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1Institut de Minéralogie, Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne
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Abstract

Microbe-mineral interactions occur in diverse modern environments, from
the deep sea and subsurface rocks to soils and surface aquatic environments.
They may have played a central role in the geochemical cycling of major (e.g.,
C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth’s
history. Such interactions include electron transfer at the microbe-mineral
interface that left traces in the rock record. Geomicrobiology consists in
studying interactions at these organic-mineral interfaces in modern sam-
ples and looking for traces of past microbe-mineral interactions recorded
in ancient rocks. Specific tools are required to probe these interfaces and
to understand the mechanisms of interaction between microbes and miner-
als from the scale of the biofilm to the nanometer scale. In this review, we
focus on recent advances in electron microscopy, in particular in cryoelec-
tron microscopy, and on a panel of electrochemical and synchrotron-based
methods that have recently provided new understanding and imaging of the
microbe-mineral interface, ultimately opening new fields to be explored.
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INTRODUCTION AND KEY QUESTIONS ABOUT
MICROBE-MINERAL INTERACTIONS

Geomicrobiology is the study of past and present interactions between microorganisms and
minerals. Microorganisms have played a major role in the geochemical functioning and shaping
of Earth’s surface for several billion years (e.g., Ehrlich 1998, Gadd 2009, Cockell 2010,
Southam 2012). Microbes can trigger mineral formation, transformation, and dissolution through
diverse chemical reactions, including redox transformations. Heavy metal mobility in acid-mine
drainages originating from pyrite weathering (e.g., Fortin et al. 1996, Edwards 2000) and
pollutant bioavailability governed by the dissolution of Fe-bearing minerals in soils and sediments
(e.g., Borch et al. 2010) both illustrate geochemical processes that can be significantly controlled
by microbes. Along the same lines, an increasing number of recent investigations have attempted
to assess the effective role of microorganisms in the weathering of the oceanic basaltic seafloor
(e.g., Templeton et al. 2009, Bach & Fruh-Green 2010, Orcutt et al. 2010, Edwards et al. 2011).
Microbes can also mediate mineral precipitation, a process termed biomineralization. It has been
proposed that microbes are involved in the formation of several emblematic sedimentary deposits,
including stromatolites (e.g., Reid et al. 2000, Baumgartner et al. 2009, Couradeau et al. 2011)
and banded iron formations (e.g., Posth et al. 2008).

Such interactions have long been recognized. Kalkowski suggested in 1908 that microorganisms
are involved in the formation of stromatolites (Kalkowski 1908). Drew showed in 1911 that bacteria
in culture can mediate CaCO3 precipitation (Drew 1911). In 1936, Cayeux suggested that bacteria
may be involved in the formation of phosphorites, although he cautioned that convincing images
of such relationships were still missing (Cayeux 1936). More recently, the involvement of bacteria
in the dissimilatory reduction of Mn and Fe oxides has been widely studied (e.g., Myers & Nealson
1988). Since then, geomicrobiology has followed several research lines:

1. Some studies have revealed new types of microbe-mineral interactions and/or new microbial
species involved in such interactions. For example, some bacteria can form intracellular
crystals of magnetite or greigite, which they use to orient along the lines of Earth’s magnetic
field. These crystals can contribute significantly to the magnetization of sediments (e.g., Li
et al. 2010, Lefevre et al. 2011, Lin et al. 2011).

2. Other studies have assessed the diversity of modern microbial communities interacting with
minerals in order to better understand whether some specific taxa are more important than
others in the mediation of geochemical processes and to draw pertinent conclusions about
the ecological functioning and the history of past microbe-mineral interactions (e.g., Blank
2009, Uroz et al. 2009, McAllister et al. 2011).

3. Finally, some studies have dissected the molecular mechanisms involved in microbe-mineral
interactions through the use of model bacterial systems that can be cultured in the laboratory.
Such approaches include the measurement of reaction kinetics, the determination of product
speciation, as well as the identification of the genes and proteins involved in these reactions.
Examples of studied organisms include Fe(III)-reducing bacteria, for which the various
processes of electron transfer have been scrutinized (e.g., Lentini et al. 2012, Richardson
et al. 2012, and references therein), and Fe(II)-oxidizing bacteria (e.g., Bose & Newman
2011, Bonnefoy & Holmes 2012).

Many first-order questions remain wide open in geomicrobiology: To what extent has the evo-
lution of microbial species influenced the mechanisms involved in their interactions with minerals
(e.g., microbially mediated redox reactions)? How do these interactions benefit microbes? What
are their environmental consequences? What parameters control their intensity, and how can we
include those parameters in predictive biogeochemical models?
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Besides these far-reaching goals, geomicrobiologists usually have more specific and practical
concerns when studying a sample: Who is there—i.e., which microbe is associated with an ob-
served mineral? Did microbes contribute to a given mineral’s precipitation, transformation, or
dissolution? What are the relative contributions of abiotic and biotic processes to mineral forma-
tion or transformation? How could environmental conditions (e.g., redox) influence microbially
mediated electron transfer reactions? How has the evolution of such microbial electron trans-
fer mechanisms been recorded in mineral assemblages? How can traces of past microbe-mineral
interactions (i.e., biosignatures) be identified in ancient rocks?

