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Abstract: New deep-sequencing technologies are applied to tran-
script sequencing (RNA-seq) for transcriptomic studies. However,
current approaches are based on the availability of a reference ge-
nome sequence for read mapping. We present Passage, a method
for efficient read clustering in the absence of a reference genome
that allows sequencing-based comparative transcriptomic studies
for currently unsequenced organisms. If the reference genome is
available, our method can be used to reduce the computational ef-
fort involved in read mapping. Comparisons to microarray data
show a correlation of 0.69, proving the validity of our approach.

1 Background

Changes in transcription are the most important mechanism of differenti-
ation and regulation. Until recently, the transcriptional activity of a cell
was measured by PCR in the case of few genes, or microarrays were used to
investigate the whole transcriptome of an organism or tissue. Both meth-
ods require previous knowledge about the organism’s transcripts, either
in the form of ESTs or a complete reference genome sequence for primer
resp. probe design. SAGE (serial analysis of gene expression) [VZVK95]
is a method to study transcriptional activity based on sequencing of short
transcript fragments. The advent of new deep sequencing technologies
(also called next-generation or second generation sequencing methods)
now allows to study the transcriptome in unprecedented detail by directly
sequencing the pool of expressed transcripts. Using RNA-seq [WGS09]
and a known reference genome, transcriptional activity can be measured
with single-base precision.

Sequencing the pool of expressed transcripts creates millions of short (36-
500 bases) sequences, called reads. These need to be mapped against
the reference genome sequence allowing for mismatches due to sequencing
errors or SNPs, which creates a huge computational challenge. Many
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Figure 1: Schematic view of a transcriptional unit. RsaI restriction sites are
indicated by yellow triangles. Transcript fragments (red) are sequenced starting
from restriction sites in either direction, downstream from the transcription start
site (TSS) as well as upstream from the transcription termination site (TTS),
resulting in different sequence prefixes (GGG, CA, poly-T).

tools exists for that task, such as SOAP2 [LYL+09], MAQ [LRD08],
VMatch [Kur03], RazerS [WER+09], and Bowtie [LTPS09]. Some pro-
grams are able to map reads covering splice junctions (TopHat [TPS09],
QPALMA [DBOSR08]), others can map reads against several genomes
at once, such as GenomeMapper [SHO+09]. Secondly, though more and
more reference genomes are made available, the vast majority of organisms
remain unsequenced and thus beyond the scope of RNA-seq studies.

Here we present Passage [Hü09], extending the idea of SAGE to cre-
ate a new efficient method for transcriptome studies in the absence of
a reference genome sequence. It makes use of a newly established ex-
perimental protocol resulting in reads originating only from well-defined
genomic positions. Passage clusters these reads very efficiently to com-
pute expression levels. Comparative studies can also be performed easily
based on our method.

2 Material and Methods

Sample Preparation Purified mRNA is incubated with anchored Oligo
(dT13) and modified Smart (dG3) oligonucleotides. These primers contain
RsaI restriction sites. Reverse transcription is performed to obtain cDNA
which is then amplified using long-distance PCR. After purification steps,
the cDNA is cut into transcript fragments using the restriction enzyme
RsaI. This step replaces the fragmentation step (e.g. by sonication) that is
usually performed in RNA-seq protocols. Sequencing adapters are ligated
to the fragments, and the fragments are analyzed by deep-sequencing.
The universal primer site can be used for different sequencing techniques
such as GS FLXTM (Roche Diagnostics/454) and the Genome AnalyzerTM

(Illumina). Barcode sequences can be included in the adapters to allow
parallel sequencing of several samples. The resulting reads start with the
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Figure 2: Passage workflow: Reads for one sample (after optional presorting)
are used to build a trie, resulting in a clustering of perfectly matching sequences.
The reads’ sequences are split into three parts and a hash map is built for each
such part. These hash maps are used in the mismatch resolution step to cluster
all reads with at most two mismatches, resulting in the final clustering output.

optional barcode, followed by a prefix and the genomic sequence. Three
types of fragments can be distinguished by their prefixes: 5’ UTR frag-
ments start with ACGGG, 3’ UTR fragments with ACT13, and internal frag-
ments with the restriction sequence AC (see figure 1). This protocol is
adapted from [LRR+10] describing a 3’-fingerprint analyzed on a 2-D gel
electrophoresis system to next-generation sequencing transcriptomics.

