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Abstract

Physically based rendering is a well-understood technique to produce realistic-looking images. However, different algorithms
exist for efficiency reasons, which work well in certain cases but fail or produce rendering artefacts in others. Few tools allow
a user to gain insight into the algorithmic processes. In this work, we present such a tool, which combines techniques from
information visualization and visual analytics with physically based rendering. It consists of an interactive parallel coordinates
plot, with a built-in sampling-based data reduction technique to visualize the attributes associated with each light sample. Two-
dimensional (2D) and three-dimensional (3D) heat maps depict any desired property of the rendering process. An interactively
rendered 3D view of the scene displays animated light paths based on the user’s selection to gain further insight into the rendering
process. The provided interactivity enables the user to guide the rendering process for more efficiency. To show its usefulness, we
present several applications based on our tool. This includes differential light transport visualization to optimize light setup in a
scene, finding the causes of and resolving rendering artefacts, such as fireflies, as well as a path length contribution histogram
to evaluate the efficiency of different Monte Carlo estimators.

Keywords: global illumination, rendering, visual analytics, visualization

ACM CCS: *Human-centered computing — Visual analytics; Visualization toolkits; *Computing methodologies — Ray tracing

1. Introduction

Physically based rendering techniques are the state-of-the-art tech-
nique for realistic light transport simulation. For lighting planners or
rendering engineers, fast feedback is of high importance to observe
and analyse changes to the scene; be it for aesthetic purposes, as
in advertisement or movie production, lighting design as in auto-
motive engineering to properly illuminate the environment, archi-
tecture, to increase comfort or follow legal requirements of work
environments [Rel], or biology to optimize plant illumination for
improving photosynthesis and growth. All these applications re-
quire physically-based light transport (PBLT) [Kaj86], the industry
standard for synthesizing realistic images.
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Unfortunately, for complex scenes, even the rendering of a single
image can take hours of compute time. Sometimes, the images still
contain rendering artefacts, such as fireflies caused by high-intensity
samples. Causes can be either an underestimated directional prob-
ability, a too early path termination through Russian Roulette, or
a presumably well working Monte Carlo (MC) estimator that does
not perform as expected. Few tools exist which support the user to
diminish, remove, speed up the rendering process or even analyse
these artefacts. These tools are needed to gain more insight into the
rendering process and its details.

Investigation of the rendering process is still in its infancy. Few
tools exist and are often limited to very specific scenarios as it is
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often not clear what to look for. Researchers and engineers working
in visual analytics often encounter the same problem when analysing
anovel data set. Interactive data visualizations foster the knowledge
gain. In analysing PBLT, we face a similar problem. Each light
sample can be thought of as a data sample in a high-dimensional
space. The dimensions include hit points, throughput, radiance, path
length, etc. This provides a huge data set, even for a single image. In
this work, we will address the interactive visualization of this data by
combining a state-of-the-art renderer with classic interactive visual
analytics tools.

Our approach is useful for rendering engineers who want to find
out how light is distributed in a scene, how certain objects influence
it, for finding out which parts cause significant noise and are not
well handled by the renderer [KKG*14], or for those who want to
improve rendering performance by steering the computation to focus
on certain hard to render parts of the image. For other professionals,
such as industrial designers or biologists, our proposed solution
could help to design new products or optimize lighting situations by
visualizing the light transport within a scene.

This work is an improved and extended version of [SAH*16].
We include all aspects and components of the previous paper for the
sake of completeness and point out noteworthy differences where
appropriate. In addition to the contributions, which are:

® acomparative light path visualization tool to improve the user’s
understanding of light transport within a single scene, including
potential changes;

® selecting expressive samples from the set of available samples,
which are too large to remain in memory or visualize sufficiently;

® interactive guidance of scenes, which are difficult to render,

we extend the previous version by:

® a more in-depth analysis with more complex scenes;

® anovel view to compare the effectiveness of different MC es-
timators based on histograms of the path length contribution of
light samples.

