming the antecedent, we substitute a2 for d in both its conjuncts to obtain a1 ` a2 ↔
b,c ` a2 and a2 ` a2 ↔ b,c ` a2. By (Rg) we obtain b,c ` a2 from the second conjunct, and with
b,c ` a2 we obtain a1 ` a2 from the first conjunct. Likewise for a2 ` a1. The proof for disjunction
is similar. �

5.2. Conditional and anti-conditional
The definitions of the conditional and the anti-conditional. Again, we choose those formulations
of the characterizing rules that highlight the duality of the definitions. For the conditional (>)
this definition is:

a//b > c ↔ (d)(d ` a ↔ d,b ` c) (D>)

d ` b > c ↔ d,b ` c (C>)

If we dualize (C>), we obtain:

c >δ b ` d ↔ c ` d,b (C>)δ

which is equivalent to Popper’s definition of the anti-conditional (≯):48

a//b ≯ c ↔ (d)(a ` d ↔ c ` d,b) (D≯)

c ≯ b ` d ↔ c ` d,b (C≯)

As an informal observation we may state that the conditional is characterized by the deduction
theorem and the anti-conditional by the dual of the deduction theorem.

On the basis of these definitions we can show that modus ponens holds for the conditional, and
that a dual to modus ponens holds for the anti-conditional.

Lemma 5.5 : The following rules hold:

48 Our definitions (D>) and (D≯) correspond to Popper’s (1948a) rules (3.81) and (3.82), respectively.
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(1) b,b > c ` c (modus ponens),
(2) c ` c ≯ b,b (a dual rule to modus ponens).

Proof (1) In (C>) let d be b > c to obtain b > c ` b > c ↔ b > c,b ` c. By (Rg), b > c,b ` c
follows.

(2) In (C≯) let d be c ≯ b to obtain c ≯ b ` c ≯ b ↔ c ` c ≯ b,b. By (Rg), c ` c ≯ b,b follows.
�

Lemma 5.6 : Conditional and anti-conditional are logical constants, i.e. their rules are fully
characterizing.

Proof For the conditional we have to show that

((d)(d ` a1 ↔ d,b ` c) & (d)(d ` a2 ↔ d,b ` c))→ a1//a2

is true. Assuming the antecedent, we instantiate d by a1 in both its left and right conjunct.
From the left one gets a1 ` a1 ↔ a1,b ` c, and thus a1,b ` c by (Rg). From the right one gets
a1 ` a2 ↔ a1,b ` c, and thus a1 ` a2. Likewise for a2 ` a1. The proof for the anti-conditional is
similar. �

Following Popper, we will use the terms ‘implication’ and ‘conditional’ interchangeably to
refer either to the connective > or to statements of the form a > b.

Classical implication in the absence of classical negation. As is well known, if implication is
defined solely by the usual implication introduction and elimination rules of natural deduction,
then the addition of classical negation by its natural deduction rules is a non-conservative
extension of the logic. For example, Peirce’s law ((a > b)> a)> a is not derivable using only the
introduction and elimination rules for implication, but becomes derivable if the rules of classical
negation are added.49

Popper (1947b) already made this observation in the context of his characterizing rules.50

In order to make statements such as Peirce’s law deducible without invoking negation, Popper
considers the use of the following additional rule for the conditional:

a,b > c/b ↔ a/b (4.2e)

Reading (4.2e) from left to right amounts to a characterization of implication by Peirce’s rule, i.e.
a rule version of Peirce’s law.51 This becomes more obvious if we replace / by ` and drop the
context statement a52:

b > c ` b→ ` b (Peirce’s rule)

49 See Dummett 1991 (p. 291f.); cf. de Campos Sanz, Piecha, and Schroeder-Heister 2014.
50 He calls positive logic that part of propositional logic obtained by the definitions of the logical constants excluding negation, and

remarks in Popper 1947b (p. 215): ‘Positive logic as defined by these rules does not yet contain all valid rules of inferences in
which no use is made of negation: there is a further region which we may call the “extended positive logic” [. . .].’ Kleene’s (1948)
review of Popper 1947c cites Popper’s observation and turns it into a critique of Popper’s claim to give explicit definitions of the
logical constants: ‘If his definitions were “explicit,” as he claims, it should make no difference whatsoever, in the case of a formula
containing only “>”, whether or not the definition of classical negation has been stated.’ But it is clearly not enough to just ‘state’
the definition. It is the existence postulate which tells us that for every statement there exists a classical negation of it in the object
language which permits the proof of the demonstrability of, for example, Peirce’s law to go through.

51 Whether Popper was the first to consider Peirce’s rule is not completely clear. Seldin (2008, §3) ‘think[s . . .] that Popper and Curry
thought of this rule independently.’ Note that Popper did not call his rule ‘Peirce’s rule’.

52 Which is only present, we think, because in Popper 1947b the left side of / must not be empty.
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Popper also mentions that in the presence of (4.2e), the rules for classical negation can be obtained
from the definitions of intuitionistic negation.53

We can therefore ascribe to Popper the following insights, which were far from trivial at
the time: (1) The addition of classical negation to a logic containing implication defined by its
usual introduction and elimination rules forms a non-conservative extension. (2) Alternatively,
implication can be characterized by a stronger set of rules containing a version of Peirce’s rule.
(3) If this stronger set of rules for implication is used, then intuitionistic and classical negation
coincide.

5.3. The modal connectives
Modal logic is introduced in Popper 1947c (§IX). Although modal logic is not our main focus,

it is nevertheless necessary to introduce it here, because Popper uses modal connectives in his
proof of the compatibility of intuitionistic and dual-intuitionistic logic, which will be dealt with
in Section 6.

Popper considers the following six modal connectives: necessary, impossible, logical, con-
tingent, possible and uncertain. They are taken from Carnap 1947 (p. 175), and the definitions
given for them by Popper are strongly influenced by Carnap’s treatment of modality. Popper’s
definitions and characterizing rules for the modal connectives all have the following form:

a//Mb ↔ (` a
∨ ∠

a) &R(a,b) (DM)

(`Mb
∨ ∠

Mb) &R(Mb,b) (CM)

where M stands for any of the six modal connectives, andR(a,b) varies depending on the modal
connective to be defined.

Table 1 combines the table given by Carnap (1947, p. 175)54 and the list of definitions given by
Popper (1947c, p. 1223). Carnap’s half of the table contains his names for the modal connectives,
their definition in terms of necessity � and possibility ♦ and the semantic property to which
they correspond. In Carnap’s system every statement (or sentence, to use Carnap’s terminology)
falls into one of three disjoint categories. It can either be L-true, L-false or factual. A statement
is called L-determinate, if it is either L-true or L-false. If a statement is not L-true, then it is
either L-false or factual and so on. Popper’s half of the table contains his names for the modal
connectives, the corresponding symbol and the partR(Mb,b) of the definition that varies with
the modal connectives.

If L-truth is matched with demonstrability and L-falsity with refutability, then the close
correspondence between the semantic properties given by Carnap’s and Popper’s definitions
becomes obvious. For example, in the case of a noncontingent (Carnap’s terminology) or logical
(Popper’s terminology) statement, the semantic property of being L-determinate corresponds to
the property of being either demonstrable or refutable according to Popper’s definition.

