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Fig. 1. Bathroom scene rendered using our guided path tracer implementation with next-event estimation in 10 minutes each. The “baseline” (left) corresponds

to a configuration similar to previous guiding approaches. “Our method” (middle) features significantly improved direction sampling in local path guiding by

introducing a robust fitting procedure for parallax-aware mixtures, achieving a speedup of 9.8 in this scene.

Effective local light transport guiding demands for high quality guiding

information, i.e., a precise representation of the directional incident radiance

distribution at every point inside the scene. We introduce a parallax-aware

distributionmodel based on parametric mixtures. By parallax-aware warping

of the distribution, the local approximation of the 5D radiance field remains

valid and precise across large spatial regions, even for close-by contribu-

tors. Our robust optimization scheme fits parametric mixtures to radiance

samples collected in previous rendering passes. Robustness is achieved by

splitting and merging of components refining the mixture. These splitting

and merging decisions minimize and bound the expected variance of the

local radiance estimator. In addition, we extend the fitting scheme to a robust,

iterative update method, which allows for incremental training of our model

using smaller sample batches. This results in more frequent training updates

and, at the same time, significantly reduces the required sample memory

footprint. The parametric representation of our model allows for the appli-

cation of advanced importance sampling methods such as radiance-based,

cosine-aware, and even product importance sampling. Our method further

smoothly integrates next-event estimation (NEE) into path guiding, avoiding

importance sampling of contributions better covered by NEE. The proposed

robust fitting and update scheme, in combination with the parallax-aware

representation, results in faster learning and lower variance compared to

state-of-the-art path guiding approaches.
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1 INTRODUCTION

Path-based rendering algorithms have become the industry stan-

dard for solving light transport simulations [Fascione et al. 2017,

2018, 2019]. Especially uni-directional path tracing [Kajiya 1986] is

now the favorable choice, due to its simplicity to implement and its

extensibility to incorporate different sampling strategies or estima-

tors (e.g., next-event estimation). The basic path tracing algorithm

achieves a significant gain in quality and efficiency with proper

importance sampling, which for global illumination needs to con-

sider both the distribution of the scattering function as well as an

approximation of the true radiance distribution. Building on initial

work of Jensen [1995] and Lafortune and Willems [1995], recent

path guiding approaches, e.g. [Vorba et al. 2014; Müller et al. 2017],

use representations of the 5D-radiance distribution that are either

learned form a pre-processing step or online during rendering (a.k.a.,

forward-learning). Approaches based on forward-learning are pre-

ferred in practice, as their ability to provide previews more quickly

can improve the turnaround times of artists. With local path guiding,

even complex light transport effects such as caustics and multiple

diffuse bounces can be rendered reliably using simple forward path

tracing and, thus, it is now used in production rendering [Vorba

et al. 2019].

As an imprecise guiding function generally increases variance

rather than reducing it, both the chosen representation and a robust
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fitting procedure are of utmost importance. Local deviations in the

fitting quality of the estimated radiance distributions can already

result in visible artifacts (e.g., Fig. 2). Different representations of

the local incident radiance distribution have been proposed, each

with its pros and cons. Discretized representations of the spherical

incident radiance distribution, e.g., histograms or quadtrees, are

usually easy to fit but are not flexible enough to support other sam-

pling techniques (hemispherical importance sampling or product

sampling) at reasonable cost. Parametric representations, such as

Gaussian or von Mises-Fisher mixture models (GMMs or VMMs), on

the other hand support very efficient importance sampling closed-

form solutions for a wide variety of tasks, including calculating

product mixtures and their integrals. Unfortunately, fitting such a

parametric mixture model (PMM) robustly from a set of samples or

even online is challenging.

To account for spatial variation, a spatial subdivision scheme

(e.g., kd-tree) typically divides the scene into regions, where each

region contains a static approximation of the local incident radiance

distribution. Lacking any spatial representation in the used models,

existing methods average the incident radiance over the spatial

domain covered by the region and thus require many small regions

with well-fit distributions in areas with large spatial variation (e.g.,

in the presence of close-by emitters).