The specificity of analyzing a microbe-mineral interface relies on the nature of two components:
organic matter and mineral. In the past, these components were studied separately, by distinct
scientific communities (microbiologists and mineralogists, respectively), sometimes by using dif-
ferent techniques, and sometimes by using the same instruments but following different protocols.
For instance, electron microscopy approaches differ markedly depending on whether the sample
is a microorganism or a mineral, because these specimens behave differently during sample prepa-
ration and when interacting with an electron beam. Along this line, pioneering work in electron
microscopy by Beveridge & Murray (1976) triggered methodological developments for imaging
and understanding metal–cell surface interactions down to the nanometer scale. Since then, elec-
tron microscopy methods and instruments have undergone increasing development, and major
recent advances in geomicrobiology have emerged from these new methods—especially cryo-EM
approaches, which we discuss more extensively below. In particular, we discuss the potential to
retrieve both structural/compositional/mineralogical and genomic/metabolic information.

The tremendous expansion of geomicrobiology since the 1990s is thus due to the advent
of revolutionary techniques, not only in microscopy but also in molecular biology combined
with mineralogy and isotopic geochemistry. Advances in our understanding of the major changes
surrounding the Great Oxidation Event some 2.4 Ga ago provide an emblematic illustration
(Anbar et al. 2007; Kump 2008; Rasmussen et al. 2008; Frei et al. 2009; Konhauser et al. 2009,
2011b; Scott et al. 2011; Czaja et al. 2012). These advances have resulted from the combination
of complementary approaches to decipher the co-occurrence of geological and microbiological
events during this period—a period that totally and uniquely modeled Earth’s surface. Recent key
studies include (a) the mineralogical and isotopic characterization of banded iron formations (e.g.,
Chi Fru & Ivarsson 2013, Czaja et al. 2013, Koehler et al. 2013), (b) strong geomicrobiological
arguments suggesting the microbial origin of these formations (Cloud 1965, Hartman 1984, Posth
et al. 2013), and (c) macroevolutionary data (David & Alm 2010). Electron transfer reactions taking
place at the microbe-mineral interface might be sufficiently specific to this interface to leave traces
within the geological record. The second part of this article details some major advances in
geomicrobiology based upon relatively new analytical methods for probing redox reactions at
microbe-mineral interfaces from the bulk to the nanometer scale.

ORGANIC MATTER–MINERAL INTERFACE: HOW TO SCRUTINIZE
A SPECIFIC INTERFACE?

Due to their richness in negatively charged carboxyl groups, bacterial cell surfaces and exopoly-
meric substances are prone to sorption of metal cations (e.g., Beveridge & Murray 1976, Ferris
et al. 2000, Phoenix et al. 2002, Lalonde et al. 2008). They are also preferential locations for the
nucleation of minerals that might subsequently grow upon crystallization (Banfield et al. 2000).
Intracellular accumulations of calcium carbonates in cyanobacteria (Couradeau et al. 2012) and
organelles known as magnetosomes that compartmentalize magnetite or greigite in magneto-
tactic bacteria (e.g., Lefevre et al. 2011) constitute additional mineral–organic matter interfaces.
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Electron microscopy has been a dedicated tool to image the nanometer-sized nuclei of these
mineral phases as well as their organic templates.

Looking for Organic Matter Remnants in Rocks

Transmission electron microscopy (TEM) is a powerful analytical tool that has provided priceless
information in various fields of Earth sciences (e.g., Lee 2010). Modern TEM provides mul-
tiple analytical capabilities that are of great interest to Earth scientists, offering the possibility
to image samples down to the atomic scale under various conditions (high vacuum, of course,
but also cryo- or even wet conditions; e.g., de Jonge & Ross 2011), to map elements with in-
creasing detection limits by energy-dispersive X-ray spectrometry or energy-filtered imaging, to
determine the speciation of elements (including redox state) by electron energy loss spectroscopy
(e.g., van Aken & Liebscher 2002, Kim & Dong 2011), and to study mineral structures and map
crystal orientation on the basis of electron diffraction. However, the study of microbe-mineral
assemblages down to the nanometer scale by TEM has long been limited by sample preparation
methods. Ultramicrotomy—which has been a pivotal approach for the study of the ultrastructure
of bacteria—is, with few exceptions (e.g., Benzerara et al. 2004a), difficult to use on hard or brittle
materials and, more notably, does not provide the high spatial precision needed when dealing with
geological samples that contain only few and/or micrometer-sized microbe-mineral assemblages.
With the advent of focused ion beam (FIB) milling, this limitation disappeared, and it became pos-
sible to prepare any interface between microbes and minerals for subsequent TEM analyses (e.g.,
Benzerara et al. 2005, Obst 2005). Initial studies used mono-beam FIB microscopes, equipped with
a gallium ion beam that could ablate or assist deposition of material on the surface of a sample
and provided moderate spatial resolution and surface-sensitive ion imaging. Recent FIB micro-
scopes use dual-beam technology, which integrates the ion beam capability into a high-resolution
scanning electron microscope. Dual-beam FIB microscopes thus allow easier localization of the
area of interest, and their findings can be correlated with those from other microscopy techniques
appropriate to the study of microbes, such as confocal laser scanning microscopy (e.g., Gérard
et al. 2005, Ehrhardt et al. 2009), making possible additional analyses such as mapping of heavy
metals (Hao et al. 2013) and 3D imaging. More details on the general procedures and examples
of applications in Earth sciences can be found in de Winter et al. (2009). FIB now has multiple
applications in the study of past and modern microbe-mineral interactions (e.g., Benzerara 2005,
Obst 2005, Benzerara et al. 2007, Carlut et al. 2010, Fliegel et al. 2011, Lepot et al. 2011). Many
of these studies revealed particular nanoenvironments around microbial cells, which stresses the
importance of characterizing reaction products at the nanometer scale. Further improvements
include a better assessment of artifacts that are produced. Bernard et al. (2009) and Bassim et al.
(2012) showed that organic samples that were either FIB milled or ultramicrotomed retained the
same C speciation. The development of FIB milling under cryo-conditions (Figure 1), as discussed
below, is another recent advance.