Our visualization tool employs the following features:

® parallel coordinate plots (PCPs) [ID91] with established brushing
interaction metaphors and subset selection;

® Two-dimensional (2D) and three-dimensional (3D) heat maps
provide analysis capabilities within a spatial context;

® animated light path trajectories to illustrate light distribution;

® change visualizations to investigate the effect of scene variations;

® importance-sample editing capabilities to improve convergence
of the rendering process;

® ahistogram analysis tool to compare the effectiveness of different
MC estimators, both globally and locally for a single image.

If not stated otherwise, we use a unidirectional path tracer in our
experiments though the presented techniques are applicable to any
path space sampling technique.

2. Related Work

In PBLT, MC methods [CPC84] solve the rendering equa-
tion [Kaj86] numerically by drawing and integrating samples from
an appropriate probability distribution function. Each sample con-
stitutes a light path from the camera to a light source within the
scene [Kaj86, VG97]. While physically correct, even state-of-the-
art MC methods [KKG*14, HEV*16] and efficient ray-tracing en-
gines [WFWB13] are far from real-time performance in complex
scenes. Consequently, it is difficult for designers and rendering en-
gineers to optimize their scene as any changes require a costly
re-rendering.

Though being of interest for several years now, the visualization
of light transport was usually focused on special-purpose visualiza-
tions. Signal-processing frameworks visualized the light frequency
content and its change upon interaction with materials [DHS*05].
Visualization of light rays as geometric primitives helps to under-
stand light propagation [Rus99]. The importance of filtering rays
according to attributes or type was shown in [LP14] and made
possible by recording the ray state [GFE*12]. On a higher level of
abstraction, spherical plots and particle flow tools allow selective
inspection of light transport [RKRD12]. Edge bundling [HvW09]
applied to light path visualization reduces visual clutter and supports
artists in path re-targeting [SNM*13]. Comparison of light transport
in different scene setups has so far not been handled.

Several visualization techniques aim at exploring high-
dimensional data [TMO04]. One important technique within this
field is dimensionality reduction. Within light transport, this has
been used on quantities such as the irradiance vector field indicating
the dominant light direction [CWW11] or finite-time path deflec-
tion [ZAD15]. while useful in the broader scope, such information
compression may aggravate the analysis within complex scenes if
only slight changes take place.

We make use of PCPs [ID91, HW13] together with interactive
dimension reordering to visualize our attribute space. PCPs are well
suited for our purpose as PCPs scale linearly with the number of di-
mensions. A PCP depicts K -dimensional data by displaying K axes
in a parallel arrangement. A K -dimensional data point corresponds
to a polyline connecting all axes (Figure 1). Visual clutter stem-
ming from large data sets is a common problem with PCPs which
are traditionally tackled with density-based techniques [MWO91,
HWO09]. For up to a few thousand data points, techniques such
as edge-bundling [PBO*14], hierarchical clustering [War94] and
other visual clutter reduction techniques [EDO7] prove useful but
have not been tested for data sets such as ours consisting of several
million data points. It is also unlikely that these techniques still
provide interactive feedback with large data sets. We therefore pro-
pose to apply a sample-reduction technique beforehand. PCPs have
been used before to visualize photon distributions and their attribute
space [SJL15]. However, PCPs have not been used for comparative
visualization.

In the field of comparative visualization, LiteVis [SOL*16] pro-
vides features to compare surface changes for interactive lighting
design. In contrast to our approach, their technique builds upon
virtual point lights [LTH*13] for fast feedback, which is a biased
technique, and is restricted to surface measurements, whereas our
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Figure 1: Over-plotting problem with parallel coordinates.
(a) A PCP with 200 000 data points. (b) A PCP with 5000 representa-
tive data points. In both figures, lines are drawn semi-transparently,
but the overall distribution of the data is much more apparent in (b),
whereas this distribution is almost invisible in (a) due to over-
plotting.

technique allows arbitrary scene changes and can be used to op-
timize scene arrangements and rendering. While inverse rendering
[PPO3] might be able to solve some of these problems, more fine-
grained information visualization and manual inspection is often
required.