In this paper, we make contributions in three main directions:

First, we propose a robust, variance-driven fitting procedure for

parametric mixturemodels, in our case using vonMises-Fisher distri-

butions, given radiance samples that are collected during rendering.

We derive efficient criteria for stepwise splitting and merging of

mixture components [Wang et al. 2004] that minimize the variance

of the final importance-driven estimator. Using these criteria, insuffi-

cient fits produced by the traditional EM-algorithm are detected and

improved upon, escaping local maxima and automatically choosing

a suitable number of components to faithfully represent the direc-

tional distribution without having to restart the EM-algorithm with

improved initialization (Sec. 4.1).

Second, we extend our fitting procedure towards an incremental

learning approach (Sec. 4.2) that reuses, adjusts and updates the

representations from previous iterations. Our method, therefore,

does not rely on an exponential growth of training samples and

can update the guiding representations more frequently, leading

to a faster effective learning of the complete radiance field of the

scene. This approach generates high-quality sampling distributions

in a PMM-based guiding framework using the preferable forward-

learning scheme while requiring only modest amounts of memory

and computational resources.

Third, we introduce spatial information into the directional dis-

tribution model in form of a parallax-compensating representation

of the local incident radiance field based on vMFs, that warps the

distribution according to the query point and the location of the

contributing light source (Sec. 4.3). As the warped distributions stay

precise for larger cells, accurate guiding towards spatially varying

illumination, including reflected and refracted contributions, is avail-

able early on, resulting in superior accuracy during rendering. This

further accelerates the training process. Artifacts at the borders of

spatial cells caused by deviations from marginalized distributions

are avoided entirely (e.g., Fig. 1).

In addition, we present an extension to handle direct light con-

tributions in the presence of a next-event estimator (NEE). The

extension reweights the direct light contribution in the gathered

sample data, to avoid sampling contributions which are covered well

by NEE, and, at the same time, focuses on the direct light contribu-

tions which are not covered well by NEE. Our presented framework

does not only support accurate incident radiance-based guiding,

outperforming state-of-the-art techniques (Sec. 6.3), but is also ca-

pable of product importance sampling using approximations of the

cosine and BRDF terms.

2 RELATED WORK

2.1 Monte-Carlo-based Light Transport Algorithms

Simulating global light transport involves solving the high-dimens-

ional integral defined by the rendering equation (RE) [Immel et al.

1986; Kajiya 1986], which, in practice, is evaluated by path-based

Monte-Carlo algorithms. The simplest of these algorithms is the

unidirectional path tracer (PT) [Kajiya 1986], which generates ran-

dom walks (i.e., paths), that explore the light transport of a scene,

starting from the camera. Random walks are constructed iteratively

by performing local directional sampling decisions at every path

intersection with the scene. In path tracing, this decision most of-

ten just considers the BSDF, leading to ineffective sampling when

its distribution deviates from the distribution of its product with

the incident illumination (e.g., caustics or high-frequency indirect

illumination).

A more efficient way to evaluate complex effects like caustics or

strong indirect illumination, where light sources are hard to reach,

is to reverse the random walk direction using a light tracing (LT) al-

gorithm [Arvo et al. 1986; Dutré et al. 1993]. The advantages of both

can be combined into a bidirectional path tracer (BDPT) [Lafortune

and Willems 1993; Veach and Guibas 1995a], where the individual

sub-paths of PT and LT are connected using multiple importance

sampling (MIS) [Veach and Guibas 1995b]. By reformulating the

path sampling framework, unified path sampling (UPS) [Hachisuka

et al. 2012] and vertex connection and merging (VCM) [Georgiev

et al. 2012] seamlessly combine the advantages of BDPT with the

ones from particle density based approaches, such as photon map-

ping [Jensen 1996, 2001]. As shown by Grittmann et al. [2018] and

Šik and Křivánek [2019], the computational overhead of bidirec-

tional methods can be decreased by guiding the light path emission,

as well as the light path traversal, into important regions (e.g., caus-

tics). Nevertheless, the additional implementational complexity and

the strict requirement on the bidirectionality of the modeled light

transport, makes bidirectional methods less favorable in practice.