Cryoelectron Microscopy: Imaging Organic Matter in a Hydrated State

Organic matter (cells, exopolymers, intracellular organelles, or ultrastructures) is very sensitive to
dehydration induced by the vacuum in the microscope stage (Schaedler et al. 2008, Dohnalkova
et al. 2010). In addition, conventional preparation of thin sections for TEM (embedding in a resin
after fixation and dehydration) is also deleterious to organic molecules, in that it can alter their
configuration (e.g., Bleck et al. 2010). Although such preparations are informative (e.g., Benzerara
et al. 2004a, Miot et al. 2009b, Schaedler et al. 2009), they necessarily induce a loss of information.
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a

Figure 1
Overview of some cryoelectron microscopy methods adapted to the imaging of microbe-mineral interfaces in their hydrated near-
native state. All these methods can suffer from artifacts (e.g., cutting artifacts in CEMOVIS; artifacts related to Ga+ milling in
cryo-FIB) as well as from radiation damage. However, such artifacts can be minimized or even avoided. (a) 3D reconstruction
of a Geobacter sp. cell decorated with nanoaggregates of Fe-rich phases (red ). Reproduced with permission from Luef et al. 2012.
(b) CEMOVIS image of Acidovorax sp. strain BoFeN1 mineralized by Fe phosphates. Double-headed arrows indicate the direction
of knife marks. Reproduced from Miot et al. 2011. (c) Slice through the (x, y) plane of a tomographic reconstruction of a Dictyostelium
discoideum cell, showing the nuclear envelope (black arrowhead ) with nuclear pore complexes (white arrowheads). Also visible are parts of the
rough endoplasmic reticulum (light blue stars), tubular mitochondria (white asterisks), and microtubules ( yellow arrows). Reproduced from
Rigort et al. 2012. Abbreviations: CEMOVIS, cryoelectron microscopy of vitreous sections; ELG, electron-light globules; FIB, focused
ion beam; PM, plasma membrane; SEM, scanning electron microscope; SG, storage granules; TEM, transmission electron microscopy.

Cryo-EM offers a way to bypass these shortcomings by rapidly freezing the sample in vitreous (i.e.,
amorphous) ice, thereby maintaining the microbe-mineral assemblages in an aqueous, near-native
state (Figure 1).

First developed by molecular biologists mainly in the 1980s (Adrian et al. 1984, Al-Amoudi
et al. 2004, Dubochet 2012), this technique offered unprecedented visualization of biological
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Cryoelectron
tomography: imaging
of a vitrified sample at
multiple angles so that
a 3D image of the
specimen can be
reconstructed

ultrastructures (Beveridge 2006, Leforestier et al. 2012) and of the organization of key macro-
molecules (e.g., Beck et al. 2004, Eltsov et al. 2008, Fischer et al. 2010, Celler et al. 2013). Obser-
vations in the TEM are performed at low temperature (approximately −170◦C), and low exposure
conditions are required to limit radiation damage (usually approximately 10 electrons/Å2). The
low contrast of images obtained by cryo-EM results from the density difference between the or-
ganic molecules and the cryoprotectant (e.g., dextran). However, in geomicrobiological samples,
metals can act as in situ contrasting agents, and very fine details thus can become visible provided
that the samples are mineralized or bound to metals (Miot et al. 2011).