Cluster algorithm Our read clustering algorithm, Passage, employs
a three-step process. Starting from a fasta file containing read sequences,
this involves presorting, exact clustering and mismatch resolution. The
result is a file containing the number of reads contained in each cluster,
the cluster’s consensus sequence, the IDs of the reads, and a normalized
expression estimate (reads per million reads). Result files from multiple
samples can be joined into a tabular file containing one column per sam-
ple and one row per cluster, which can be analyzed with any standard
microarray analysis software.

Presorting Reads are sequenced either from the 3’, the 5’ or the in-
terior region of a transcriptional unit. This is reflected in different read
prefixes (see figure 1). Differentiating the reads by these prefixes is not
only useful for reducing computational costs, but rather to allocate the
reads to the different parts of a transcriptional unit. With the addition
of barcode sequences, different samples can be analysed in the same se-
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quencing run, adding another common prefix for all reads of that sample.
During presorting, reads are sorted according to their barcode (to distin-
guish different samples) and their prefix.

Exact clustering Based on the presorting result, each prefix is pro-
cessed as follows. A trie of read sequences is generated such that reads are
assigned to a common leaf if their sequences are identical. Since we know
that reads either overlap by 100% or not at all, this effectively clusters
all reads deriving from the same transcript fragment. Reads are placed
into the tree by matching their bases one by one to the corresponding tree
path until either a leaf is reached (and the read sequence is completely
matched) or a new branch has to be created to accomodate the read’s
sequence. The result of the tree building step is a list of clusters, each
cluster containing identical reads.

Mismatch resolution No current sequencing technology is error-free,
thus we can not expect all reads from the same locus to be identical. In
order to resolve this, we include a mismatch resolution step in our clus-
tering algorithm. If k mismatches should be allowed, the minimal perfect
match length results from equidistant distribution of these mismatches
over the clusters’ sequences. Thus we partition the clusters’ sequences
into k + 1 parts and create k + 1 hash maps. Clusters are placed into
these hash maps according to the parts of their sequences. Thus, two
clusters differing by at most k mismatches will be found in the same hash
bucket in at least one of the hash maps. To ensure similar load factors in
the presence of long common sequence prefixes, the first sequence part is
slightly longer.

Clusters of identical reads are processed according to their size, starting
with the largest cluster (in terms of the number of reads contained). From
each hash map, candidate clusters are selected for merging. Ungapped
alignments are computed and clusters are merged if their distance is at
most k mismatches. Merged clusters are removed from all hash maps and
the process is repeated until all clusters have been processed. Analysis
showed that usually there is one very large and several smaller clusters for
a given locus, and that the reads in the large cluster accurately represent
the true genomic sequence. Thus we use the largest cluster’s sequence as
the consensus sequence for the joined cluster.

3 Results

We illustrate our method using the two closely related yeast species Can-
dida albicans and Candida dubliniensis. Both are facultative pathogens,

24 Battke et al.



100pg 1µg

Dataset 1, 40bp C. albicans Y, 30◦ 4.1 † 4.6
· YF, 37◦ 3.7 5.1

C. dubliniensis · HF, 37◦ 4.9 4.8
YF, 37◦ 4.2 4.7

Dataset 2, 76bp C. dubliniensis · HF, 37◦ 7.6 / 7.6 ∗3.8 / 5.6
YF, 37◦ 4.4 / 5.5 ∗6.1 / 8.6

Table 1: Conditions and number of reads (millions) sequenced for the two
datasets. Y, yeast extract peptone dextrose, is a complete medium for yeast
growth. F, fetal calf serum (10%). H, H2O. The amount of total RNA used
for sequencing was either 100pg or 1µg. The second dataset contains replicate
sequencings. Hyphae-inducing conditions are marked with (·). Data used for
comparison with other tools is indicated with (†), those used for validation using
microarrays are marked with (∗).

C. albicans is of higher clinical importance as the most common agent
causing candidosis. Both species have a genome size of about 14Mb orga-
nized in eight chromosomes and roughly the same number of genes (6185
in C. albicans, 5983 in C. dubliniensis). Cultures were grown under differ-
ent conditions to study the induction of yeast or hyphae cell proliferation.
RNA-seq data was generated from different amounts of total RNA and
different read lengths (see table 1). In total, we analyzed 16 RNA-seq
runs, using Passage with a maximum of two mismatches.