We observe that the part `Mb
∨ ∠

Mb in Popper’s definitions (CM) of the modal connectives
M corresponds to the fact that in Carnap’s system all modal statements (i.e. statements whose
outermost logical constant is a modal constant) are L-determinate.55 Carnap’s modal logic is S5,
which can be axiomatized by the axioms K, T and 5. The same is the case for Popper’s modal
logic, as the following theorem shows.

53 See Popper 1947b (p. 216): ‘Also we do not need, in the presence of rule 4.2e, the whole force of our rule of negation 4.6 [i.e.
classical negation], but can obtain this rule as a secondary rule from some weaker rules [. . .] (from the rules of the so-called
intuitionist logic).’ Popper (1947b, p. 200) calls a rule secondary if it is derivable from a set of given so-called primary rules, i.e. if
‘every inference which is asserted as valid by the secondary rule could be drawn merely by force of the primary rules alone.’

54 We have replaced N by � here.
55 Carnap (1947, p. 174) mentions this explicitly for necessity.
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Table 1. The modal connectives from Carnap and Popper.

Carnap Popper

Name �,♦-Definition Semantic property Sign Name R(Mb,b)

Necessary �p L-true N Necessary ` Nb ↔ ` b
¬♦¬p

Impossible �¬p L-false I Impossible ` Ib ↔

∠

b
¬♦p

Contingent ¬�p∧¬�¬p factual C Contingent

∠

Cb ↔ (` b
∨ ∠

b)
♦¬p∧♦p

Non-necessary ¬�p not L-true U Uncertain

∠

Ub ↔ ` b
♦¬p

Possible ¬�¬p not L-false P Possible

∠

Pb ↔

∠

b
♦p

Noncontingent �p∨�¬p L-determinate L Logical ` Lb ↔ (` b
∨ ∠

b)
¬♦¬p∨¬♦p

Theorem 5.7 : From the definitions (DN) and (D>) we can prove the S5 axioms K, T and 5.

Proof We consider axiom 5, i.e. `Nb > NNb, which is shown as follows (K and T can be shown
similarly):

(1) ` NNb ↔ ` Nb, from (DN).
(2) ` Nb

∨ ∠

Nb, from (DN).
(3) If ` Nb, then ` NNb, from (1).
(4) If ` NNb, then Nb ` NNb, by (LW).
(5) If

∠

Nb, then (c)Nb ` c, hence Nb ` NNb, by instantiating c by NNb.
(6) Therefore Nb ` NNb, from (2), (3) and (5).
(7) Therefore ` Nb > NNb, from (6) and (D>).

The proof can be generalized for all modal connectives M defined by Popper, i.e. `Mb > NMb
holds for any M. �

The following result will be important in Section 6.4, where it is used to show that the
interpretation of intuitionistic negation by I and of dual-intuitionistic negation by U works.

Theorem 5.8 : Uncertainty U and impossibility I are dual modal notions.

Proof By applications of the duality function δ (Definition 5.1). �

Each of the considered modal connectives is a logical constant in Popper’s sense. We show this
for N as an example:

Lemma 5.9 : N is a logical constant, i.e. its rule is fully characterizing.

Proof We have to show that

((` a1
∨ ∠

a1) & (` a1 ↔ ` b) & (` a2
∨ ∠

a2) & (` a2 ↔ ` b))→ a1//a2

is true. Assume ` a1. From ` a1 ↔ ` b we then get ` b. From ` b and ` a2 ↔ ` b we get ` a2.
From ` a2 we get a1 ` a2. Assume

∠

a1. Hence (c)(a1/c), and by instantiating c by a2 we get
a1/a2. Therefore a1 ` a2. The proof of a2/a1 is similar. �
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6. Popper’s theory of negations
Popper considered several different kinds of negation. We discuss their definitions and investi-

gate how they relate to each other. The definitions are taken from Popper 1948b unless indicated
otherwise.56 Some of the following results were only stated without proof by Popper, and for
some he gave only proof sketches. We will provide more details and fill in the missing proofs.

6.1. Classical negation
For classical negation (¬k) Popper considers several definitions, among them the following

two:57

a//¬k b ↔ (a,b ` & ` a,b) (D¬k1)

a//¬k b ↔ (c)(d)(d,a ` c ↔ d ` b,c) (D¬k2)

with the following two characterizing rules:

¬k b,b ` & ` ¬k b,b (C¬k1)

(c)(d)(d,¬k b ` c ↔ d ` b,c) (C¬k2)

These two definitions reflect two different ways of characterizing classical negation. Definition
(D¬k1) is based on the idea that the classical negation of a statement b is a statement which is at
the same time complementary and contradictory to b, whereas (D¬k2) is very similar to the rules
for negation used in classical sequent calculus.

Lemma 6.1 : The definitions (D¬k1) and (D¬k2) are equivalent.

Proof We consider the characterizing rules, and show first that (C¬k1) follows from (C¬k2):
In (c)(d)(d,¬k b ` c ↔ d ` b,c) let d be b to obtain (c)(b,¬k b ` c ↔ b ` b,c). By (Rg) one

obtains (c)(b,¬k b ` c), i.e. b,¬k b `; hence ¬k b,b ` by (LE). In (c)(d)(d,¬k b ` c ↔ d ` b,c)
let c be ¬k b to obtain (d)(d,¬k b ` ¬k b ↔ d ` b,¬k b). By (Rg) one obtains (d)(d ` b,¬k b), i.e.
` b,¬k b; hence ` ¬k b,b by (RE).

To show that (C¬k2) follows from (C¬k1) it is sufficient to show that the two implications
` ¬k b,b→ (d,¬k b ` c→ d ` b,c) and ¬k b,b ` → (d ` b,c→ d,¬k b ` c) hold. This can be
done by using (Cut). To show the first implication we assume ` ¬k b,b, from which we obtain
d ` ¬k b,b by (LW). Assuming d,¬k b ` c we get d,d,b ` c by (Cut), from which we get d,b ` c
by (LC). The second implication is a direct instance of (Cut), where the cut formula is the
statement b. �

The use of (Cut) can be justified by using our definition (D`3) for relative demonstrability
(`) instead of Popper’s definition (D`2), or by assuming that the object language contains
conjunction (∧), disjunction (∨) and the conditional (>); see Appendix B.58 We take the first
option here, and presuppose our definition (D`3). The rule (Cut) is discussed in Appendix B.

Lemma 6.2 : Classical negation ¬k is self-dual.

Proof By applying the duality function δ to (D¬k1). �

56 Popper’s notation for negations varies; we write ¬k a, for example, where Popper would e.g. write ak .
57 In Popper 1948b, (D¬k1) is (D4.3), and (D¬k2) is (4.31).
58 Popper states that (D¬k1) and (D¬k2) are equivalent if the existence of either conjunction or disjunction is guaranteed for arbitrary

statements.