In a cryo-EM analysis, a drop of the sample is deposited onto a conventional carbon-coated
TEM grid, rapidly frozen in liquid ethane (or an ethane/propane mixture) cooled by liquid nitro-
gen, and then transferred to a TEM (Figure 1). Whole frozen cells can be visualized by cryoelec-
tron tomography (see Milne & Subramaniam 2009 for technical details). Optimal transmission of
the electron beam through the specimen (i.e., with minimal inelastic scattering) is achieved with
objects less than 0.5 μm thick (0.5 μm at 0◦, i.e., approximately 1 μm at 60◦). The ability to prepare
sufficiently thin samples is thus crucial (Bouchet-Marquis & Hoenger 2011). Thin sections can
be produced by cryo-ultramicrotomy of frozen hydrated samples (i.e., cryoelectron microscopy
of vitreous sections, or CEMOVIS) [see Adrian et al. (1984), Matias et al. (2003); see also Miot
et al. (2011) for a geomicrobiological application (Figure 1)]. A limit of this method, however, is
its inadequacy for preparing thin sections of brittle or hard samples (e.g., rocks). Because cryo-
FIB can achieve this preparation (Rigort et al. 2010, 2012), it is a promising approach to image
microbe-mineral interfaces in ancient rocks. To address a need for complementary biomolecular
information, many molecular biologists (e.g., Tokuyasu 1973) combine cryo-EM with immuno-
labeling of specific molecules on the same sample (see the review by Ripper et al. 2008). As an
alternative, correlative methods are now being implemented (Briegel et al. 2010) and will likely
provide breakthroughs in future geomicrobiological studies. A promising approach would involve
the correlative combination of cryo-EM techniques with light microscopy, in particular fluores-
cent light microscopy, enabling analyses of microbe-mineral interactions at the population level.
Recently, much progress has been made in confocal laser scanning microscopy, which allows
the retrieval of phylogenetic and metabolic information. Combining this method with cryo-EM
will enable us not only to combine structural observations with label-specific information (on
either the phylogeny of the microorganisms or the functional nature of the molecules/proteins)
(Celler et al. 2013), but also to determine more rapidly and efficiently the areas to be imaged by
cryo-EM.

Cryoelectron Microscopy Study of Microbe-Mineral Interfaces:
Main Results and Future Prospects

The widest use of cryo-EM tools in geomicrobiology has been in studies of magnetotactic bacteria
(MTB). Cryotomography revealed the subcellular arrangement of the magnetosome membranes
that consist of invaginations of the inner membrane in Magnetospirillum magneticum strain AMB-1
(Komeili et al. 2006, Murat et al. 2012). Cryo-EM also revealed the association of these or-
ganelles with a cytoskeletal network that shares homology with previously described bacterial
actin-like proteins (Komeili et al. 2006). Recently, the high-resolution structure of the bac-
terial actin (MamK) filaments involved in the organization of magnetosomes in AMB-1 was
elucidated using cryo-EM (Ozyamak et al. 2012), extending our knowledge of the functional
and structural diversity of proteins involved in magnetite biomineralization. Cryo-EM meth-
ods have also highlighted substantial interspecies differences in magnetosome membrane genesis
(Scheffel et al. 2006, Byrne et al. 2010, Katzmann et al. 2010). However, membranes are difficult to
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Synchrotron-based
X-ray absorption
spectroscopy
methods: based on
the interaction of an
X-ray beam with the
sample at a given
energy

X-ray fluorescence
(XRF): results from
the emission of
fluorescence following
X-ray absorption and
is indicative of the
chemical composition
of the area scanned

discriminate when too closely associated with the mineral phase ( Jogler et al. 2010). These studies
highlight the necessity of correlating results from complementary approaches (e.g., biomolecu-
lar, genetic, and microscopic methods) to gain insights into the mechanisms of microbe-mineral
interactions.

Apart from studies of magnetotactic bacteria, cryo-EM studies of geomicrobiological samples
have been scarce. Notably, they all concern Fe biomineralization (e.g., Miot et al. 2009a, Luef
et al. 2012). Cryo-EM has revealed organic structures and molecules that play roles in Fe biomin-
eralization, as nucleation sites and potentially as drivers of Fe oxidation. These include stalks and
surface structures in Gallionella sp. and Mariprofundus sp. (Comolli et al. 2011) and the peptido-
glycan and proteins located within the 40-nm-thick mineral layer in Acidovorax sp. strain BoFeN1
(Miot et al. 2011) (Figure 1).

Generalizing the use of cryo-EM approaches in geomicrobiology will undoubtedly be a pivotal
strategy to retrieve information about the mechanisms of biomineralization and microbe-induced
weathering processes, as well as to reveal biosignatures in geological samples. The broader use
of this technique has been limited mainly by the demands for specialized instrumentation and
technical expertise (Beveridge 2006), but these barriers are progressively lifting in an increasing
number of laboratories. Beyond Fe biomineralization, there are a multitude of geomicrobiological
systems that will benefit from cryo-EM approaches.

One powerful aspect of cryo-EM, described in the final section of this review, is the possibility
of combining this method with other analyses such as genetic tools, proteomics, high-resolution
secondary ion mass spectrometry (NanoSIMS), Raman spectromicroscopy, and various
synchrotron-based techniques (e.g., scanning transmission X-ray microscopy, micro-X-ray
fluorescence, micro-X-ray absorption spectroscopy).

ELECTRON TRANSFER AT THE MICROBE-MINERAL INTERFACE:
FROM THE POPULATION SCALE TO THE NANOMETER SCALE

Minerals can serve either as electron acceptors or as sources of energy and electrons for microbes
(Lovley et al. 1996, Fredrickson & Zachara 2008). Diverse microbial strategies have been evidenced
that support the existence of electron transfers either between microbes and minerals (Figure 2)
or between different microbial species (Konhauser et al. 2011a, Lovley 2011). For instance, geo-
microbiological iron cycling (Emerson et al. 2010, Roden 2012) proceeds through the activity of
(a) Fe(II)-oxidizing bacteria that convert (dissolved or solid) Fe(II) to (usually solid) Fe(III), thus
producing Fe-bearing minerals [(oxyhydr)oxides or phosphates], and (b) Fe(III)-reducing bacteria
that transfer electrons toward a solid Fe(III) phase, leading to its reduction and even dissolution.
As such redox reactions might have also played a key role on the early Earth, especially around the
time of the Great Oxidation Event (Konhauser et al. 2005, 2009), it will be important to decipher
these electron transfer mechanisms in laboratory (model), modern, and ancient specimens from
the sediment scale to the nanometer scale (Wessel & Hmelo 2013).

