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1 Background

The human nasal microbiome plays a crucial role in human health and is associated with numerous diseases.
Surprisingly, the contribution of many nasal microorganisms to human health remains undiscovered. Between
them, Klebsiella pneumoniae is a Gram-negative bacterium and of the six most dangerous pathogens known
today [1]. This is a multi-drug resistant bacterium that not only threatens immunocompromised individuals but
can also lead to severe damage in healthy individuals [2]. It can colonize different human mucosal surfaces and
spread to other tissues like the respiratory tract [3].

Figure 1 | Klebsiella pneumoniae pathogenesis.
Source: microbewiki

There are currently three manually curated genome-scale
metabolic models (GEMs) for K. pneumoniae. Liao et al. [4] re-
constructed and experimentally validated the MGH78578 strain
by mapping the current GEM for E. coli onto the genome of
MGH78578 and improving the model with the help of exper-
imental data. In 2017, a metabolic network was built for the
KPPR1 strain of K. pneumoniae using the Propagate Model to
New Genome application and Gap-filling on the glucose min-
imal medium [5]. Of note, these two models do not pass
the current community standards [6] and FAIR Data Princi-
ples (findable, accessible, interoperable, reusable)[7]. The latest
metabolic reconstruction available for K. pneumoniae is the first
GEM built for the strain HS11286. It is a high-quality model
with high prediction accuracy created within our group. Cur-

rently, multiple strains of K. pneumoniae have been isolated, and knowledge of their functional roles and
interspecies interactions is crucial for improving the understanding of the human nose microbiome in health
and disease on one side. On the other side, reconstructing high-quality genome-scale metabolic models, specif-
ically with limited annotation resources, still remains challenging. Although GEMs of metabolism are potent
tools that can be deployed to investigate similarities and differences between strains of the same species and
save time and money in laborious experiments by providing predictions and promising hypotheses that can be
further evaluated.
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2 Aim

Therefore, this thesis aims to find how one can derive strain-specific genome-scale metabolic models of K. pneu-
moniae using one high-quality model of the same species and characterizing the pan and core metabolic capabil-
ities. In addition, the genetic basis behind strain-specific auxotrophies will be explored. The latest high-quality
generated model of K. pneumoniae will be independently combined with previously published GEMs. Besides,
the similarities and differences between strains using the organism’s genome sequence from the experimental
lab will be leveraged to develop a path for constructing models of the same species and different strains. This
construction will be done using information from curated models of related organisms, pan and core identifica-
tions, and reviewed gene annotations. Due to less availability of data gathered in the human swab, we used the
genome sequence of K. pneumoniae gathered from human feces. Therefore, the validation of the models will
be based on the results extracted from these data. Since Klebsiella oxytoca is also available in the human nose
[8], in the end, the workflow will be expanded on different species of Klebsiella by using data from healthy
human feces.

3 Requirements

This work requires the collection and combination of multiple information from different sources, including
the organism’s genome sequence, biological databases, and scientific literature. Experience in Python pro-
gramming and familiarity with COBRApy [9] and libSBML [10] for the reconstruction process is necessary.
High motivation to learn more about systems biology and constrained-based modeling, as well as exploring
biochemistry and microbiology, is also vital.
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