20



6.2. Intuitionistic negation and dual-intuitionistic negation
The study of formalized intuitionistic logic started with Heyting’s set of axioms.59 Originally,

Heyting’s formalization was written in response to a prize question proposed by Mannoury in
1927, which also asked ‘to investigate whether from the system to be constructed [for intuitionistic
logic] a dual system may be obtained by (formally) interchanging the principium tertii exclusi
and the principium contradictionis.’60 Thus the idea of also somehow dualizing intuitionistic
logic was present from the very beginning of its development.61 The principium tertii exclusi
is in Popper’s theory mirrored by the property of a negation of b to be complementary to b,
and the principium contradictionis is mirrored by the contradictoriness of b and the negation
of b. Popper uses the term ‘minimum definable negation’ when he writes about what we call
dual-intuitionistic negation (¬m), but still mentions the fact that it forms some kind of dual to
intuitionistic negation.62 For intuitionistic negation (¬i), Popper gives the following definition
and characterizing rule:63

a//¬i b ↔ (c)(c ` a ↔ c,b `) (D¬i)

c ` ¬i b ↔ c,b ` (C¬i)

If we dualize (D¬i), we get

a//¬i
δ b ↔ (c)(a ` c ↔ ` c,b) (D¬i)δ

which is identical to Popper’s definition for dual-intuitionistic negation (¬m):64

a//¬m b ↔ (c)(a ` c ↔ ` c,b) (D¬m)

¬m b ` c ↔ ` c,b (C¬m)

Lemma 6.3 : For intuitionistic negation b,¬i b ` holds, and for dual-intuitionistic negation
` b,¬m b holds.

Proof In (C¬i) let c be ¬i b; by (Rg) and (LE) we get b,¬i b `. In (C¬m) let c be ¬m b; by (Rg)
and (RE) we get ` b,¬m b. �

Lemma 6.4 : Intuitionistic negation ¬i and dual-intuitionistic negation ¬m are logical constants,
i.e. their rules are fully characterizing.

Proof For intuitionistic negation we have to show that

((c)(c ` a1 ↔ c,b `) & (c)(c ` a2 ↔ c,b `))→ a1//a2

is true. In both conjuncts let c be a1 to obtain a1 ` a1 ↔ a1,b ` and a1 ` a2 ↔ a1,b `. From the
first conjunct we get a1,b ` by (Rg), and from a1,b ` and the second conjunct we obtain a1 ` a2.
The proof of a2 ` a1 is similar.

59 See Heyting 1930.
60 Quoted from Troelstra 1990 (p. 4).
61 Cf. Kapsner 2014 (p. 128).
62 See Popper 1948b (p. 323). Cohen (1953, p. 188) remarks that ‘[t]he negation functor in the dualintuitionistic restricted predicate

calculus GL2 [developed by Cohen] has the same properties as Popper’s “minimum definable (non-modal) negation [¬m].”’
63 See Popper 1948b (def. (D4.1)).
64 See Popper 1948b (def. (D4.2)).
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For dual-intuitionistic negation we have to show that

((c)(a1 ` c ↔ ` c,b) & (c)(a2 ` c ↔ ` c,b))→ a1//a2

is true. In both conjuncts let c be a1 to obtain a1 ` a1 ↔ ` a1,b and a2 ` a1 ↔ ` a1,b. From
the first conjunct we obtain ` a1,b by (Rg), and from ` a1,b and the second conjunct we get
a2 ` a1. The proof of a1 ` a2 is similar. �

6.3. Non-conservative language extensions
Popper (1948b, §V) considers non-conservative language extensions.65 An example is the

addition of classical negation ¬k to a language containing both intuitionistic negation ¬i and
dual-intuitionistic negation ¬m. Due to the following theorem this addition is a non-conservative
extension, since it makes classical laws hold for the two weaker negations ¬i and ¬m.

Theorem 6.5 : In the presence of ¬k we have ¬k a//¬i a, ¬k a//¬m a and ¬i a//¬m a. In other
words, the three negations ¬k, ¬i and ¬m collapse (i.e. they become synonymous).

Proof Classical negation ¬k satisfies the rules for ¬i and ¬m, i.e. we have a ` ¬k b ↔ a,b ` and
¬k a ` b ↔ ` a,b, respectively. Both equivalences are direct consequences of (C¬k1) and (C¬k2),
by using (Cut). Since the rules for ¬i and ¬m are fully characterizing, we have ¬k a//¬i a and
¬k a//¬m a. Hence also ¬i a//¬m a, for any object language containing ¬k, ¬i and ¬m. �

Popper (1948b, p. 324) also considers the more general situation where two logical functions S1
and S2 have been introduced by sets of primitive rules R1 and R2, respectively, such that R2 ⊂ R1.
If both S1 and S2 are definable, and S1 is given, then one can show that S1 and S2 are equivalent.

This can be generalized further, since R2 need not be a subset of R1; it is sufficient that R1
implies R2. Consider the following setting66 with two fully characterizing rulesR1 andR2 for
two n-ary constants such thatR1 impliesR2:

R1(a,a1, . . . ,an) (1)

R2(a,a1, . . . ,an) (2)

R1(a,a1, . . . ,an)→R2(a,a1, . . . ,an) (3)

Now assume that R2(b,a1, . . . ,an) holds. From (1) and (3) we get R2(a,a1, . . . ,an), which
implies a//b, since we have fully characterizing rules. HenceR1(b,a1, . . . ,an). The two charac-
terized constants become thus synonymous; in other words, addingR1 yields a non-conservative
extension of systems containingR2.

Popper’s treatment of conservativeness also throws some light on his logical approach in
general. Based on the fact that Popper does not use conservativeness as a criterion for accepting
characterizing rules, Schroeder-Heister (2006, §3) argues that Popper is not aiming at a semantic
justification of logical theories, since from a semantic theory we expect that the introduction of a
new constant is always a conservative extension. Instead, Popper’s theory is rather a means to
metalinguistically describe logical theories.

65 Without using these terms. See also Popper 1947a (p. 282, fn 20), where it is observed that ‘if, in one language, a classical as well
as an intuitionistic negation exists of every statement, then the latter becomes equivalent to the former, or in other words, classical
negation then absorbs or assimilates its weaker kin.’ Moreover, he observes that this does not happen if classical negation is put
together with minimal negation (or with yet another negation, ‘the impossibility of b’, proposed by him ibid., p. 283). However,
minimal negation is not a logical constant in Popper’s sense (cf. Theorem 6.20).

66 See Schroeder-Heister 2006 (§3).
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6.4. The compatibility of intuitionistic and dual-intuitionistic negation
The logical constants of intuitionistic and dual-intuitionistic negation are compatible in the

sense that there is a logic containing both, without them collapsing into classical negation. A
proof of this result was sketched by Popper (1948b, §V). We give a full proof in what follows. It
consists in the exposition of the logic L1, for which we show that it has the following, desired
properties:

• It satisfies the rules of Basis I.
• It contains for any two statements a and b also a∧b, a∨b, a > b, a ≯ b, Ia and Ua.
• It contains for every statement a its intuitionistic negation ¬i a and its dual-intuitionistic

negation ¬m a.
• It satisfies all the inferential definitions of the logical connectives it contains.
• Both ¬i a//Ia and ¬m a//Ua holds.
• The duals Ia and Ua (see Theorem 5.8) do not collapse.

Definition 6.6 : The logic L1 is three-valued with truth-values d, c and r.67 It contains a statement
s with constant truth-value c. The truth-values of the compound statements of L1 and of s are
given by the following truth-tables; for completeness, we add the truth-tables for N,P,L and C,
which are not included in Popper 1948b:

a b a∧b a∨b a > b a ≯ b

d d d d d r
d c c d c d
d r r d r d

c d c d d r
c c c c d r
c r r c r c

r d r d d r
r c r c d r
r r r r d r

s

c

a Ia Ua

d r r
c r d
r d d

a Na Pa La Ca

d d d d r
c r d r d
r r r d r

A deducibility relation a1, . . . ,an/b is L1-valid, if the following conditions hold:

• If a1∧ . . .∧an has truth-value d, then b must have truth-value d as well.
• If a1∧ . . .∧an has truth-value c, then b must have either truth-value c or truth-value d.
• If a1∧ . . .∧an has truth-value r, then b can have any truth-value.