Mechanisms of Electron Transfer Between Microbes
and Electrodes or Minerals

Electrical currents have been measured in marine sediments, connecting organic matter and sul-
fide oxidation in the anoxic zone (deep in the sediment) to aerobic respiration (in the overlying
surface oxic zone) (Risgaard-Petersen et al. 2012); these currents were recently attributed to the
activity of filamentous bacteria (Desulfobulbaceae) functioning as living electrical cables (Pfeffer et al.
2012). Microelectrode measurements of key parameters such as oxygen fugacity and pH provided
evidence of electron transport at the sediment scale. Electrochemical devices are increasingly used
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micrometer- to nanometer-scale

electron transfer analysis 

Cathode 

Membrane 

Anode 

Anode or
Fe mineral 

CO2

Sox
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O2

H2O

H+

e– e–

Organic
electron
donor 

Bacterium

Biofilm

Cytochromes 

100 μm 5 μm

SiO2

Au
Pt

Direct

Fe(III) 

Fe(II) 

Electron
shuttle

Fe(III) 

Fe(II) 
Nanowire

Figure 2
Electrochemical (a,b) and complementary (d ) methods for investigation of electron transfer at the microbe-mineral interface. (a) A
microbial fuel cell evaluates electron transfer at the bulk scale. Biofilm ( pink) that developed at the anode surface transfers electrons
derived from oxidation of organic compounds to the electrode. (b) Nanofabricated electrodes provide a direct measurement of electron
transfer along nanowires at the micrometer to nanometer scale. Reproduced from El-Naggar et al. 2010. (c) Diagram of the different
modes of electron transfer observed for Fe-reducing bacteria. (d ) Examples of complementary nonelectrochemical, non-synchrotron-
based methods that provided information on the mechanisms of electron transfer for each of the three modes described in panel c.
Abbreviations: Sox, oxidized electron shuttle; Sred, reduced electron shuttle.

not only to retrieve energy from microbial reactions (e.g., Lovley 2008, Miot et al. 2014) but also
as tools to investigate the mechanisms of electron transfer between microbes and electrodes or
minerals (Reimers et al. 2001, Lovley 2008). Such an approach was augmented by the advent of mi-
crobial fuel cells (MFCs) (e.g., Lovley 2008) (Figure 2), which led to the identification of a diversity
of microorganisms (Bond 2002, Logan 2009). Predominant among these are Desulfuromonas and
Geobacter species, which can completely oxidize organic matter and use the electrode as the sole
electron acceptor (Bond & Lovley 2003) in reactions involving proteins implicated in extracellular
electron transfer to solid Fe- or Mn-bearing phases (Nevin et al. 2009, Tremblay et al. 2011).

Miniaturization of electrodes down to the nanometer scale (Figure 2) enabled the direct
and local measurement of electron transport along electrically conductive appendages known as
nanowires in the Fe(III)-reducing bacterium Shewanella oneidensis (Gorby et al. 2006, El-Naggar
et al. 2010). The nanofabrication of Pt electrodes and the subsequent electric measurements were
all performed in a FIB. Similar results were also obtained using conducting probe–atomic force
microscopy (Reguera et al. 2005; El-Naggar et al. 2008, 2010). Complementary techniques, such as
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proteomic and electrochemical analyses, are critical for understanding the mechanisms of electron
transfer along these appendages and the conductive properties of the pili themselves, as well as for
detecting these structures in natural environments (Bretschger et al. 2007, El-Naggar et al. 2010,
Boesen & Nielsen 2013, Vargas et al. 2013); this undertaking deserves increasing attention in the
coming years.

Much like electron shuttles released by bacteria (e.g., Torres et al. 2010), naturally abundant
redox-active organic molecules (namely humic acids) were shown to act as electron acceptors for
microbial respiration (Lovley et al. 1996, Wolf et al. 2009). In the same way, Fe(III) oxides were
also shown, by using a combination of electrochemical and chemical methods, to play a role in
electron transfer between bacterial species (Kato et al. 2012). The rates of direct electron trans-
fer from c-type cytochromes to extracellular solid Fe(III) compounds were also recently revisited
(Clarke et al. 2011, White et al. 2013). Using proteoliposomes—including the enzymatic MtrCAB
complex from S. oneidensis and a mixture of dithionite and methyl viologen playing the role of
both electron reservoir and redox indicator—as well as a combination of cryo-EM and immuno-
labeling, White et al. (2012, 2013) showed that this molecular wire mechanism (Fredrickson &
Zachara 2008) might support the rates of electron transfer needed for anaerobic solid-phase Fe(III)
respiration.