3. Visual Analytics for Improved Physically Based Rendering

In the following, we will give an overview of our comparative, inter-
active visualization approach to visualize light transport. We collect,
pre-process (Section 3.1) and visualize light transport data, includ-
ing data that are usually only temporary and traditionally removed
during the rendering process though it provides valuable informa-
tion in our tool. The system provides interactive visual feedback
and respective tools for interaction (Section 3.2). We show several
useful applications in Section 4.

We first describe a typical use case: While rendering a scene, we
collect data which are then visualized as a PCP. The user may then se-
lect subsets using brushing on the light path attributes. These selec-
tions may then guide further sampling for faster convergence. In our
approach, no tedious selections in image space are required, which
is the traditional approach and can be difficult or even impossible if
samples outside the view have to be selected. While analysing stan-
dard render-time statistics can discover rendering problems, they are
usually insufficient to resolve them. A good example are firefly arte-
facts (high-energy samples), which are easy to detect but removal
of their cause is often difficult with traditional techniques, though
simple with ours. We also provide comparative visualizations to vi-

sualize the changes in light transport before and after a scene edit.
As our visualizations are updated on the fly, the user gets almost
instant feedback without the need to wait for the renderer to finish. It
should be mentioned that our current tool is only a proof-of-concept
and merely shows the potential of a professional tool combining
visualization and PBLT.

3.1. Data

During the rendering process, we collect several data for each light
sample which is described below. This provides us with a high-
dimensional data set that we use for exploration. We assume that the
reader is familiar with the common terminology in PBRT; otherwise,
we refer the reader to the textbook by Pharr and Humphreys [PH10].

For each light sample, which constitutes a path from a light source
to the camera, we collect the following properties:

® pixel position,

® exitant radiance,

® throughput (computed from the bidirectional scattering distribu-
tion function (BSDFs) and pdfs along the path) and

® depth (number of intersections along the path).

Second, for each intersection of a ray with the scene, we collect:

position,

exitant radiance,
object identifier,
bounce number and

interaction type, which can be either reflection or refraction.
Finally, for each light source, we collect its

® cemitted radiance along each sample and the
® Jight identifier.

Note that additional attributes could be added easily. We display
these three groups in separate PCPs (Figure 2).

3.1.1. Data reduction

Rendering even a single image with standard resolution requires
millions of light samples which would clutter the visualization and
limit interactivity. We therefore apply a data reduction technique
to select and visualize only N samples. We empirically found a
range of 5000 < N < 10000 to be sufficient for our test cases,
as it provides a good trade-off between memory consumption and
resolution. These samples should faithfully represent the true under-
lying distribution of all samples. For this, we create histograms for
each data dimension during rendering, counting the number of light
samples for each bin and updating them whenever new samples
are computed. For every M = k - N samples rendered, we create
k random subsets of N samples each (in practice k =5), com-
pute their respective histograms H}, and compare these to the true
distribution of all samples H), to determine the closest set according
to the metric:

1
m; n;

D(Hy, Hy) =Y |5 = o). (1)
P M N
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(b)

Figure 2: Overview of our visualization tool. The parallel coordinates plot (yellow), the render views (red and blue like the colours in the
parallel coordinates plot), and the scene view (green). The scene view represents meshes of the red and blue scenes with their respective
colour, the point light sources being red spheres. (a) Visualization of the full data set. (b) Brushing of light paths that have high radiance
values in the green component and low radiance values in the red component (indicated by the orange rectangles on the axis).

where / is the number of discrete bins (in our case 10 per attribute),
and m; and n; are the numbers of occurrences in bin i with respect
to the true and reduced distribution. The computed distance is an
estimate for the goodness of fit of each sample set, though we did
not investigate the quality further as selecting the true best set is
unfeasible. Figure 1 shows an example of our data reduction with
a PCP. As selecting only subsets from a distribution of samples
can never guarantee that all important samples are selected, we
additionally allow constraining the sample selection to set regions
of interest (Section 3.2).