The truth-values d, c and r of L1 reflect Carnap’s tripartition into demonstrable, factual (con-
tingent), and refutable statements, respectively. That is, if d is read as L-true, c as factual in the
sense of Carnap, and r as L-false, then the given truth-tables for L1 are an adequate semantics for
this reading.

Lemma 6.7 : L1 satisfies the rules of Basis I.

Proof That L1 satisfies (Rg) and (Tg) is a direct consequence of the definition of L1-validity. �

Lemma 6.8 : The following propositions are true:

(1) A statement of L1 is demonstrable if, and only if, it has the value d for all valuations.
(2) A demonstrable statement exists in L1.
(3) A statement is refutable if, and only if, it has the value r for all valuations.

67 Popper (1948b) uses the truth-values 1, 2 and 3, which are here replaced by d, c and r, respectively.

23



(4) A refutable statement exists in L1.
(5) It is a//b if, and only if, the value of a is identical with the value of b.

Proof (1), (3) and (5) follow directly from the definitions of demonstrability and refutability (see
Sections 3.2 and 3.3), together with the interpretation of deducibility in L1. A witness for (2) is
the demonstrable statement a > a. A witness for (4) is the refutable statement a ≯ a. �

Lemma 6.9 : The logical constants in L1 satisfy their respective inferential definitions (D∧),
(D∨), (D>), (D≯), (DI) and (DU).

Proof This is only shown for U, the other cases are analogous. The characterizing rule for U is:

(` Ub
∨ ∠

Ub) & (

∠

Ub ↔ ` b)

That the left conjunct is satisfied can be seen by looking at the truth-table for U, which contains
only either d or r. If Ua has the truth-value d, then it is demonstrable, and if it has the truth-value
r, then it is refutable.

For the right conjunct, we consider first the part

∠

Ub→ ` b, which is also satisfied: If Ub is
refutable, then it has the value r, and if it has the value r, then b must have the value d, thus being
demonstrable. The remaining part ` b→

∠

Ub is also satisfied: If b is demonstrable, then it has
the value d; hence Ub has the value r, thus being refutable. �

Lemma 6.10 : Ia and Ua do not collapse in L1.

Proof This is guaranteed by the existence of the statement s with truth-value c. The value of Us
is d, and the value of Is is r. Therefore it cannot be the case that Us//Is, by Lemma 6.8. �

Lemma 6.11 : From the definitions (D¬i), (D¬m), (D>), (D≯), (DI) and (DU) we can show
that ¬i a//a > Ia and ¬m a//Ua ≯ a.

Proof For the proof of ¬i a//a > Ia we have to show that (c)(c ` b > Ib → c,b `) and
(c)(c,b `→ c ` b > Ib), which is just an instance of (D¬i). The latter is shown as follows:

(1) Assume c,b `.
(2) Therefore c,b ` Ib, by (RW).
(3) Therefore c ` b > Ib, by (C>).
(4) Therefore (c)(c,b ` → c ` b > Ib).

The proof of (c)(c ` b > Ib→ c,b `) is:

(1) Assume c ` b > Ib.
(2) Therefore c,b ` Ib, by (C>).
(3) ` Ib

∨
Ib `, by (CI). We argue by cases.

(4) Assume Ib `.
(5) Therefore c,b `, by (2), (4) and (Tg).
(6) Assume ` Ib.
(7) Therefore b `, by (CI).
(8) Therefore c,b `, by (LW).
(9) Therefore c,b `, by (3), (5) and (8).

(10) Therefore (c)(c ` b > Ib→ c,b `).

Analogously for the proof of ¬m a//Ua ≯ a. �

Lemma 6.12 : In L1 there is for every statement a an intuitionistic as well as a dual-intuitionistic
negation of a. For ¬i a we have ¬i a//Ia, and for ¬m a we have ¬m a//Ua.

Proof We have a > Ia//Ia and Ua ≯ a//Ua in L1. This can be checked by constructing

24



the respective truth-tables. Using Lemma 6.11, we obtain Ia//¬i a and Ua//¬m a. The modal
statements Ia and Ua exist for any statement in L1. Therefore intuitionistic and dual-intuitionistic
negations exist for any statement in L1. �

Theorem 6.13 : If a logic contains for any statement a also its intuitionistic negation ¬i a and
its dual-intuitionistic negation ¬m a, then these two negations do not (necessarily) collapse, i.e.
we do not have ¬i a//¬m a.

Proof The logic L1 is such a logic. �

Popper (1948b) thus showed that there exists a bi-intuitionistic logic. The logic L1 might not
be very interesting in itself. Nevertheless, it is at least interesting from a historical point of view,
since it is the first example of a bi-intuitionistic logic to be found in the literature. Moreover, it
shows that already Popper had the idea of combining different logics.68

6.5. Six further kinds of negation
Popper (1948b, §VI) considers three further kinds of negation explicitly, namely ¬j, ¬l and ¬n.

He mentions their duals in a footnote69 but does not study them. The negation ¬j coincides with
Johansson’s minimal negation, as already remarked by Popper.70 The negation ¬n coincides with
what is now called subminimal negation71.

Definition 6.14 : The six negations ¬j, ¬dj, ¬l, ¬dl, ¬n and ¬dn are given by the following
characterizing rules. We also indicate the respective duals. (The characterizing rules for ¬k, ¬i
and ¬m are repeated below for comparison.)

Negation Characterizing rule Rule name Dual negation Rule in Popper 1948b

¬j a,b ` ¬j c→ a,c ` ¬j b (C¬j) ¬dj (6.1)

¬dj ¬dj c ` a,b→¬dj b ` a,c (C¬dj) ¬j –

¬l a,¬l b ` c→ a,¬l c ` b (C¬l) ¬dl (6.2)

¬dl c ` a,¬dl b→ b ` a,¬dl c (C¬dl) ¬l –

¬n a,b ` c→ a,¬n c ` ¬n b (C¬n) ¬dn (6.3)

¬dn c ` a,b→¬dn b ` a,¬dn c (C¬dn) ¬n –

¬k a,¬k b ` c ↔ a ` b,c (C¬k2) ¬k (4.32)

¬i a ` ¬i b ↔ a,b ` (C¬i) ¬m (4.1)

¬m ¬m a ` b ↔ ` a,b (C¬m) ¬i (4.2)

The two rules (C¬i) and (C¬m) differ slightly from the other rules in that they have only two
instead of three statements occurring in each relation of relative demonstrability. However, they
can also be given the same form with three such statements, as the following lemma shows.

68 Cf. Schroeder-Heister 2006 (p. 31, fn 16).
69 Popper (1948b, p. 328, fn 16) writes: ‘There are, of course, dual rules of 6.1 [¬j], 6.2 [¬l] and 6.3 [¬n], two of which are satisfied

by [¬m], just as 6.1 [¬j] and 6.3 [¬n] are satisfied by [¬i].’
In Curry 1948d, ¬l is mistakenly considered to be the dual of ¬j, which it is not in the sense used by Popper.