Therefore, most production rendering systems nowadays are based

on unidirectional path tracing [Fascione et al. 2017, 2018, 2019].

2.2 Path Guiding

The results of recent attempts to perform importance sampling

based on previously gathered information about the light transport

revived the interest in so called path-guiding methods and made

them even applicable in production environments [Vorba et al. 2019].

These methods can typically be categorized into local or global ones.
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Local path guiding methods explore an approximation of the

local incident radiance distribution to guide the directional sam-

pling decision at every path intersection point. These approaches

mainly differ in the models used to represent the 5-dimensional

incident radiance field of a scene and in the way these models are

trained. Early approaches [Jensen 1995; Lafortune and Willems

1995] build histogram-based guiding distributions at every path in-

tersection, where the information about the incident radiance either

originates from a photon map [Jensen 1995] or a 5-dimensional

tree structure [Lafortune and Willems 1995]. Other approaches

directly use particle footprints [Hey and Purgathofer 2002], co-

sine lobes [Bashford-Rogers et al. 2012], B-splines [Pegoraro et al.

2008], Gaussian mixture models [Vorba et al. 2014; Herholz et al.

2016], quad-trees [Bus and Boubekeur 2017; Müller et al. 2017],

reinforcement learning [Dahm and Keller 2017], and even neural

networks [Müller et al. 2019] to build the guiding distribution. The

resulting guiding distribution can either be proportional to the inci-

dent radiance or the full integrand of the rendering equation. The

latter option however requires an on-the-fly construction of the

product guiding distribution at every intersection point. Based on

the used representation (e.g., histograms, quad-trees, or cosine lobes)

these constructions are often costly when precise or only lead to

a rough, inaccurate approximation of the product distribution. Us-

ing GMM-based representations of the incident radiance and BRDF

lobe distribution, Herholz et al. [2016] efficiently evaluate the exact

GMM of the product distribution using a closed-form solution. Local

path guiding methods are even capable of optimizing all necessary

sampling decisions in the presence of participating media, e.g., scat-

tering, direction, distance, termination, and splitting [Herholz et al.

2019]. Our robust fitting procedure and the parallax-compensation

scheme can be smoothly integrated into existing PMM-based guid-

ing methods.

Global path guiding approaches, on the other hand, guide the full

path construction process at once. A typical attempt to guide the

complete paths is to train guiding distributions in the primary sam-
ple space (PSS), which can either be modeled using high-dimensional

kd-trees [Guo et al. 2018] or by the use of neural networks [Zheng
and Zwicker 2019; Müller et al. 2019]. Unfortunately, all PSS-based

guiding approaches suffer from the curse of dimensionality, which

prevents them from learning robust guiding distributions for higher

dimensions [Zheng and Zwicker 2019]. Selective path guiding [Rei-

bold et al. 2018] uses a cache of high variance paths, which are col-

lected during rendering to guide new paths based on similar paths

from the cache. Since the efficiency of this approach strongly relies

on correlations between the selected guiding paths, the method

struggles at multiple diffuse or glossy interactions.

2.3 Robust Fitting of Parametric Mixture Models

The EM-algorithm [Dempster et al. 1977; McLachlan and Krishnan

2007] enables the fitting of parametric mixture models (PMMs) using

a two-step iterative approach consisting of the expectation (E) and

the maximization (M) step. It has seen widespread adoption in the

statistics and machine learning communities and new, specialized

PMMs and accompanying variations of the EM-algorithm are being

researched to this day [McLachlan et al. 2019]. Using the traditional

approach, the EM algorithm iteratively increases the log-likelihood

of a dataset by adjusting the PMM’s parameters. However, this

maximization of the log-likelihood is not concave in the parameter

space and therefore the global optimum can only be reached by

chance. Another limitation is that the number of components in the

PMM has to be estimated in advance and cannot be changed.

In search of the best possible fit, the EM algorithm can simply

be restarted sufficiently many times, while the number of com-

ponents can be determined using some information criteria (e.g.