3.2. Visual interface

Our visual interface consists of four components: the PCP for global
data exploration (Section 3.2.1), the render view for image-space
exploration (Section 3.2.2), the scene view for object-space
exploration (Section 3.2.3) and the estimator comparison view
(Section 3.2.4). We provide brushing-and-linking for all views.
For comparing two scenes, our tool offers colour-coded differences
or side-by-side views. Linking together the 2D and 3D views of
the data merges scientific and information visualization in one
powerful application.

© 2018 The Authors
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Figure 2(a) shows an example of our tool, comparing two scenes
representing a simple greenhouse (red and blue frame). They differ
by reflective curtains on the upper windows of the greenhouse,
placed in the right scene (blue frame). The PCP (yellow frame)
provides a quick overview of the data. In Figure 2(b), we brushed the
paths that contain high radiance values in the green channel and low
radiance values in the red channel (orange rectangles). Both render
views highlight the corresponding image parts. For example, these
selections could be used to provide a probability distribution for
adaptive sampling [PH10] over the image plane for noise reduction
in hard to render image parts or for firefly elimination.

3.2.1. Parallel coordinates plot

For display of the selected light path data, we make use of
PCPs [ID91] as they work well for up to 20 dimensions and pro-
vide simple ways to select subsets using brushing metaphors (see,
e.g. [REB*15] for a comparison of different brushing techniques).
Recall from Section 3.1 that the data of our sampled paths consist
of multiple intersections, which may be associated with multiple
light sources. Because of these N-ary relationships, we use three
separate PCPs which are then linked together: one for paths, one for
its constituent intersections and one for light sources.

To facilitate comparing scenes before and after an editing opera-
tion, we render the data for both scenes into the same PCPs using
colour mapping (red and blue) to visually distinguish them (yellow
frame in Figure 2).

‘We make use of binning [HLDO02] in the PCPs to further illustrate
the amount of data points within discrete ranges of each dimension.
The width encodes the number of samples in each bin. The colour
represents the ratio of samples between the two scenes. Let H; (b, x)
denote the value in bin b for data dimension x in the first scene and
H,(b, x) for the second scene. The colour of the bin is then based
on the following computation:

(Hy(b, x) — Hy(b, x))

Haire(b, x) = ’
aie (D, x) (Hi(b, x) + Hy(b, x))

(@)

with Hgir(b, x) € [—1, 1]. This value is then mapped to a divergent
colour map of red—grey-blue, seen in yellow frame in Figure 2. A
saturated red bin indicates that all data points within this bin belong
to the first scene, whereas blue stands for the second scene. A grey
colour is used to indicate a bin whose ratio is balanced.

3.2.2. Render view

The render views (red and blue frames in Figure 2) display the
current result of the rendering processes of two different scenes.
These views are updated progressively as the rendering proceeds.
The render view serves the purpose to show the rendered image
itself but also to visualize the collected data in 2D image space with
heat maps.

Figure 3 shows the Cornell box with four heat map visualizations.
In Figure 3(a), the throughput distribution is displayed with the hot
body colour map, which shows high values around light source and
boxes. In Figure 3(b), the same colour map is used to visualize

0 1

@o e

Figure 3: Heat map visualizations of the (a) throughput, (b) number
of intersections, (c) radiance and (d) brushed light paths. For each
heat map, values are normalized between 0 and 1.

the number of intersections (depth) and in Figure 3(c) the radiance
distribution. In addition, light paths that are brushed in the PCP can
be visualized with a semi-transparent monochromatic heat map, as
shown in Figure 3(d) where only light paths with strong radiance
contributions in the green channel are selected. As only a subset of
the original samples is saved, we use a coarse grid instead of the
original pixels to depict the heat map. The opacity is normalized so
that the grid entry with the most samples is fully opaque, while the
transparency of the other selected areas is scaled linearly.

Scribbling within the render view allows to select irregularly
shaped image regions. Due to linking, the other visualizations are
updated and only show sample data from these selected regions.

3.2.3. Scene view

The scene view (green frame in Figure 2) is for exploration and
visualization of the data in 3D object space. As light samples can
be considered as light rays or photons flowing through the scene,
displaying their motion paths intuitively conveys the light transport
within the scene. Intersection points are coloured according to the
received energy, whereas paths are coloured according to the gross
accumulated energy. If the user is interested in the difference at each
bounce, then they may select to colour the light paths according to
the number of bounces from the light source. We render animated
line segments to visualize the light paths, as polylines connecting
the intersection points would cause clutter and a loss of orientation.