To assess the robustness of the protocol, we compared the two sequenc-
ings for each sample in dataset 1 by mapping the reads to all annotated
genes (using Bowtie with up to two mismatches). More than 80% of the
annotated genes found in the 100pg sample were also found in the 1µg
sample, with the total number of transcripts being about twice as high in
the 1µg samples (mean 4344 vs. 2247).

Data volume reduction Both clustering steps significantly reduce data
volume (see figure 3). The efficiency of data reduction depends on the
quality of the sequencing process. Fewer mismatches allow more reads to
be clustered to their correct cluster and thus increase the reduction factor.
In our studies using 16 different datasets (8 with 40-mer reads, 8 with 76-
mer reads), exact clustering reduced data volume by about 84% (factor
6.1). Mismatch resolution results in a further reduction by about 58%
(factor 2.4), resulting in a total reduction of about 93%. The reduction
during perfect clustering can be seen as the result of summarizing the
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Figure 3: Reduction in data volume (number of reads resp. clusters) achieved
by exact clustering and mismatch resolution. 16 datasets were analysed, eight
of them with reads of length 40, eight with length 76. Longer reads (B) result
in less reduction than shorter reads (A) due to higher error rates.

transcription strength (which varies between conditions) to the number
of uniquely sequenced transcripts (which is expected to be more similar
for all conditions). During the mismatch resolution step, a reduction
is achieved by correcting for the error rate inherent in the sequencing
technology, which should also be similar for all experiments.

Runtime analysis Presorting is important to reduce runtime and
memory consumption and can be accomplished in O(n) where n is the
number of input reads. Exact clustering can also be done in O(n). The
time complexity of the mismatch resolution step depends on the average
size of the hash buckets and the initial size of the cluster list: If c exact
clusters are hashed randomly into buckets, let the average bucket size be
 . Merging the clusters can then be done in O( c

  ·  2). In the worst case,
all clusters are hashed into one bucket, yielding   = c and O(c2) runtime.
The optimal case would be   = 1, yielding O(c) runtime.

For real data, we see very small values for  : We found   = 2.5 for reads of
length 76 and   = 4 for reads of length 40. Thus, for the average case   can
be considered constant which results in a runtime of O(c) (see figure 4A).
Even in cases where a large number of clusters are collected in one hash
bucket, we observe runtime linear with respect to the sum of sizes of the
largest buckets in each hash map (see figure 4B). As c is bounded by the
number of reads, n, overall average runtime is O(n).

Comparison to other tools Passage was written to cluster short
reads and to use the size of the clusters as a measure of transcription.
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Figure 4: Runtime measurements for the mismatch resolution phase for reads
of length 40 bases (diamonds) and 76 bases (squares), respectively, with linear
regression curves. On average, runtime is linear in the number of exact clusters
used as input (A). In the case of very uneven distribution of clusters to hash
buckets, average runtime remains linear with respect to the sum of sizes of the
largest hash bucket in each of the three hash maps (B). In both cases, we observe
different slopes depending on the length of the reads.

It makes use of the fact that reads either overlap completely or not at
all. We believe that no other tool currently offers the same functionality.
However, in order to test our algorithm against other tools, we selected
the EST assemblers Cap3 [HM99] and Mira3 [CWS99] as well as the short
read de novo assemblers Velvet [ZB08] and Locas [KOS+10]. As input we
chose a FastA file with approx. 4.6 million Solexa reads of length 40
(184 million bases). Tests were performed on a computer with a 2.5Ghz
processor and 8 GB of memory.

We used Bowtie to compute a direct read mapping against the genome of
C. albicans (assembly 21, obtained from www.candidagenome.org) to get
the number of “real” clusters. We allowed at most two mismatches (after
removing the 3’ and 5’ prefixes from the respective reads). 3.97 million
reads (86%) were mappable and were consequently used for the compar-
ison. Bowtie mapped the reads to 49235 unique mapping positions, thus
all methods that produce a significantly lower number of clusters (resp.
contigs) combine expression measurements that should be kept separate.