BIC, AIC [Schwarz 1978; Akaike 1974]) that balance goodness of fit

against model complexity. While costly, this approach is common

to find in machine-learning literature [Bishop 2006], as it has good

chances of determining the best possible fit for a single set of sample

data.

3 BACKGROUND ON LOCAL PATH GUIDING

The light transport of a scene is modeled via the rendering equation

(RE) as presented by Immel et al. [1986] and Kajiya [1986]:

𝐿o (x, 𝜔o) = 𝐿e (x, 𝜔o) +
∫
Ω
𝑓s (x, 𝜔o, 𝜔i)𝐿i (x, 𝜔i) | cos𝜃i | d𝜔i︸                                         ︷︷                                         ︸

𝐿r (x,𝜔o)

, (1)

which describes the outgoing radiance 𝐿o at point x in the direction

𝜔o as the sum of the emitted radiance 𝐿e and the reflected radiance

𝐿r. It is typically solved by implementing a Monte-Carlo estimator

for the reflected radiance ⟨𝐿r⟩:

⟨𝐿r (x, 𝜔o)⟩ =
𝑓s (x, 𝜔o, 𝜔i)⟨𝐿i (x, 𝜔i)⟩| cos𝜃i |

𝑝 (𝜔i | x, 𝜔o)
, (2)

which, in path tracing, is recursively evaluated for a random walk

following a random direction 𝜔i, distributed according to a direc-

tional sampling PDF 𝑝 . The variance, i.e., the expected squared error,

of random walk-based estimators, such as PT, recursively depends

on the variance of each nested local estimator ⟨𝐿r⟩.
Only considering the BSDF during importance sampling, the

variance will usually be rather high. Local path guiding methods

reduce variance by incorporating previously observed information

about the light transport into the directional sampling strategy

used by each ⟨𝐿r⟩. This reduction of the local variances results in a

globally improved path distribution. Based on sample data gathered

during a pre-processing pass or earlier rendering iterations, local

guiding distributions 𝑝g are learned and combined via one-sample

MIS [Veach and Guibas 1995b] with a defensive sampling strategy,

such as BSDF importance sampling 𝑝 𝑓s :

𝑝 (𝜔i | x, 𝜔o) = (1 − 𝛼)𝑝g (𝜔i | x, 𝜔o) + 𝛼𝑝 𝑓s (𝜔i | x, 𝜔o), (3)

where 𝛼 represents the probability of sampling according to 𝑝
fs
.

Most commonly, 𝛼 is set to 0.5 [Hesterberg 1995], preventing a

strong variance increase when the guiding distribution is not yet

reliable enough.

The ideal guiding distribution would be proportional to the 𝐿r in-

tegrand (Eq. 1), considering all its factors (𝑓s, 𝐿i, and cos𝜃i). Unfortu-

nately, realizing this is generally infeasible, since it requires learning

and representing a 7-dimensional distribution. It is, therefore, com-

mon practice to learn an approximation of the local 𝐿i-distribution

from path traced samples. To cope with spatial variation, often a
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static, spatially averaged approximation of the 𝐿i-distribution is

used for each region defined by a spatial subdivision structure.

The simplest and most popular guiding distribution 𝑝g directly

uses the learned 𝐿i-approximation for sampling:

𝑝g (𝜔i | x) ∝ 𝐿i (x, 𝜔i) or 𝑝g (𝜔i | x) ∝ 𝐿i (x, 𝜔i) | cos𝜃i |. (4)

Accounting for all factors in the 𝐿r integrand requires building the

product guiding distribution 𝑝g on-the-fly at every path intersection.

One efficient method [Herholz et al. 2016, 2019] represents approxi-

mations of the individual distributions of the incident radiance 𝐿i

and the BSDF lobe 𝑓s by parametric mixture models (PMMs). It pro-

vides an exact and efficient closed-form solution for the conceptually

optimal guiding distribution:

𝑝g (𝜔i |x, 𝜔o) ∝ 𝑓s (x, 𝜔o, 𝜔i)𝐿i (x, 𝜔i) | cos𝜃i |, (5)

where the cosine term is included either in the 𝐿i- or 𝑓s-distribution.