© 2018 The Authors
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Figure 4: 3D heat map visualization of the energy distribution in a scene (a) without and (b) with reflective curtains (hinted in dashed green
lines for better readability) that reflect artificial light inside the greenhouse. (c) Visualization of the difference of the energy distributions of

both scenes with a divergent red—blue colour map.

Heat Map We create a 3D heat map of the energy distribution
using a sparse voxel octree [LK11]. Visualizing the energy on sur-
faces can be helpful for scene design and object placement. While
3D heat maps are not a new contribution, their usage in this context
is, to the best of our knowledge. To build the octree, we start with
a root node voxel containing all intersection points. This is recur-
sively partitioned into eight child voxels until a stopping criterion
is reached (number of intersections or maximum depth). The aver-
age of the intersection energy over all (the selected) colour channels
within a voxel is mapped to the voxel colour using a hot-body colour
map. Alternatively, for comparing two scenes, the difference of the
energies is mapped to a red—grey—blue divergent colour map.

Figure 4 depicts an example of a 3D heat map for the comparison
of the two scenes in Figure 2. Figure 4(a) shows the energy distri-
bution in the scene where the upper windows are left unobstructed,
whereas Figure 4(b) shows the result with reflective curtains that
scatter back the artificial light produced inside a greenhouse.
Figure 4(c) shows the difference of both setups using the divergent
colour map. In the latter, blue/red colour indicates that the scene
with/without the curtains receives more energy. The plants receive
more energy in the presence of the curtains, as indicated by the
dominant blue shade.

Interaction The scene view additionally provides a convenient
way to select subsets of light paths that interact with certain objects.
As each object in the scene has a unique identifier the user can
select light paths that only interact with certain objects by clicking
on them. We offer three different selection mechanisms. First, in the
path-selection mode, the user selects objects consecutively and all
light paths interacting with these objects in the selected order are
chosen. For example, selecting only paths hitting an object A and
then object B. Second, the shadow selection mode allows the user
to select light paths that intersect with the scene at positions that
lie in the shadow of an object according to a light source. Third, a
region of interest (ROI) selection, for which a gizmo is placed in the
scene to collect localized information [RKRD12]. We extend the
use of the gizmo for our comparative visualization tool. By placing
two gizmos, one in each scene, we can restrict the samples to those

intersecting with the gizmos and make a comparison between these
two distinct ROIs. Figure 5(a) shows an example where all paths are
visualized for the Cornell box of Figure 3, whereas in Figure 5(b),
only those paths that intersect the gizmo are displayed.

3.2.4. Estimator evaluation view

To show the extensibility of our tool, we introduce a novel view
called estimator evaluation view, Figures 9 and 10, which we use to
compare the effectiveness of different MC estimators and their path
generation process. To date, the most common technique to compare
estimators is usually by looking at the results of the estimators after
equal time or equal number of samples per pixel. While metrics
such as the mean squared error (MSE), the relative mean squared
error (reIMSE) or the structural similarity index (SSIM) give valu-
able information about the variance of an estimator, they give little
insights into why one estimator performs better than another, or why
one is more efficient. The efficiency of an MC-based path-tracing
estimator is defined by its capability to sample/generate paths with
a probability proportional to their contribution to the final estimate
and by the time needed to generate one of these paths. If we look
at this from the perspective of the path space formulation [VG97],
which describes all possible paths in a scene up to a maximum path
length of L, an ideal path generation process would sample paths,
where the number of contributions at a path length n would be
proportional to the actual radiance contribution at this path length.
To visualize the ability of an estimator to generate paths with this
optimal contribution characteristic, we measure the relationship be-
tween the contribution histogram H. and the positive contribution
count histogram H,. for each pixel i by using their summed squared
difference:

= (HGD  HuG DY
M“’:E( A Flpca)) ' ®

The contribution histogram H. contains the radiance contribution
for each pixel i at a given path length n to the final radiance value
of the pixel, while the positive contribution count histogram Hy,
contains the number of radiance contributions at the path length

© 2018 The Authors
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Figure 5: ROI-based path selection with gizmos. (a) Visualization of all light paths. (b) Visualization of the light paths that intersect the

gizmos (red and blue cubes).