70 Popper (1948b, p. 328) explains his names for these negations as follows: ‘In view of 6.2 [see Definition 6.14], we may call [¬l a]
the “left-hand side negation of a” (in contradistinction to JOHANSSON’s [¬j a] which, in view of 6.1 [see Definition 6.14], is a “right
hand side negation”). [¬n a] may be called the “neutral negation”; it is neutral with respect to right-sidedness and left-sidedness
[. . .].’

71 See e.g. Dunn 1999 and the references therein.
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Lemma 6.15 : The rule (C¬i) is equivalent to

a,c ` ¬i b ↔ a,b,c ` (C¬i
′)

and the rule (C¬m) is equivalent to

¬m a ` b,c ↔ ` a,b,c. (C¬m
′)

Proof Rule (C¬i) follows from (C¬i
′) by substituting a for c and applications of (LC). Rule

(C¬m) follows from (C¬m
′) by substituting b for c and applications of (RC).

Next we show that (C¬m
′) can be obtained from (C¬m). For the direction from right to left,

assume ¬m a ` b,c and use (Cut) with ` a,¬m a, which holds by Lemma 6.3.
For the direction from left to right, we first show that ¬m a ` a,b→¬m a ` b holds:

(1) Assume ¬m a ` a,b.
(2) Use (Cut) with ` a,¬m a (Lemma 6.3) to obtain ` a,a,b, from which ` a,b follows.
(3) Applying (C¬m), ¬m a ` b follows.

We now show that ` a,b,c implies ¬m a ` b,c.

(1) Assume ` a,b,c.
(2) By using definition (D`3) and by applying universal instantiation twice, we obtain

(a/d & b/d & c/d)→¬m a/d.
(3) Assume c/d to obtain (a/d & b/d)→¬m a/d.
(4) Using an instance of ¬m a ` a,b→¬m a ` b, we obtain b/d→¬m a/d.
(5) Reintroduce c/d to obtain (c/d & b/d)→¬m a/d.
(6) By universal quantification and application of (D`3) we get ¬m a ` b,c.

To show that (C¬i
′) can be obtained from (C¬i), we first apply the duality function δ to (C¬i),

which yields (C¬m). An application of δ to the equivalent (C¬m
′) yields (C¬i

′). �

In the following, we show how all these negations relate to each other.

Theorem 6.16 : The following statements hold for the characterizing rules given in Defini-
tion 6.14:

(1) ¬k satisfies the rule for ¬i. (6) ¬k satisfies the rule for ¬m.
(2) ¬i satisfies the rule for ¬j. (7) ¬m satisfies the rule for ¬dj.
(3) ¬j satisfies the rule for ¬n. (8) ¬dj satisfies the rule for ¬dn.
(4) ¬k satisfies the rule for ¬l. (9) ¬k satisfies the rule for ¬dl.
(5) ¬l satisfies the rule for ¬n. (10) ¬dl satisfies the rule for ¬dn.

Proof We show (7), (8), (9) and (10). The structural rules (LE) and (RE) will be used tacitly.

(7) We have to show ¬m c ` a,b→¬m b ` a,c, presupposing (C¬m). By Lemma 6.15 we
can use (C¬m

′) equivalently.
a) Assume ¬m c ` a,b.
b) Therefore ` c,a,b, by (C¬m

′).
c) Therefore ¬m b ` a,c, again by (C¬m

′).
(8) We have to show c ` a,b→¬dj b ` a,¬dj c, presupposing (C¬dj).

a) Assume c ` a,b.
b) We have ¬dj c ` a,¬dj c→¬dj¬dj c ` a,c, as an instance of (C¬dj).
c) We have ¬dj c ` a,¬dj c, by (Rg) and (RW).
d) Therefore ¬dj¬dj c ` a,c, from b) and c) by modus ponens.
e) Therefore ¬dj¬dj c ` a,b, from a) and d) by (Cut) and (RC).
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f) We have ¬dj¬dj c ` a,b→¬dj b ` a,¬dj c, as an instance of (C¬dj).
g) Therefore ¬dj b ` a,¬dj c, from e) and f) by modus ponens.

(9) We have to show c ` a,¬k b→ b ` a¬k c, presupposing (C¬k).
a) Assume c ` a,¬k b.
b) We have ¬k b,b ` and ` c,¬k c, by (C¬k).
c) Therefore b,c ` a, from a) and b) by (Cut).
d) Therefore ` c,¬k c, from b) and c) by (Cut).

(10) We have to show c ` a,b→¬dl b ` a,¬dl c, presupposing (C¬dl).
a) Assume c ` a,b.
b) We have ¬dl b ` a,¬dl b→ b ` a,¬dl¬dl b, as an instance of (C¬dl).
c) We have ¬dl b ` a,¬dl b, by (Rg) and (RW).
d) Therefore b ` a,¬dl¬dl b, from b) and c) by modus ponens.
e) Therefore c ` a,¬dl¬dl b, from a) and d) by (Cut) and (RC).
f) We have c ` a,¬dl¬dl b→¬dl b ` a,¬dl c, as an instance of (C¬dl).
g) Therefore ¬dl b ` a,¬dl c, from e) and f) by modus ponens.

Statements (2)–(5) can be shown analogously, and were already presented by Popper (1948b,
p. 328) without proof. For statements (1) and (6) see Theorem 6.5. �

Corollary 6.17 : By transitivity we have in addition that ¬k satisfies the rules for ¬j, ¬n, ¬dn
and ¬dj; ¬i satisfies the rule for ¬n, and ¬m satisfies the rule for ¬dn.

Theorem 6.18 : We have the following dualities: (¬k,¬k), (¬i,¬m), (¬j,¬dj), (¬l,¬dl) and
(¬n,¬dn).

Proof The self-duality of ¬k is given by Lemma 6.2. For the duality between ¬i and ¬m see
Section 6.2. The dualities (¬j,¬dj), (¬l,¬dl) and (¬n,¬dn) can be shown by applications of the
duality function δ . �

The following diagram summarizes our results. The dotted lines connect those negations that
are dual in the sense of Popper, and the arrows show which negations satisfy the rules of which
other negations; the solid arrows are due to Theorem 6.16, and the dashed arrows are due to
Corollary 6.17. The diagram is complete; no further (non-trivial) relations hold.72

¬k

¬i ¬m

¬l ¬dl

¬j ¬dj

¬n ¬dn

Which negations are logical constants? In distinction to classical, intuitionistic and dual-
intuitionistic negation, the six negations ¬j, ¬dj, ¬l, ¬dl, ¬n and ¬dn are not given by fully

72 That ¬m does not satisfy ¬n was already observed by Popper (1948b, p. 328).
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characterizing rules. Hence, these negations cannot be considered as logical constants.73 This
is especially interesting in the case of minimal negation ¬j. In order to show this, Popper first
introduces the two logical connectives t and f :

a//t(b) ↔ (c)(b/a ↔ c/a) (D t)

(c)(b/t(b) ↔ c/t(b)) (C t)

a// f (b) ↔ (c)(a/b ↔ a/c) (D f )

(c)( f (b)/b ↔ f (b)/c) (C f )

For t and f , the following lemma holds.

Lemma 6.19 : For all statements b: ` t(b) and f (b) `.

