Dr. Michael Arndt SS 2015

Aufgabe 1 (3 Punkte)

Beweisen Sie (durch Induktion über den Termaufbau), daß jeder λ -Term ebenso viele öffnende wie schließende Klammern besitzt.

Bemerkung: Diese Aussage ist offensichtlich trivial. Ziel der Aufgabe ist es, einen sauberen Beweis über den Aufbau von λ -Termen zu führen.

Aufgabe 2 (1+2+2+3 Punkte)

Schreiben sie folgende λ -Terme mit allen Klammern auf. Geben Sie sodann alle Teilterme, freien und gebundenen Variablen an.

- (a) $\lambda x.(zy)$
- (b) $(\lambda x.xy)(\lambda y.yx)$
- (c) $(\lambda yx.xy)((\lambda z.z)y)(\lambda xz.x)$
- (d) $(\lambda xyz.xz)((\lambda zy.yy)z)((zz)(zz))$

Aufgabe 3 (2 Punkte)

Benennen Sie in den Termen von Aufgabe 2, für die das nötig ist, die gebundenen Variablen so um, daß keine freie Variable auch ein gebundenes Vorkommen hat.

Aufgabe 4 (3 Punkte)

Beweisen Sie, daß für alle λ -Terme M, P gilt: $M[z/x][P/z] \equiv_{\alpha} M[P/x]$, sofern $z \notin FV(M)$.

Aufgabe 5 (4+2 Zusatzpunkte)

Beweisen Sie, daß für alle λ -Terme M, P, Q gilt: $M[P/x][Q/x] \equiv_{\alpha} M[(P[Q/x])/x]$.

Warum gilt nicht i.a. $M[P/x][Q/x] \simeq M[(P[Q/x])/x]$?