Figure 6: We place a painting in the bathroom that is only visible in one of the mirrors (a). We select and follow paths that intersect the
mirror (b) and (c) to find a potential position for the image. In (d), we verify this placement, by creating a gizmo at the estimated position and
selecting light paths that pass through this gizmo.

n. To make the metric independent from the intensity of the es-
timate of each pixel or the number of samples used, we nor-
malize all individual histogram bins using H.(i) = Z,L:l H.(i,])
and Hpc(i )= Zle H,,(i,1). The contribution histogram is gener-
ated through tracking the contribution for a maximum path length
of L during the rendering process of the ground truth result.
It is the same for each estimator, while the positive contribu-
tion histogram is tracked during the execution of each individual
estimator.

A summarized view of the efficiency of the estimator can be
generated by comparing the average contribution histogram over
all pixels to the averaged contribution count histogram over all
pixels (Figure 10). In Section 4, we will show how these two new
visualizations can give additional insights into the behaviour of
different MC estimators based on path tracing.

4. Results and Discussion

We have combined the previously proposed visualization techniques
into a custom-built C++ OpenGL application and adapted the unidi-
rectional path-tracing EMBREE renderer [WFWB13] for our pur-
poses. For the estimator evaluation, we used data which we pre-
computed with the PBRT renderer [PH10] and dumped to disk, as
the technique requires a reference image. In this section, we will
discuss various example applications and the obtained results.

4.1. Scene optimization

First, we give an example of how our tool can aid in understand-
ing the light distribution within a scene. In this example, we want
to place a painting in the bathroom scene shown in Figure 6(a).
However, this painting should not be directly visible, but only vis-
ible in one of the mirrors. A simple trial and error placement and
preview rendering is ineffective, because convergence in highly re-
flective areas can be slow, prohibiting interactive feedback.

Therefore, we employ our proposed visualization techniques to
select and follow paths that intersect the mirrors from the camera
(Figures 6 b and c). This gives us a general idea on where to place
the painting. To verify this assumption, we place a gizmo at the
estimated position (Figure 6 d). We can now select all paths that
pass through the gizmo and can thus verify that they connect to the
camera through the mirrors.

The same interaction pattern could also be used for refraction by
selecting and visualizing the light flow through the selected pixels.
In our previous work [SAH*16], we showed that this is also useful
in other areas, such as lighting optimization.

4.2. Rendering optimization

In the following, we show how our tool can be used to directly
influence the rendering process to increase the convergence rate,
and thereby speeding up rendering times.

© 2018 The Authors
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Path Depth

Path Throughput

Figure 7: We find causes of fireflies in the bathroom scene with the path depth and throughput heat map visualizations. We then make an
informed choice on how to reduce the fireflies: We reduce the specularity of the faucets and the wastebin, but do not change the look of the
mirrors. This way we manage to reduce the amount of fireflies, but do not significantly alter the resulting image.

Firefly Detection Fireflies im MC renderings are usually caused
by high-energy samples with a small probability resulting in very
bright pixels which are difficult to compensate for with additional
samples. Finding the cause for these fireflies can be difficult as the
cause may lie outside the rendered view. Techniques like clamping or
path skipping result in physically inaccurate renderings which may
or may not be acceptable. A more useful choice would be to inform
the user of the causes and let him/her decide how to handle them,
e.g. by changing the materials, geometry or camera parameters.