However, a robust and efficient estimation of PMM parameters

representing an incident radiance distribution from a set of photons

or radiance samples is not trivial. We present a novel solution to

robustly fit PMM parameters to approximate the 𝐿i-distribution in

Sec. 4.1. As demonstrated in Sec. 6.2, combined with even rough

approximations of the BSDF, our approach already improves the

sampling quality effectively.

3.1 Von Mises-Fisher Mixture Models – VMM

In our work, we make use of a specific PMM, the von Mises-Fisher

mixture model (VMM), which is based on the von Mises-Fisher (vMF)

distribution function [Fisher et al. 1987]. The vMF distribution is

an isotropic probability distribution defined on (𝑑 − 1)-dimensional

spheres in the R𝑑 space. In 3D space, Jakob [2012] defined the

following numerically stable formulation of the vMF distribution:

v (𝜔 | 𝜇, 𝜅) = 𝜅

2𝜋 (1 − exp(−2𝜅)) exp

(
𝜅
(
𝜇𝑇𝜔 − 1

) )
, (6)

where 𝜇 describes the mean direction and 𝜅 the concentration of

the isotropic probability density function. Since a single vMF lobe is

clearly insufficient, the VMM uses a weighted sum of 𝐾 individual

vMF distributions to model complex directional distributions:

V (𝜔 | Θ) =
∑𝐾

𝑘=1

𝜋𝑘 v (𝜔 | Θ𝑘 ). (7)

As is common practice in PMM literature [Bishop 2006], we shorten

the VMM’s parameter set to Θ = {𝜋1,Θ1, . . . , 𝜋𝐾 ,Θ𝐾 }, which rep-

resents the individual mixture weights 𝜋𝑘 and the associated vMF

component’s parameters Θ𝑘 = {𝜅𝑘 , 𝜇𝑘 } in a concise manner. In or-

der to model a valid PDF, the component weights 𝜋𝑘 need to be

positive and sum up to one.

A useful feature of PMMs is that one can derive closed-form so-

lutions for sampling, the evaluation of the component-wise product

distributions, as well as convolutions and their corresponding inte-

grals [Vorba et al. 2014; Herholz et al. 2016, 2019]. We make use of

the vMF’s properties to develop efficient criteria for splitting and

merging (Sec. 4.1), a Bayesian incremental update method (Sec. 4.2),

and a parallax-aware representation of incident radiance (Sec. 4.3).

While demonstrated on VMMs, the concepts can be generalized to

other PMMs (Sec. 7).

4 METHODOLOGY

We present a robust framework for local, PMM-based path guiding,

at the example of vMF mixtures (VMMs). The foundation of our

guiding framework is an accurate VMM-based approximation V of

the local incident radiance distribution at each point x in the scene:

𝐿i (x, 𝜔i) ∝∼ V (𝜔i | Θ (x)) , (8)

where Θ refers to the VMM-parameters stored in the local region of

a spatial subdivision structure (i.e., kd-tree) containing x.
Our VMM-based representation supports a set of different path

guiding strategies, which either only consider the radiance (Eq. 4,

left), integrate the cosine term (Eq. 4, right), or even approximate

the full product (Eq. 5). Each supported strategy increases the path

sampling quality further, outperforming current state-of-the-art

algorithms based on discretized representations (Fig. 8, Table 3).

For training, we adopt the forward-learning scheme presented by

Müller et al. [2017], which focuses exploration entirely on camera

paths and also allows for an immediate preview of the rendered

image. In each training iteration, we render the scene to collect

sample data. At each intersection of a random walk transport path,

a sample 𝑠𝑛 ∈ 𝑆, ∥𝑆 ∥ = 𝑁, is generated, containing the position x𝑛 ,
the sampling direction 𝜔𝑛 , the corresponding local sampling PDF

𝑝 (𝜔𝑛 | x), and an MC estimate of the incident radiance 𝐿̃i (x, 𝜔𝑛):

𝑆 = {𝑠1, . . . , 𝑠𝑁 },where 𝑠𝑛 = {x𝑛, 𝜔𝑛, 𝑝 (𝜔𝑛 | x𝑛), 𝐿̃i (x𝑛, 𝜔𝑛)}. (9)

We then partition the gathered samples into the regions defined

by the kd-tree, subdividing it at the same time (Sec. 5). Finally, we

fit the VMMs as described in the following subsections, drop the

sample data, and iterate.