Proof In (C t) let c be t(b) in order to obtain (b/t(b) ↔ t(b)/t(b)), from which one can obtain
b ` t(b). From b/t(b) and (C t) one immediately obtains (c)(c/t(b)), and thus ` t(b). Similarly
for f (b) `. �

This shows that t is a unary verum and that f is a unary falsum.

Theorem 6.20 : None of the rules for ¬j, ¬dj, ¬l, ¬dl, ¬n and ¬dn are fully characterizing.

Proof The verum t satisfies the rules for ¬j, ¬n, ¬dl and ¬dn. The falsum f satisfies the rules for
¬l, ¬n, ¬dj and ¬dn. Classical negation ¬k satisfies the rules for ¬j, ¬dj, ¬l, ¬dl, ¬n and ¬dn. If
the rules for the six latter negations were each fully characterizing, then we would have for all
a that ¬k a//t(a) or ¬k a// f (a), depending on the negation considered. But both ¬k a//t(a) and
¬k a// f (a) can only hold for contradictory object languages. �

7. Conclusion
Popper already developed ideas and had results in areas of philosophical logic that were in

some cases only rediscovered later. Examples are his thoughts on a dual-intuitionistic logic,
which were then further developed by Cohen (1953) into a sequent calculus for dual-intuitionistic
logic, and his proof that there exists a bi-intuitionistic logic. Popper also saw certain logical and
philosophical problems that are still discussed today. We mention the problem of trivializing
(tonk-like) connectives in inferential settings, questions concerning non-conservative language
extensions, and the problem of logicality. We saw that Popper developed a theory of modalities
and a theory of negations, and we pointed out how his conception of duality plays an important
part in both of them. Moreover, Popper also made several minor discoveries; he was, for example,
one of the first to consider Peirce’s rule. Finally, we would like to emphasize the importance
of Popper’s use of a purely structural basis for deducibility, which is central in his approach on
logic. It allowed him to abstract from object languages that already presuppose the availability
of specific logical constants, and enabled him to discuss logical constants in structural terms.
His theory of negations is an interesting example of this approach, and our results underline its
fruitfulness.

73 The idea that certain negations could be too weak to be still considered as logical constants is already present in Popper 1943
(p. 50): ‘Systems containing the operation of negation may be so much weakened that contradictoriness [i.e. the derivability of
any two formulas such that one is the negation of the other] only implies n-embracingness [i.e. we can prove that any negation of
any formula whatsoever can be derived (ibid., p. 49)]. It appears, however, that we cannot weaken them further without depriving
negation of the character of a logical operation.’
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Appendix A: The development of Popper’s formulation of a basis
In the main part of this paper we selected one version of Popper’s basis for the deducibility

relation (see Section 2.4). This approach allowed us to quickly progress to the definitions of
the logical constants, which were our main concern. It should be noted, however, that in the
succession of Popper’s articles he presents several formulations to capture what he understands
by a basis. We trace this development in the following, taking the order of his publications as
a lead.74 We restrict ourselves again to propositional logic, and do not comment on additional
constraints regarding substitution that have to be made for the treatment of quantification.

There are two decisive points in this development. The first is the impasse that Popper found
himself in while trying to get rid of the generalized transitivity principle (Tg), which led him to
develop Basis II. But Curry (1948a) showed that Basis II is not, contrary to what Popper claims,
equivalent to Basis I. We will point out Popper’s error and will show how it may be corrected.
The second decisive point was when Popper rediscovered a solution of how to replace (Tg) by a
simpler rule, something which had been done similarly before by Gentzen for a system of Hertz.

Popper 1947a, ‘Logic without assumptions’
The notion of absolute validity is developed, which justifies the rules of a basis:

There are inferences [. . .] which can be shown, on our definition of validity, to be valid whatever the
logical form of the statements involved. [. . .] We shall say of these inferences that they are absolutely
valid. (Ibid., p. 274)

The basis that he considers consists of the generalized reflexivity principle (Rg) and the rule
(Tg),75 which he claims, without giving a proof, to be complete with respect to his notion of
absolute validity:

It can be shown that all absolutely valid rules of inference [. . .] can be reduced to two [namely (Rg)
and (Tg)]. By ‘reduced’, I mean here: every inference which is an observance of some of the rules in
question can be shown to be an observance of these two rules [. . .]. (Ibid., p. 277)

This claim is plausible, especially in view of Lejewski’s (1974) proof of the equivalence of
Popper’s Basis I and the systems developed in Tarski 1930a,b, 1935, 1936b.

Popper 1947b, ‘New foundations for logic’
Two different approaches to axiomatizing the deducibility relation are developed, which are

summed up on p. 211, ibid. Approach I (developed in §2) consists of one of several possible
variants of rules equivalent to (Rg) and (Tg). Approach II (developed in §3) takes a simpler
transitivity principle than (Tg) and postulates the availability of conjunction in the object language.
These two approaches are exemplified by Basis I and Basis II, respectively.

Basis I. Popper considers each of the combinations (Tg) + (Rg), (Tg) + (2.1) + (2.2) + (2.3) and
(Tg) + (2.41) + (2.7) as a possible basis. The components are:

a/a (2.1)

a1, . . . ,an/b→ a1, . . . ,an,an+1/b (2.2)

a1, . . . ,an/b→ an, . . . ,a1/b (2.3)

74 The exact order of Popper 1947a and Popper 1947b is not completely clear; both reference the other as forthcoming and were
probably written at around the same time.

75 Cf. Section 2.4. In Popper 1947a these rules are labeled (6.1g) and (6.2g), respectively.
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a1, . . . ,an/ai (for 1≤ i≤ n) (Rg) = (2.4)

a1, . . . ,an/a1 (2.41)

a1, . . . ,an+m/b→ an, . . . ,a1,an+1, . . . ,an+m/b (2.7)
a1, . . . ,an/b1

& a1, . . . ,an/b2
...

...
& a1, . . . ,an/bm

→ (b1, . . . ,bm/c→ a1, . . . ,an/c) (Tg) = (2.5g)

The combination (Tg) + (Rg) is called Basis I by Popper.
All these combinations have the downside that they have to include the complicated transitivity

principle (Tg) instead of a simpler one. Popper considers the rule (Tg) to be problematic and
wants to get rid of it. He explains the exact problem later, in Popper 1948a (p. 177, fn 6):

The objection against [(Tg)] is that it makes use of an unspecified number of conjunctive components
in its antecedent; this may be considered as introducing a new metalinguistic concept — something
like an infinite product.

This leads him to Approach II, which contains Basis II.

Basis II. In §3 the alternative Basis II is proposed, which is supposed to axiomatize the deducibil-
ity relation by using the simpler transitivity principle (Te)

a1, . . . ,an/b→ (b/c→ a1, . . . ,an/c) (Te) = (2.5e)

and by additionally requiring that for any two statements a and b of the object language L their
conjunction a∧b is also contained in L. Popper (1947b, p. 206) expresses the motivating idea
behind Basis II as follows:

But the main point of using conjunction is that it should permit us to link up any number of statements
into one. If it does this, then we can always replace the m conclusions of m different inferences from
the same premises by one inference.