Figure 7 shows our bathroom scene that contains several fireflies.
With our heat map visualization of the path depth and throughput, we
can easily identify the cause of fireflies in this scene: the two mirrors,
the faucets and the wastebin. Note that we could have achieved
similar results by brushing high-energy paths in the PCP and that
we can also detect causes of fireflies outside the rendered view. With
the cause of the fireflies known, the user is now able to make an
informed choice on how to change the scene. In our example, we
do not want to change the mirrors since they are an important part
of the image. On the other hand, the faucets and the wastebin do
not contribute much to the look of the image, so we reduce their
specularity as shown in the bottom row of Figure 7. Note that we
have created equal time images for the before and after results.
Although the improvements become obvious in the close-ups, we
did not remove all fireflies. At the same time, our changes were
minimal and did not significantly change the end result. An iterative
refinement could then be applied to remove further firefly causes.

It should be noted that due to the sub-sampling, not all fireflies
will be detected. As we are mostly concerned with the origin of

the fireflies and not the fireflies themselves, detecting all fireflies is
generally not necessary.

User-Guided Rendering Convergence of an image is highly af-
fected by the distribution of samples as it is preferable to create
more samples for more difficult to render areas. We show how to
use our tool to assign more samples to those areas containing more
complex path interactions to improve the performance and quality
of the output.

The bathroom scene in Figure 8 contains a lot of variance due to
many specular objects. Previously, we have already identified the
mirrors as a cause of fireflies. But the mirrors are also responsible for
the generally slow convergence, as shown in the inlets in Figure 8.
To improve convergence, we select paths that intersect the mirrors.
These one-click selections are then automatically transformed into
a probability distribution function over the image plane to focus
further samples on the selected areas (Figure 8 a).

The guided sampling reduces the MSE in our scene compared to
uniform sampling and additionally improves the structural similarity
measure (SSIM) [WBSS04] compared to the reference shown in
Figure 8. This is especially noticeable in the inlets, where the guided
sampling is close to the reference. Focusing samples on difficult to
render elements of the image reduces the sample count in other areas
and therefore increases the error in these areas, if the same sample
budget is used. However, the reduced MSE and perceived quality
show that our technique of user-guided rendering is favourable in
these complex rendering situations.

© 2018 The Authors
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Sampling
Distribution

(131,072 spp) (4,096 spp)

MSE = 19.99, SSIM =0.93

Reference || T— : Guided

Figure 8: An example application of our user-guided rendering technique. (a) Visualization of the sampling distribution used to guide the
rendering based on light paths that intersect the mirror. (b) Reference image. (c¢) Rendering with uniform sampling. (d) Our user-guided
rendering technique. In the bottom row, we show insets of the scene for better readability.

[VIKv*24]

relMSE: 0.171 relMSE: 0.153

Figure 9: Per-pixel estimator evaluation: Comparison of the relationship between the positive contribution count per path length for each
pixel and the actual contribution at each path depth. (a) Standard MIS path tracer [Vea97], (b) illumination-guided path tracer [VKv*14]
and (c) product-guided path tracer [HEV*16]. For a standard path tracer (a), it is difficult to distribute the amount of contributing paths
according to the radiance distribution of the scene. The two guiding-based methods (b—c) have additional information about the radiance
distribution and direct the paths into areas of high importance. Using incoming illumination only for guiding can lead to inefficient decisions
at glossy surfaces (b). Through the integration of the product with the BSDF, these shortcomings can be overcome (c). The same colour map
as in Figure 8 is used.

In our previous work [SAH*16], we showed how we can also
use this technique so steer the sampling towards caustics, which are
difficult to render for a classic path tracer.

Estimator Evaluation For comparing different MC-based estima-
tors, we use our novel estimator comparison view (Section 3.2.4) to

gain additional insights beside the relative MSE of their estimates,
about each estimators path generation behaviour. Although we used
our tool in the previous examples to improve or change the current
scene (or rendering), the estimator comparison view instead shows
a more abstract use of our tool to investigate the effectiveness of
rendering algorithms or estimators, which requires a pre-rendered
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pat

Il contribution

I [VKv*14]

Il [HEV*16]
[Vea96]

11 12 13 14 15 16 17 18 19 20

h depth

Figure 10: Summarized estimator evaluation: Comparison of the histograms for the relative contribution at each path depth of the scene
(blue) and the positive contribution counts of different estimators from Figure 9. The histograms are averaged over all pixels. While the
histogram of standard path is more or less uniform, both histograms of the guiding-based methods are closer to the optimal contribution

distribution.