Future challenges for improving bioelectrochemical devices and bettering our understanding
of electron transfer mechanisms between bacteria and minerals include optimizing the viability
of cells within the biofilms that may develop at the electrode contact (e.g., Nassif et al. 2002,
Gautier et al. 2006). We must also more extensively explore the diversity of electron transfer
mechanisms in the tree of life (to date, studied species are almost exclusively model microor-
ganisms such as Geobacter, Shewanella, and Sideroxydans). Not only are these questions central to
optimizing technological devices such as MFCs, but they also connect to fundamental issues for
geomicrobiologists: How did environmental (in particular redox) conditions influence the evolu-
tion of life (in particular electron transfer mechanisms)? How did these electron transfer systems
evolve during Earth’s history? How has this evolution shaped the mineral record? Undoubtedly,
combined biochemical, geochemical, and phylogenetic approaches will provide priceless clues.

Traces of Microbe-Induced Electron Transfer Recorded in Minerals

Biofilms are central in the process of electron transfer at mineral interfaces, for instance at the
surface of basaltic glass in the oceanic crust. At the scale of the biofilm, microenvironments may
exhibit rather specific and locally constant physicochemical properties, whereas at the scale of
microorganisms (micrometer to nanometer scale), strong redox heterogeneities may result from
their metabolic activity (Wessel & Hmelo 2013). Such redox heterogeneities, sometimes associated
with persistent organic compounds, may constitute biosignatures to be sought in ancient samples.
It is thus crucial to deploy a panel of methods to determine the speciation and redox state of major
elements such as Fe and to localize organic molecules from the bulk scale, through the micrometer
(biofilm) scale, to the nanometer scale.

Some synchrotron-based tools are specifically suited to the study of microbe-mineral interac-
tions in laboratory samples as well as in modern and ancient geological specimens, from the mi-
crometer to the nanometer scale. A thorough review of the methods dedicated for geomicrobiology
applications can be found in Templeton & Knowles (2009). Applications of synchrotron-based
X-ray techniques for the investigation of redox heterogeneities at microbe-mineral interfaces are
well illustrated by studies of oceanic crust weathering and iron biomineralization (e.g., Benzerara
et al. 2007, Templeton et al. 2009, Carlut et al. 2010, Fliegel et al. 2011) (Figure 3).
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X-ray absorption
near-edge
spectroscopy
(XANES): provides
information about the
speciation of an
element when it
absorbs X-rays at or
above a characteristic
energy

Extended X-ray
absorption fine
structure (EXAFS):
provides information
about the nature of the
atoms surrounding an
element absorbing
X-rays and about their
distance from the
absorber

Complementary to bulk-scale methods [e.g., X-ray absorption near-edge spectroscopy
(XANES) and extended X-ray absorption fine structure (EXAFS)] that allow determination of
the mean metal speciation in amorphous and crystalline phases (e.g., Petit et al. 2001, Miot et al.
2009b, Hohmann et al. 2011, Pantke et al. 2012), X-ray absorption spectroscopy (XAS) methods
that provide micrometer-scale resolution are of great interest for geomicrobiological issues. This
is indeed the adequate scale to map the microenvironments produced by biofilms interacting with
solid matrices. Micro-X-ray fluorescence (micro-XRF) provides elemental maps at this scale. For
example, it gave strong evidence (combined with XANES data at the Mn K edge) that Fe-Mn
crusts at the surface of basaltic glass are derived from dissolved Fe and Mn species in seawater
(Templeton et al. 2009).