We first present an adaptive variant of the weighted EM (wEM)

[Vorba et al. 2014] in a batch-EM setting, suitable for an exponen-

tial training approach, where the number of samples is doubled

each iteration and distributions are fitted from scratch (Sec. 4.1).

We measure the approximation quality of the VMM to the true 𝐿i-

distribution based on the normalized expected variance (NEV) of

the single-sample MC estimate of fluence ⟨Φ(x)⟩ within the region:

V

[
⟨Φ(x)⟩
Φ(x)

]
=

1

Φ2 (x)

(
E
[
⟨Φ(x)⟩2

]
− E

[
⟨Φ(x)⟩

]
2

)
, (10)

where ⟨Φ(x)⟩ = 𝐿i (x, 𝜔i)
V (𝜔i | Θ(x))

≈
∫
Ω
𝐿i (x, 𝜔i) d𝜔i, (11)

using a randomdirection vector𝜔i, distributed according toV (Θ(x)).
Based on the NEV, we develop efficient criteria for stepwise splitting

and merging [Wang et al. 2004], which adapts the local distribution

of mixture components after the initial fit, such that it accurately

and efficiently represents the observed sample data.

We extend the adaptive fitting approach by a Bayesian incremen-

tal update scheme, which allows for training from small batches

of sample data (Sec. 4.2). This approach significantly reduces the

turnaround times between gathering sample data and using their

information for guided sampling, speeding up the training process.

Also, the amount of memory required to store each training itera-

tion’s samples (e.g., from 4spp) is limited and does not increase.
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Finally, we extend the VMM’s parameters to allow for a parallax-

aware representation of incident radiance that remains valid and pre-

cise across larger spatial regions even in the presence of close-by con-

tributors, including reflected and refracted contributions (Sec. 4.3).

This further reduces the variance in each region and allows our

method to maintain larger regions with more samples available to

each fit.

In the following, we only consider the VMM for a single spatial

region and therfore omit the depenecy of Θ on x from the notation.

4.1 Variance-Based Adaptive Weighted Batch-EM Fitting

The accuracy of local incident radiance approximations is an im-

portant factor in the sampling quality of any guiding approach (see

Fig. 2). In practice, these approximations are the result of a fitting

process using the often scarce and noisy sample data generated by

a previous rendering iteration, gathered in small spatial regions

of the scene. In the following, we first review the weighted EM

(wEM) algorithm [Vorba et al. 2014], and then present our extension,

that achieves robust parameter estimation by adapting stepwise

splitting and merging [Wang et al. 2004], introducing our analytic,

variance-based split and merge criteria.

Fitting by Weighted Expectation-Maximization. Traditional appli-
cations of fitting the parameter set Θ of a VMM V to a batch of 𝑁

samples 𝑠𝑛 ∈ 𝑆 with directions 𝜔𝑛 use the EM algorithm [Dempster

et al. 1977; McLachlan and Krishnan 2007] to estimate the unknown

density of the sample data. The weighted EM approach [Vorba et al.

2014] adds a weight𝑤𝑛 to each sample 𝑠𝑛 , to adapt the actual distri-

bution of the samples. After random parameter initialization, the

algorithm iterates over the complete batch of weighted samples 𝑆

multiple times, alternating between the expectation (E) and max-
imization (M) steps until convergence. Each iteration results in a

greater or equal log-likelihood L :

Θ̂ = arg max

Θ
L (𝑆) =

𝑁∑
𝑛=1

𝑤𝑛 log V (𝜔𝑛 | Θ) . (12)

During the expectation-step, each sample is partially assigned to

each component using the following soft-assignment function 𝛾𝑘 :

𝛾𝑘 (𝜔𝑛) =
𝜋𝑘 v (𝜔𝑛 | Θ𝑘 )

V (𝜔𝑛 | Θ)
, (13)

which represents the probability of the sample direction 𝜔𝑛 being

generated by the 𝑘-th mixture component.