One problem with this approach is that in the absence of (Tg), the rules for conjunction have to
be sufficiently strengthened in order to work. Popper also noticed this and proposed the following
slightly tweaked rules for conjunction:76

a1, . . . ,an/b∧ c→ (a1, . . . ,an/b & a1, . . . ,an/c) (Cg1)

(a1, . . . ,an/b & a1, . . . ,an/c)→ a1, . . . ,an/b∧ c (Cg2)

Basis II thus consists of (Rg), (Te), (Cg1), (Cg2) and the existence postulate for conjunctions.
Popper uses these additional rules for conjunction to prove that (Tg) can be obtained from

Basis II. That his proof contains an error was pointed out by Curry (1948a), who provided the
following arithmetical counterexample: Let the object language consist of the natural numbers. Let
a∧b be the minimum of a and b. Let a1, . . . ,an/b hold if, and only if, min(a1, . . . ,an)≤ b+n−1.
Under this interpretation (Te), (Rg) and (Cg) of Basis II are satisfied but the rule (Tg) of Basis I
is not. To see this let, in (Tg), n = 1, m = 2, a = b1 = b2 = 1 and c = 0. Curry’s counterexample
shows that Popper’s proof must contain an error. However, it does not tell us which step of
Popper’s proof actually fails.

76 In Popper’s formulation, (Cg1) and (Cg2) appear as one rule (Cg), which is here split up into two parts.
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Popper’s proof and its error. The crucial step in the proof that Basis I and Basis II are equivalent
is to show that (Tg) follows from the rules of Basis II. Popper’s attempted proof (ibid, p. 210f.)
proceeds as follows. He assumes a1, . . . ,an/bi, for 1≤ i≤ m, as well as b1, . . . ,bm/c, and has to
show that a1, . . . ,an/c follows. He attempts to do this in the following way:

(1) From a1, . . . ,an/bi (for all 1≤ i≤ m) obtain a1, . . . ,an/b1∧ . . .∧bm.
(2) From b1, . . . ,bm/c obtain b1∧ . . .∧bm/c.
(3) From a1, . . . ,an/b1∧ . . .∧bm and b1∧ . . .∧bm/c obtain a1, . . . ,an/c.

Step (1) can be proved by induction on m and iterated applications of (Cg2); Popper gives this part
of the proof explicitly. Step (3) is just an instance of his transitivity principle (Te). It is therefore
step (2) which must be responsible for the failure of Popper’s attempted proof, and it is indeed
this inference that fails to be satisfied by Curry’s counterexample: If m = 3, b1 = b2 = b3 = 1 and
c = 0, then b1∧ . . .∧bm/c does not follow from b1, . . . ,bm/c. This derivation would be possible
if Popper’s rule (3.4g), i.e.

a1, . . . ,an,b∧ c/d ↔ a1, . . . ,an,b,c/d (3.4g)

were secondary to Basis II.77 Popper (1947b, p. 210) thinks he has already proven this:

But this situation changes completely if we drop the generalised transitivity principle (Tg) and replace
it by the simpler form (Te). In this case, all the rules 3.1 to 3.5 and 3.1g to 3.4g still follow from 3.5g
[= (Cg)]; but the opposite is not the case.

If rule (3.4g) were indeed secondary to Basis II, then step (2) could be proved by a simple
induction on m. Basis II might therefore be salvageable if we added to the rules (Cg1) and (Cg2)
the rule (3.4g).78

Popper 1947c, ‘Functional logic without axioms or primitive rules of inference’
This article starts with a characterization of ‘[t]he customary systems of modern lower

functional logic, such as Principia Mathematica, or the systems of HILBERT–ACKERMANN,
HILBERT–BERNAYS, or HEYTING, etc.’ (ibid., p. 1214). The fourth point of this characterization
is:

(d) Some further very general primitive rules of inference (such as some principles stating that the
inference relation is transitive and reflexive) which do not refer to formative signs are assumed, either
explicitly or, more often, tacitly.

This corresponds to what Popper uses his basis for. But in this article he proposes to also get rid
of the basis:

The inferential definitions of the conjunction [. . .] can be reformulated in such a way as to incorporate
all the rules of inference mentioned. In this way, we can get rid of even the few trivial primitive rules
(d) which were left in the previous approach; in other words, we obtain the whole formal structure of
logic from metalinguistic inferential definitions alone. (Ibid., p. 1215)

Popper provides the following inferential definition (DB2) for conjunction, which contains (Cg),
(Te), (2.1) and (2.2):

77 See footnote 53 for Popper’s use of the term ‘secondary’.
78 What is actually only needed of (3.4g) is the implication from right to left.
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a//b∧ c ↔ (a1) . . .(an)((a1, . . . ,an/a ↔ (a1, . . . ,an/b & a1, . . . ,an/c))

& (b/c→ (an, . . . ,a1/b→ a1, . . . ,an/c)) (DB2)

& (a1, . . . ,an/c→ a1, . . . ,an,b/c) & a1/a1))

As this approach is based on the rules of Basis II, it suffers from the same problems. Hence (Tg)
does in general not hold for the deducibility relation.

Popper 1948a, ‘On the theory of deduction, part I’
A new notation for the deducibility relation is introduced: D(a1,a2, . . . ,an) stands for

a2, . . . ,an/a1, and Popper from now on explicitly allows the number of premises to be 0, i.e. he
allows D(a), which stands for /a. The new basis that Popper considers consists of the following
two rules (translated from D-notation into /-notation):79

a2/a1 ↔ a2,a2/a1 (BI. 1)

a2, . . . ,an/a1 ↔ (an+1) . . .(an+r)(a1, . . . ,an/an+r→ an+r−1, . . . ,an+1,an, . . . ,a2/an+r) (BI. 2)

From these two rules Popper obtains (Rg) and the rules

a1, . . . ,an/b→ an, . . . ,a1/b (1.44′)

a1, . . . ,an/b→ a1, . . . ,an+r/b (1.45′)

a1, . . . ,an/b→ (b,a1, . . . ,an/c→ a1, . . . ,an/c) (1.46′)

Popper then shows how to derive (Tg) from (1.44′), (1.45′) and (1.46′) by an induction on the
number m in (Tg). He thus achieves the replacement of (Tg) by a rule which can, in contrast to
(Tg), be stated in the metalanguage. He comments:

The problem of avoiding [(Tg)] was discussed, but not solved, in [Popper 1947b]. The lack of a
solution led me there to construct Basis II, the need for which, as it were, has now disappeared. (Ibid.,
p. 177, fn 6)

This result also allows him to modify the implementation of the program of Popper 1947c.
Instead of using his definition (DB2), he can use this new formulation of Basis I. He mentions
this possibility in Popper 1948a (p. 177, fn 6).

Already Curry (1948c) pointed out that this part of the proof is similar to what Gentzen (1933,
esp. §3) had shown, namely that the rule of ‘Syllogismus’ of the system of Hertz (1929) can
be replaced by his cut rule, while Popper showed that his rule (Tg) can be replaced by the
abovementioned rule (1.46′). The ‘Syllogismus’ rule is practically identical with Popper’s rule
(Tg), and Gentzen’s cut rule is identical to (1.46′). Gentzen’s and Popper’s proofs proceed in
a very similar fashion. The question is how much Popper knew of the systems of Hertz and
Gentzen. Popper (1947b, p. 204) remarks in a footnote that Bernays pointed him to the articles of
Hertz (1923, 1931), and he mentions Gentzen 1935 in order to compare his concept of relative
demonstrability with Gentzen’s sequent arrow. There are no further references to either of these
authors in Popper’s articles.

