Übungsblatt 10

Abgabe am 13.1.

T. Piecha

Aufgabe 1 (3 Punkte)

Wir betrachten die durch folgende Signaturen gegebenen Sprachen \mathcal{L} (vgl. Übungsblatt 9, Aufgabe 3):

(a)
$$\langle \varnothing, \{\pi \mapsto 2, \pi^2 \mapsto 1\}, \{0 \mapsto 2, 1 \mapsto 2\} \rangle$$
 (1 Punkt)

(b)
$$\langle \varnothing, \varnothing, \{4 \mapsto 1\} \rangle$$
 (1 Punkt)

(c)
$$\langle \{0,1\}, \{2 \mapsto 1\}, \varnothing \rangle$$
 (1 Punkt)

Geben Sie jeweils eine \mathscr{L} -Struktur an.

Aufgabe 2 (8 Punkte)

Gegeben sei die Sprache der Signatur $\langle \{1\}, \{+\mapsto 2\}, \{\leq \mapsto 2\} \rangle$ und eine entsprechende Struktur $\mathfrak{A} = \langle \mathbb{N}, 1, +, \leq \rangle$. Wir schreiben $\dot{1}, \dot{+}$ und $\dot{\leq}$ für \dot{c}_1, \dot{f}_+ bzw. \dot{R}_{\leq} und verwenden Infix-Notation.

Es sei v eine Belegung mit $v(x_0) = 2$ und $v(x_1) = 4$. Bestimmen Sie durch schrittweises Auswerten den Wert von:

(a)
$$[(\dot{1} + \dot{1}) + \dot{x}_0] + \dot{x}_1]_v^{\mathfrak{A}}$$
 (2 Punkte)

(b)
$$[((x_0 \dotplus x_1) \dot{\leq} (\dot{1} \dotplus x_1)) \lor ((\dot{1} \dotplus \dot{1}) \dot{\leq} x_0) \rightarrow \neg (\dot{1} \dot{\leq} x_0)]_v^{\mathfrak{A}}$$
 (3 Punkte)

(c)
$$[(\exists x_0(\forall x_1(x_0 \leq x_1)))]_v^{\mathfrak{A}}$$
 (3 Punkte)

Aufgabe 3 (6 Punkte)

Die Sprache $\mathscr L$ umfasse ein einstelliges Funktionszeichen $\dot f$ und ein zweistelliges Funktionszeichen $\dot g$. Wir betrachten drei $\mathscr L$ -Strukturen $\mathfrak A_1$, $\mathfrak A_2$ und $\mathfrak A_3$ über der Menge $\mathbb N$. Dabei interpretieren wir $\dot g$ überall durch die Addition; $\dot f$ interpretieren wir (für $n \in \mathbb N$)

- in \mathfrak{A}_1 durch die Abbildung $n \mapsto 3$,
- in \mathfrak{A}_2 durch die Abbildung $n \mapsto \max(n^2 + 2, 18)$ und
- in \mathfrak{A}_3 durch die Abbildung $n \mapsto n \mod 6$.

Überprüfen Sie, welche der beiden Formeln φ und ψ in welchen Strukturen gültig sind:

(a)
$$\varphi := \forall x \exists y (\dot{f}(\dot{g}(x,y)) = \dot{f}(x))$$
 (3 Punkte)

(b)
$$\psi := \exists y \forall x (\dot{f}(\dot{g}(x,y)) = \dot{f}(x))$$
 (3 Punkte)

Wenden Sie dazu zunächst die Klauseln für die Quantoren an (s. Definition 9.4 (6)). Zur Auswertung von $\dot{f}(\dot{g}(x,y)) \doteq \dot{f}(x)$ darf verkürzt argumentiert werden.

Aufgabe 4 (3 Punkte)

Zeigen Sie für Formeln $\varphi, \psi \in \mathcal{L}$, dass für jede \mathcal{L} -Struktur \mathfrak{A} gilt: Wenn $\mathfrak{A} \models \varphi \rightarrow \psi$ und $\mathfrak{A} \models \varphi$, dann $\mathfrak{A} \models \psi$.