Scanning transmission X-ray microscopy (STXM) is a choice method to characterize the
microbe-mineral interface at the microorganism scale (Cosmidis & Benzerara 2014) (Figure 3).
This synchrotron-based transmission microscopy method provides images with spatial resolu-
tion of approximately 25–50 nm. Using soft X-rays (<4 keV), it also gives information about
the speciation of elements from carbon (C K edge) to arsenic (As L edge), i.e., of light el-
ements entering the composition of the organic (microbe) portion and of heavier elements
from the mineral portion. This semiquantitative method allows estimation of the Fe redox state
(Bourdelle et al. 2013) as well as the C speciation (e.g., Bernard et al. 2007, Solomon et al. 2012)
at the 50-nm scale via calibration with reference spectra. STXM has increasingly been used in
recent years to characterize bacteria-mineral interfaces and to reveal redox heterogeneities at the
cellular scale (i.e., <1 μm) that are associated with organic compounds (e.g., Benzerara et al.
2004b, Chan et al. 2009, Miot et al. 2009b, Carlut et al. 2010, Cosmidis et al. 2013) and might
constitute valuable biosignatures to be sought in the rock record. For instance, STXM analy-
ses (Benzerara et al. 2007) have contributed evidence to the ongoing debate about the potential
biogenicity of tubular microchannels commonly observed in weathered oceanic basaltic glass
(Banerjee & Muehlenbachs 2003, Furnes et al. 2005). Indeed, these microtubes were shown to
be filled with palagonite (a secondary weathering product of basalt) exhibiting a slightly higher
Fe(III)/[Fe(II)+Fe(III)] ratio than that of the surrounding basaltic glass and to be associated
with organic carbon and carbonate (Benzerara et al. 2007). Such features were interpreted as
potential biosignatures of past Fe biooxidation. Similarly, redox heterogeneities and gradients
of Fe(II) oxidation state over a micrometer range were demonstrated to be produced through
anaerobic microbial Fe(II) oxidation in laboratory experiments on the nitrate-reducing Fe(II)-
oxidizing BoFeN1 strain and the phototrophic Fe(II)-oxidizing strain SW2, respectively (Miot
et al. 2009b,c). STXM is also well suited for the identification of organic templates produced by bac-
teria, e.g., proteins, polysaccharides, and lipopolysaccharides (Chan et al. 2009; Miot et al. 2009b,c;
Solomon et al. 2012).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Methods for scanning transmission X-ray microscopy (STXM) study of microbe-mineral interfaces. (a) Diagram of an STXM. (Inset)
Method for the preparation of air-sensitive samples (e.g., for Fe redox study). (b) Method of image subtraction for a rapid determination
of C speciation within a sample (e.g., for localization of bacteria within a geological sample). (c) Near-edge X-ray absorption fine
structure (NEXAFS) spectra at the C K edge recorded on reference compounds used for the mapping of proteins and polysaccharides
in panel d. (d ) STXM composite map of Fe, proteins, and polysaccharides derived from Fe L2,3 edges and C K-edge stacks as described
in Miot et al. (2009a). Fe is associated with proteins accumulated within the cell wall and with exopolymeric substances in these cultures
of the iron-oxidizing bacterium Acidovorax sp. strain BoFeN1. (e) Fe redox map, showing Fe(III)-rich precipitates at the cell contact and
extracellular Fe(II)-rich phases. ( f ) Corresponding Fe L2,3-edge spectra compared with reference Fe(II) and Fe(III) phosphate spectra.
( g) STXM image and Fe(III) map recorded on a hydrated sample. Beam radiation damage may lead to an overestimation of the
Fe(III)/Fetotal ratio. Abbreviation: EPS, exopolymeric substance; OSA, order-sorting aperture.
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Combining STXM analyses with other methods—such as NanoSIMS (Behrens et al. 2012,
Remusat et al. 2012), angle-scan tomography (Schmid & Obst 2014, Schmid et al. 2014), X-
ray magnetic circular dichroism (Coker et al. 2012), and low-energy X-ray fluorescence in the
STXM (Hitchcock et al. 2012)—can provide complementary information. STXM analyses of
fully hydrated samples (Figure 3) may also gain some technical advances and provide a better
understanding of microbe-mineral interactions in the future. Such an approach has been used in
a few studies (e.g., Toner et al. 2005, Leung et al. 2009, Schmid et al. 2014). However, radiation
damage induced by the copresence of redox-sensitive phases and organic matter under the X-ray
beam is nonnegligible and must be quantified for each system. Although cryo-TXM has recently
been developed, some technical challenges remain for the advent of cryo-STXM (Schneider et al.
2012).

SUMMARY POINTS

1. Detailed imaging of the microbe-mineral interface can be obtained from a combination
of electron microscopy tools adapted to the study of laboratory or modern environmental
samples as well as of ancient rocks, for example, through the FIB milling preparation of
thin sections for the TEM.

2. Substantial progress in the characterization of microbe-mineral assemblages is just be-
ginning with the application of cryo-EM methods to the study of geomicrobiological
samples.

3. Electrochemical approaches provide quantitative information about the mechanisms of
electron transfer at the microbe-mineral interface.

4. Synchrotron-based X-ray absorption techniques can be used to probe the traces left by
recent or ancient microbial redox reactions at the microbe-mineral interface, from the
bulk scale (XANES, EXAFS), through the biofilm scale (micro-XRF), to the nanometer
scale (STXM).

5. Future breakthroughs in the understanding of microbe-mineral interactions will likely
originate from the correlative combination of cryo-EM methods with light (fluorescence)
microscopy as well as from the concomitant use of complementary methods, such as
synchrotron-based analyses, electrochemistry, and isotopic, genetic, phylogenetic, and
proteomic analyses.
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Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. 2010. Loss of the actin-like protein MamK has

pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense.
Mol. Microbiol. 77:208–24

Kim J, Dong H. 2011. Application of electron energy-loss spectroscopy (EELS) and energy-filtered trans-
mission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial
Fe-reduction of magnetite. Clays Clay Miner. 59:176–88

Koehler I, Konhauser KO, Papineau D, Bekker A, Kappler A. 2013. Biological carbon precursor to diagenetic
siderite with spherical structures in iron formations. Nat. Commun. 4:1741

Komeili A, Li Z, Newman DK, Jensen GJ. 2006. Magnetosomes are cell membrane invaginations organized
by the actin-like protein MamK. Science 311:242–45

Konhauser KO, Kappler A, Roden EE. 2011a. Iron in microbial metabolisms. Elements 7:89–93
Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW, et al. 2011b. Aerobic bacterial pyrite

oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–73
Konhauser KO, Newman DK, Kappler A. 2005. The potential significance of microbial Fe(III)-reduction

during deposition of Precambrian banded iron formations. Geobiology 3:167–77
Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, et al. 2009. Oceanic nickel depletion and a

methanogen famine before the Great Oxidation Event. Nature 458:750–53
Kump LR. 2008. The rise of atmospheric oxygen. Nature 451:277–78
Lalonde SV, Smith DS, Owttrim GW, Konhauser KO. 2008. Acid-base properties of cyanobacterial surfaces.

