Übungsblatt 14

keine Abgabe

T. Piecha

Aufgabe 1

Geben Sie den Strukturbaum, sämtliche Teilformeln sowie den Rang der folgenden Aussage an:

$$\neg (p_1 \to ((\neg p_3 \land p_1) \lor p_2)) \to p_3$$

Aufgabe 2

Ermitteln Sie mithilfe einer Wahrheitstafel, ob die folgende Aussage allgemeingültig ist:

$$(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \rightarrow (p_1 \rightarrow p_3)$$

Aufgabe 3

Die zweistellige aussagenlogische Verknüpfung \star werde durch die Funktion f_{\star} mit der folgenden Wahrheitstafel interpretiert:

\boldsymbol{x}	y	$f_{\star}(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

Zeigen Sie, dass $\{\star\}$ keine funktional vollständige Menge ist.

Aufgabe 4

Geben Sie eine konjunktive Normalform an für $p \to (\neg q \land p)$.

Aufgabe 5

Zeigen Sie in NK: $\varphi \to (\psi \to \sigma) \vdash \psi \to (\varphi \to \sigma)$.

Aufgabe 6

Erläutern Sie:

- (a) Wann heißt eine Aussagenmenge maximal konsistent?
- (b) Wie konstruiert man zu einer konsistenten Aussagenmenge eine maximal konsistente Erweiterung?

Aufgabe 7

Zeigen Sie: Eine konsistente Menge aussagenlogischer Formeln Γ ist maximal konsistent genau dann, wenn für jedes φ gilt: entweder $\varphi \in \Gamma$ oder $\neg \varphi \in \Gamma$.

Aufgabe 8

Zeigen Sie: $\varphi \to \psi$ ist genau dann in einer maximal konsistenten Formelmenge enthalten, wenn nicht zugleich φ und $\neg \psi$ darin enthalten sind.

Aufgabe 9

Gegeben sei die Sprache der Signatur $\langle \{1\}, \{-\mapsto 2\}, \{\leq \mapsto 2\} \rangle$ und eine entsprechende Struktur $\mathfrak{A} = \langle \mathbb{Z}, 1, -, \leq \rangle$. Wir schreiben $\dot{1}, \dot{-}$ und $\dot{\leq}$ für \dot{c}_1, \dot{f}_- bzw. \dot{R}_{\leq} und verwenden Infix-Notation. Es sei v eine Variablenbelegung mit $v(x_1) = 1$ und $v(x_2) = 2$.

Bestimmen Sie durch schrittweises Auswerten den Wahrheitswert von

$$\llbracket ((x_1 \stackrel{\cdot}{-} x_2) \stackrel{\cdot}{\leq} (\dot{1} \stackrel{\cdot}{-} x_1)) \rightarrow \neg (\dot{1} \stackrel{\dot{=}}{=} x_1) \rrbracket_v^{\mathfrak{A}}$$

Aufgabe 10

Formen Sie die folgende Formel schrittweise in eine logisch äquivalente pränexe Normalform um:

$$\neg \forall x \varphi(x) \to \exists x (\varphi(x) \to \forall y \varphi(y))$$

(Die Formel φ sei quantorenfrei.)

Aufgabe 11

Zeigen Sie: $\vDash \exists x(\varphi \lor \psi) \leftrightarrow \exists x\varphi \lor \exists x\psi$.

Aufgabe 12

Zeigen Sie in NK: $\vdash \exists x \exists y \varphi(x, y) \leftrightarrow \exists y \exists x \varphi(x, y)$.

Aufgabe 13

Erläutern Sie:

- (a) Was ist eine Theorie?
- (b) Was ist eine Henkin-Theorie?
- (c) Was besagt der Kompaktheitssatz? Beweisen Sie ihn mithilfe des Vollständigkeitssatzes.

Aufgabe 14

Leiten Sie den Vollständigkeitssatz aus dem Modellexistenzsatz her.

Aufgabe 15

Es seien T_1 und T_2 Theorien. Zeigen Sie:

- (a) $T_1 \cap T_2$ ist ebenfalls eine Theorie.
- (b) $T_1 \cup T_2$ ist im allgemeinen keine Theorie. (Geben Sie ein Gegenbeispiel an.)

Aufgabe 16

Es sei T eine vollständige Henkin-Theorie und $\varphi(x)$ eine Formel mit $\mathrm{FV}(\varphi) = \{x\}$. Zeigen Sie: Falls $\varphi(t) \in T$ für jeden geschlossenen Term t, dann auch $\forall x \varphi(x) \in T$.