In the following maximization-step, the parameters of each com-

ponent are re-estimated using their corresponding weighted maxi-

mum likelihood estimators (wMLEs). For the 𝑘-th vMF distribution,

the wMLE of the updated parameters Θ̂𝑘 = {𝜇𝑘 , 𝜅̂𝑘 } is based on the

sufficient statistics vector 𝑟𝑘 and the mean cosine 𝑟𝑘 :

𝑟𝑘 =

𝑁∑
𝑛=1

𝑤𝑛𝛾𝑘 (𝜔𝑛)𝜔𝑛, 𝑟𝑘 =
∥𝑟𝑘 ∥∑𝑁

𝑛=1
𝑤𝑛𝛾𝑘 (𝜔𝑛)

. (14)

Using these two parameters, 𝜇𝑘 and 𝜅̂𝑘 of the distribution are evalu-

ated as follows:

𝜇𝑘 =
𝑟𝑘

∥𝑟𝑘 ∥
and 𝜅̂𝑘 ≈

3𝑟𝑘 − 𝑟3

𝑘

1 − 𝑟2

𝑘

, (15)

where 𝜇𝑘 is the normalized version of 𝑟𝑘 and 𝜅̂𝑘 is approximated

according to Banerjee et al. [2005]. The new estimate for the 𝑘-th

component weight 𝜋𝑘 resolves to:

𝜋𝑘 =

∑𝑁
𝑛=1

𝑤𝑛𝛾𝑘 (𝜔𝑛)∑𝐾
𝑗=1

∑𝑁
𝑛=1

𝑤𝑛𝛾 𝑗 (𝜔𝑛)
, with 𝑤𝑛 =

𝐿̃i (x𝑛, 𝜔𝑛)
Φ̃(x)𝑝 (𝜔𝑛 | x𝑛)

(16)

and Φ̃(x) = 1

𝑁

𝑁∑
𝑛=1

𝐿̃i (x𝑛, 𝜔𝑛)
𝑝 (𝜔𝑛 | x𝑛)

. (17)

Our objective is to fit the VMM V ∝ 𝐿i from a batch of samples

where the PDF of each sample may be arbitrary but is known to

be the previously used sampling strategy (e.g., BSDF importance

sampling, guiding, or their MIS combination (Eq. 3)). To adjust the

density of the samples towards a distribution proportional to the

radiance distribution, the per-sample weight𝑤𝑛 is set as the ratio

between the normalized incident radiance estimate and the sampling

probability density function. With these weights, the VMM becomes

approximately proportional to the incident radiance:

V (𝜔i | Θ) ≈ 𝑤 · 𝑝 (𝜔i | x) ∝ 𝐿̃i (x, 𝜔i) . (18)

However, the outcome of the wEM heavily depends on the param-

eter initialization and the chosen number of modes in the VMM.

Underfitting a multimodal radiance distribution by a single vMF

lobe (mode collapse) will underestimate the true peaks during impor-

tance sampling andmight therefore increase the variance, which can

lead to high-intensity outliers (a.k.a. fireflies). It is common practice

in ML, to overcome this problem of the EM algorithm by restarting

it multiple times, picking the fit with the highest log-likelihood, and

then to repeat this whole process to choose an adequate number of

mixture components. Unfortunately, we cannot afford to perform

such a costly procedure in our rendering framework. Instead, we

address these issues by applying stepwise splitting and merging

(SSMEM) [Wang et al. 2004], for which we derive efficient criteria

that minimize the variance of the resulting estimator.

Variance-based split and merge. Splitting and merging of com-

ponents as part of the EM-fit allows us to escape the local optima

and simultaneously select a suitable number of components to ac-

curately represent sample data without overfitting. The introduced

merge-criterion Cmerge measures the loss in approximation qual-

ity incurred by merging two components. The split-criterion C
split

measures how well the component’s distribution model matches the

observed data, to detect cases of underfitting (i.e., collapsed modes).