scene. To demonstrate the potential of the method, we compare
two different state-of-the-art path-tracing algorithms, which are
based on path guiding, to a standard multiple importance-based
path tracer [ Vea97]. During the path generation process, both guided
methods use multiple importance sampling (MIS) and the balance
heuristic to sample a new direction from either the BSDF or a guid-
ing distribution. The first, introduced by Vorba et al. [VKv*14], uses
an approximation of the incoming illumination as guidance, while
the second, from Herholz et al. [HEV*16], uses an approximation
of the product between the BSDF and the incoming illumination.

Figure 9 shows the per pixel visualization of our estimator evalu-
ation, while Figure 10 shows a summary of the sampling behaviour
of the estimators by averaging the path statistics over all pixels and
present it in one histogram. For our test, we use the same modified
‘Country Kitchen’ scene as used by Miiller ef al. [MGN17]. The
scene is rendered using 1024 samples per pixel and a maximal path
depth of 20. For path termination, the fixed weighted window Rus-
sian Roulette (RR), as described by Vorba et al. [VKv*14], is used.
This type of RR prevents early path termination based on the cur-
rent throughput of the path and therefore paths are most likely only
terminated when they leave the scene and reach the environment
map or when they reach the maximum path length. Both guiding-
based methods use a BSDF sampling weight of @ = 0.25.

From Figure 9(a), we can see that a standard path tracer is not
able to efficiently sample proportional to the complex light transport
in the scene. This can be seen, e.g. in the caustic on the floor and
its reflection in the mirror. Since new directions are only sampled
via the BSDF, the generated paths are unlikely to directly reach the
environment light through the window and non-contributing light
bounces are computed. This leads to an almost uniform distribution

of the positive contribution count histogram across all path depths
(Figure 10, yellow). The illumination guided path tracer [VKv*14]
(Figure 9 b) guides sampling based on the incoming illumination
and therefore captures the caustics better. It still has problems on
glossy surfaces, where the importance of the incoming illumination
diverges from the importance of the actual reflected illumination.
The product-guided path tracer [HEV*16] (Figure 9 c) uses the
product of the BSDF and the incoming illumination approximation
to overcome this shortcoming of the illumination-based guiding.
This is visible on the rough surfaces behind the stove or on the
top of the cupboards. In the overall histogram in Figure 10, both
estimators generate a similar positive path count distribution, which
more closely resembles the actual radiance distribution then the
standard path tracer does. Combining our global and local estimator
views can clearly guide the analyst to the strength and weaknesses
of each of the estimators. We predict this tool to be useful when
determining the efficiency of new estimators and to gain further
insights into the rendering process.

5. Conclusion and Future Work

In this work, we investigated the usage of visual analytics tools to
analyse and improve rendering in PBLT. In addition to classic ren-
dering, we have shown real-world examples from areas as diverse as
engineering and biology/agriculture that benefit from our developed
techniques. We have shown the versatility of incorporating parallel
coordinates plots and gizmos to select and investigate specific light
paths. An effective data reduction technique allows for interactive
feedback. 2D and 3D heat map visualizations assist in further in-
vestigation to detect and correct critical constellations and to guide
the sampling for more rendering efficiency. We have shown the
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extensibility of our approach, including the possibility to analyse
the quality of MC estimators, and we believe that there are many
other potential applications and extensions to further investigate,
e.g. at the moment, our technique is limited to static scenes without
participating media. A useful extension would also be to investigate
the sampling density throughout the scene to guide the sampling not
only in image space but also within the 3D scene. This investiga-
tion could help in other areas such as optimizing lighting in office
spaces. We would also like to test whether common dimensional-
ity reduction techniques such as t-distributed stochastic neighbor
embedding (t-SNE) or principal component analysis (PCA), which
are application agnostic, could give further useful insights into the
rendering process.

To further pursue the development of new extensions, we intend
to make the code publicly available. More customization options and
other visualization techniques, which illustrate information at more
abstract levels, would further improve the applicability of our tool.
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