Table 2 shows the runtime and number of assembled clusters for each pro-
gram used here. It is important to note that these were written for generic
assembly tasks while Passage is optimized for our biological protocol. We
tried to set parameters such that the results would be most closely com-
parable to those obtained by Passage. While loading the reads, Cap3’s
memory consumption grew rapidly beyond the physical limit of our ma-
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Program CPU time memory clusters/contigs mcl

Passage 1 min 1200 MB 44,817 40

Cap3a – >16000 MB – –
Mira3 12h 47 min 5600 MB 74,017 40.07
Locas 4h 38 min 5500 MB 2,650 40.08
Velvet 2 min 1300 MB 217 44.55

Bowtieb 6 min 21 MB 49,235c –

Table 2: Runtimes and resulting number of clusters/contigs for all tested pro-
grams. mcl, mean consensus length. aCap3 did not complete due to memory
restrictions; bBowtie requires a genomic sequence; cunique mapping sites.

chine. The program terminated after filling all available memory. Mira3,
Velvet and Locas worked within the limits of our setup. Velvet runs very
fast, producing only a very small number of contigs. These contigs are
also too long on average, suggesting that it did too good a job of as-
sembling mismatching reads and thus expression estimates derived from
Velvet’s output are combinations of the real expression values for different
transcripts. Locas has a much higher runtime but produces more clusters
with a better mean length, yet still far too few to produce correct expres-
sion estimates. Mira3’s clusters are also close to the optimal length, but
the program produces almost twice the number of clusters than Passage
and its more generic approach to assembly is reflected in an extremely
high runtime. These clusters have extremely vague consensus sequences
with often more than 50% ambiguous bases (r, y, s, w, k, m, b, v, d, h, n, ∗)
which again suggests that different clusters have been merged that should
have stayed separate.

Furthermore, most assemblers sacrifice specificity (in the detection of over-
laps) for speed, while Passage is guaranteed to correctly cluster all reads
with ≤ k mismatches to the assumed genomic sequence. Passage finds
about 4500 clusters less than Bowtie because we do mismatch resolution
without a reference genome, sometimes leading to the fusion of two very
small clusters from distinct genomic positions with almost identical se-
quence.

Validation with microarrays We chose two experiments to validate
the expression values computed using our approach with microarray data
(see table 1). These samples were analyzed using a custom microarray
with 50-mer probes for all C. dubliniensis ORFs (febit, Heidelberg). Two
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samples were analyzed using Passage and the resulting clusters were
mapped to the C. dubliniensis genome using Bowtie. Of 5983 genes,
5144 (86%) genes could be analyzed. We only considered clusters with
at least one read in each experiment, resulting in a list of 4377 (73.2%)
genes. Fold-changes were computed independently for the microarray and
the Passage data. First the fold-change between the two samples was
computed for each cluster. The fold-changes of all clusters mapping to a
common gene were averaged to obtain a fold-change value for each gene
analyzed. The correlation between the fold-changes obtained from the
microarray hybridizations and the Passage results was 0.69.

4 Discussion

We present a method for transcriptomic studies based on short RNA
sequencing. It is especially useful in the absence of a reference genome.
Reference sequences are only available for a tiny fraction of organisms,
and while more and more genomes are sequenced, this still remains an
issue for many research projects. Using a specialized protocol for the
creation of the transcript pool, we greatly reduce the number of different
read sequences and facilitate comparison between different samples. It
effectively limits sequence overlaps to either complete or no overlap at
all. Using this feature, our algorithm can rapidly cluster the reads and
estimate expression for the corresponding transcripts in time linear to the
number of read sequences.

A comparison to other tools shows that Passage is very fast and produces
a sensible number of clusters, which allows to compute reliable expression
estimates. We validated the expression levels computed using Passage
with microarray data. Our method allows the application of well estab-
lished software for comparative transcriptomics such as R [R D09] and
Mayday [BSN10] to any (currently unsequenced) organisms and meta-
transcriptomic samples. If a genome sequence is available, Passage clus-
ters can be mapped against that reference to elucidate genomic locations
as well as assign the short cluster to longer (predicted) transcripts. Here,
our algorithm also reduces the computational effort necessary for map-
ping, due to the great reduction in the number of sequences that need to
be mapped, thus meeting one of the great challenges of NGS technologies.
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