I: Influences of growth phase and nitrogen metabolism on cell surface reactivity. Geochim. Cosmochim.
Acta 72:1257–68

Lee MR. 2010. Transmission electron microscopy (TEM) of Earth and planetary materials: a review. Mineral.
Mag. 74:1–27

Lefevre CT, Menguy N, Abreu F, Lins U, Posfai M, et al. 2011. A cultured greigite-producing magnetotactic
bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–23

Leforestier A, Lemercier N, Livolant F. 2012. Contribution of cryoelectron microscopy of vitreous sections
to the understanding of biological membrane structure. Proc. Natl. Acad. Sci. USA 109:8959–64

Lentini CJ, Wankel SD, Hansel CM. 2012. Enriched iron(III)-reducing bacterial communities are shaped by
carbon substrate and iron oxide mineralogy. Front. Microbiol. 3:404

286 Miot · Benzerara · Kappler

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
14

.4
2:

27
1-

28
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 W
IB

61
34

 -
 U

ni
ve

rs
ity

 o
f 

T
ue

bi
ng

en
 o

n 
06

/0
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



EA42CH13-Miot ARI 18 April 2014 15:28

Lepot K, Benzerara K, Philippot P. 2011. Biogenic versus metamorphic origins of diverse microtubes in 2.7
Gyr old volcanic ashes: multi-scale investigations. Earth Planet. Sci. Lett. 312:37–47

Leung BO, Wang J, Brash JL, Hitchcock AP. 2009. Imaging hydrated albumin on a polystyrene-poly(methyl
methacrylate) blend surface with X-ray spectromicroscopy. Langmuir 25:13332–35

Li J, Pan Y, Liu Q, Yu-Zhang K, Menguy N, et al. 2010. Biomineralization, crystallography and magnetic
properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth Planet.
Sci. Lett. 293:368–76

Lin W, Wang Y, Li B, Pan Y. 2011. A biogeographic distribution of magnetotactic bacteria influenced by
salinity. ISME J. 6:475–79

Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7:375–81
Lovley DR. 2008. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol.

19:564–71
Lovley DR. 2011. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer)

on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev. Environ. Sci. Biotechnol. 10:101–5
Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. 1996. Humic substances as electron

acceptors for microbial respiration. Nature 382:445–48
Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, et al. 2012. Iron-reducing bacteria accumulate

ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J. 7:338–50
Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ. 2003. Cryo-transmission electron microscopy of

frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:6112–18
McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL. 2011. Biodiversity and emerging

biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl. Environ. Microbiol. 77:5445–57
Milne JLS, Subramaniam S. 2009. Cryo-electron tomography of bacteria: progress, challenges and future

prospects. Nat. Rev. Microbiol. 7:666–75
Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, et al. 2009a. Transformation of vivianite by anaerobic

nitrate-reducing iron-oxidizing bacteria. Geobiology 7:373–84
Miot J, Benzerara K, Morin G, Kappler A, Bernard S, et al. 2009b. Iron biomineralization by anaerobic

neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 73:696–711
Miot J, Benzerara K, Obst M, Kappler A, Hegler F, et al. 2009c. Extracellular iron biomineralization by

photoautotrophic iron-oxidizing bacteria. Appl. Environ. Microbiol. 75:5586–91
Miot J, MacLellan K, Benzerara K, Boisset N. 2011. Preservation of protein globules and peptidoglycan in the

mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.
Geobiology 9:459–70

Miot J, Recham N, Larcher D, Guyot F, Brest J, Tarascon JMT. 2014. Biomineralized α-Fe2O3: texture and
electrochemical reaction with Li. Energy Environ. Sci. 7:451–60

Murat D, Falahati V, Bertinetti L, Csencsits R, Körnig A, et al. 2012. The magnetosome membrane protein,
MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol.
Microbiol. 85:684–99

Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole
electron-acceptor. Science 240:1319–21

Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J. 2002. Living bacteria in silica gels. Nat. Mater.
1:42–44

Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL, et al. 2009. Anode biofilm transcriptomics
reveals outer surface components essential for high density current production in Geobacter sulfurreducens
fuel cells. PLoS ONE 4:e5628

Obst M. 2005. TEM-specimen preparation of cell/mineral interfaces by Focused Ion Beam milling. Am.
Mineral. 90:1270–77

Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, et al. 2010. Colonization of subsurface microbial
observatories deployed in young ocean crust. ISME J. 5:692–703

Ozyamak E, Kollman J, Agard DA, Komeili A. 2012. The bacterial actin MamK: in vitro assembly behavior
and filament architecture. J. Biol. Chem. 288:4265–77

Pantke C, Obst M, Benzerara K, Morin G, Ona-Nguema G, et al. 2012. Green rust formation during Fe(II)
oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 46:1439–46

www.annualreviews.org • Investigating Microbe-Mineral Interactions 287

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
14

.4
2:

27
1-

28
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 W
IB

61
34

 -
 U

ni
ve

rs
ity

 o
f 

T
ue

bi
ng

en
 o

n 
06

/0
5/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



EA42CH13-Miot ARI 18 April 2014 15:28
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