Basis III. At the very end of Popper 1948a, a new possibility for a basis is introduced. Popper
takes two-place deducibility (or ‘two-termed derivability’, as he says), i.e. a/b, characterized by

79 For a discussion of these axioms cf. also Schroeder-Heister 2006 (app. 1).
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transitivity and reflexivity as a starting point, together with one of the two rules (the second is
here translated into /-notation)

b/a ↔ (c)(c/b→ c/a) [BIII]

b/a ↔ (c)(a/c→ b/c) (2.1)

and the following definition of relative demonstrability:

a1, . . . ,an ` b1, . . . ,bm ↔ (c)(d)((b1/d & . . . & bm/d)→ ((c/a1 & . . . & c/an)→ c/d))
(D3.3)

The resulting basis is equivalent to Basis I.

Popper 1949, ‘The trivialization of mathematical logic’
This is the last of Popper’s articles on logic. It does not contain a lot of technical development

but gives an overview of his general intentions instead. Popper now seems to have adopted the
approach with Basis III. He writes:

As the sole definiens of our definitions, the idea of deducibility or derivability will be used. We can
restrict ourselves to using deducibility from one premise. We write ‘D(a,b)’ for ‘a is deducible from
b’. [. . .] We do not need, for the derivation of mathematical logic, to assume more about deducibility
than that it is transitive and reflexive. [. . .] With the help of ‘D(a,b)’ it is easy to define deducibility
from n premises. (Ibid., p. 723)

He (ibid., p. 723) also considers to define a generalized deducibility relation a1, . . . ,an/b1, . . . ,bm
in terms of D(a,b) alone, with the intended meaning that if each of the premises a1, . . . ,an is
true, then at least one of the statements b1, . . . ,bm must be true. This corresponds to relative
demonstrability.

Concluding remarks
While most of the technical development in Popper’s articles is done using Basis I, a tendency

can be observed towards his using two-place deducibility a/b as the underlying concept, together
with derivative n-place notions like relative demonstrability that are defined in terms of two-place
deducibility.

Approach II seems ill-chosen to us, even if the suggested corrections were to be carried out.
It requires conjunction in the object language in its formulation of the basis, and it confounds
structural properties of the deducibility relation with the definition of a logical constant.

Our choice of (a version of) Basis I, on the other hand, allows us to stay as close as possible
to Popper’s technical development, which proceeds mostly by using Basis I with n+ 1-place
deducibility a1, . . . ,an/b. This choice also makes it possible to avoid a certain awkwardness in the
formulation of proofs, which is already present in several proofs involving relative demonstrability;
in order to show that some statement involving relative demonstrability holds, one often has to
unfold the definition of relative demonstrability first, then work with the definiens, and finally
reintroduce relative demonstrability. Besides its conceptual superiority, Basis I has thus also
practical advantages.

Appendix B: Relative demonstrability and cut
Popper’s definition (D`2) of relative demonstrability

a1, . . . ,an ` b1, . . . ,bm ↔ (c)((b1/c & . . . & bm/c)→ a1, . . . ,an/c) (D`2)
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is not wholly satisfactory from a technical point of view, since it does not allow to show that

a1, . . . ,an ` b1, . . . ,bm,c→ (c,a1, . . . ,an ` b1, . . . ,bm→ a1, . . . ,an ` b1, . . . ,bm) (Cut)

holds for any object language.80

Theorem B.1 : The rule (Cut) does not follow from (D`2) and Basis I.

Proof We show this by means of a counterexample for the instance (a ` b,c & c,a ` b)→ a ` b.
The negation of this claim is metalinguistically equivalent to (d)((b/d & c/d)→ a/d) & c,a/b &
¬(a/b). Now consider an object language that contains only the three statements a, b and c.
Then this is equivalent (also using the rules (Rg) and (Tg) of the Basis I) to the statement
(c/b→ a/b) & (b/c→ a/c) & c,a/b & ¬(a/b).The model under which the deducibility relation
is only true for c,a/b (and the instances required by (Rg)) satisfies (Tg) and is the desired
countermodel. �

However, if one presupposes that the object language contains conjunction, disjunction and
implication, then (Cut) can be shown to hold.

Theorem B.2 : In the presence of conjunction, disjunction and implication, (Cut) does follow
from (D`2) and Basis I.

Proof In the presence of conjunction and disjunction, and in view of Lemma 5.3, it is sufficient
to show that (a ` b,c & c,a ` b)→ a ` b holds, which is done as follows:

(1) From the instance b,a/b of (Rg) and (C>) we get b ` a > b.
(2) From the assumption c,a ` b and (C>) we get c ` a > b.
(3) From the assumption a ` b,c and (D`2) we then get a ` a > b.
(4) From (C>) and (LC) we get a ` b. �

Since we do not want to presuppose the existence of any specific logical constants in object
languages, we use the following more general definition of relative demonstrability, which is
formulated with additional context statements d1, . . . ,dk (for 0≤ l ≤ k) occurring as additional
premises in each of the deducibility relations in the definiens (cf. Section 3.4):

a1, . . . ,an ` b1, . . . ,bm ↔

(c)(d1) . . .(dk)((b1,d1, . . . ,dk/c & . . . & bm,d1, . . . ,dk/c)→ a1, . . . ,an,d1, . . . ,dk/c)
(D`3)

Given this definition, (Cut) follows from the rules of Basis I alone, without presupposing the
existence of any logical constants.

Theorem B.3 : If relative demonstrability is defined by (D`3) instead of (D`2), then (Cut)
follows from the rules of Basis I.

Proof We have to show

a1, . . . ,an ` b1, . . . ,bm,e︸ ︷︷ ︸
A

→ (e,a1, . . . ,an ` b1, . . . ,bm︸ ︷︷ ︸
B

→ a1, . . . ,an ` b1, . . . ,bm︸ ︷︷ ︸
C

)

80 That relative demonstrability could be defined in a more general way than by (D`2) was already observed in Schroeder-Heister
2006 (app. 2), without mentioning, however, that the lack of generality of (D`2) leads to the failure of (Cut).
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(where e is the cut formula). We assume A and B, and have to show C. In order to show C, we
further assume b1,d1, . . . ,dk/c & . . . & bm,d1, . . . ,dk/c, and have to show a1, . . . ,an,d1, . . . ,dk/c.

(1) From B we know that a1, . . . ,an,d1, . . . ,dk,e/c holds.
(2) For each i with 1 ≤ i ≤ m we get from bi,d1, . . . ,dk/c by weakening on the left the

corresponding relation a1, . . . ,an,bi,d1, . . . ,dk/c.
(3) Using (D`3), the following is an instance of A:

(b1,a1, . . . ,an,d1, . . . ,dk/c & . . . & bm,a1, . . . ,an,d1, . . . ,dk/c & e,a1, . . . ,an,d1, . . . ,dk/c)

→ a1, . . . ,an,a1, . . . ,an,d1, . . . ,dk/c

(1), (2) and (3) together imply a1, . . . ,an,a1, . . . ,an,d1, . . . ,dk/c, and by contracting the premises
a1, . . . ,an,a1, . . . ,an we get a1, . . . ,an,d1, . . . ,dk/c. �

A disadvantage of definition (D`3) is that it is not an explicit definition, since a1, . . . ,an `
b1, . . . ,bm is defined through an unspecified number k of context statements d1, . . . ,dk. The
relation ` is thus not eliminable in general. Nonetheless, it is always eliminable in a given logical
argument, because the number k can then be specified.
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