As illustrated by Fig. 2, we start with a regular wEM fit, followed by

a merging step and a splitting step which includes a partial wEM

fit [Ueda et al. 2000a,b] of the newly created components.

Our criteria for splitting and merging are based around the Pear-

son 𝜒2
-divergence [Neyman and Pearson 1933]. As previously shown

[Jona-Lasinio et al. 1999; Müller et al. 2019], it corresponds to the

normalized estimator variance (NEV) that results from using the

PDF 𝑞 for sampling instead of the ideal PDF 𝑝:

𝐷𝜒2

(
𝑝𝐿i



 𝑞V
)
=

∫
Ω

(
𝑝𝐿i

(𝜔) − 𝑞V (𝜔)
)
2

𝑞V (𝜔) d𝜔 = V

[
⟨Φ(x)⟩
Φ(x)

]
,

where 𝑝𝐿i
(𝜔) = 𝐿i (x, 𝜔)

Φ(x) and 𝑞V (𝜔) = V (𝜔 | Θ).
(19)
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Sample Data ReferenceInitial wEM Fit [Vorba et al. 2014] Final VMM Fit [Ours]

Merging Spliing

Variance-Aware Adaptive wEM

Dχ2: 335.9 Dχ2: 24.9

relMSE:  0.181
Avg. K:       8.0 

relMSE:  0.104
Avg. K:     16.4 

Fig. 2. Illustration of our variance-based adaptive fitting procedure at the example of the Torus scene. The sample data contains multiple small reflections of

the sun. In a weighted EM fit, mode collapses can occur and a blurry fit with high divergence (335.9) results. By iterative merging, followed by iterative splitting

with a partial EM fit performed on split components, these issues can be detected and resolved. The result is a high-quality fit with much lower divergence

(24.9). The image on the left has been rendered without splitting and merging, while the image on the right has been rendered with splitting and merging.

Splitting. The splitting operation improves the approximation

quality of the mixture locally by adding another component in re-

gions where a fitted mixture component does not represent the ob-

served sample data with sufficient accuracy (e.g., mode collapse). We

identify which of the existing components to split by evaluating its

normalized estimator variance (NEV) (i.e., Pearson 𝜒2
-divergence),

scaled by the component weight 𝜋𝑘 , as the splitting criterion C
split

.

It compares the partial distribution 𝑝
Li,𝑘 of 𝑝Li

that should be rep-

resented by the 𝑘-th VMM component to the actually fitted vMF

distribution 𝑞v ,𝑘 (𝜔) = v (𝜔 | Θ𝑘 ):

C
split

(𝑘 | Θ) = 𝜋𝑘𝐷𝜒2

(
𝑝

Li,𝑘



 𝑞v ,𝑘
)
, (20)

where 𝑝
Li,k is obtained from 𝑝Li

by multiplying by the fraction of

the soft-assignment term 𝛾𝑘 (Eq. 13) and the component weight 𝜋𝑘 :

𝑝
Li,𝑘 (𝜔) =

𝛾𝑘 (𝜔)𝐿i (x, 𝜔)
𝜋𝑘Φ(x)

=
v (𝜔 | Θ𝑘 )𝐿i (x, 𝜔)

V (𝜔 | Θ)Φ(x)
. (21)

C
split

is evaluated at little additional cost by reusing the sample

data 𝑆 from the wEM fitting step. Since each sample 𝑠𝑛 contains the

direction𝜔𝑛 , the estimate 𝐿̃i of incident radiance and the PDF 𝑝 (𝜔𝑛)
of generating 𝜔𝑛 , we can build a Monte-Carlo estimator ⟨C

split
⟩ for

the split criterion, which can be simplified to the following equation:

⟨C
split

(𝑘 | Θ)⟩ = 𝜋𝑘

(
1

𝑁 Φ̃2 (x)

𝑁∑
𝑛=1

v (𝜔𝑛 | Θ𝑘 )𝐿̃2

i
(x𝑛, 𝜔𝑛)

V 2 (𝜔𝑛 | Θ)𝑝 (𝜔𝑛 | x𝑛)
− 1

)
.

(22)

To bound the amount of normalized variance added by each

component, we split if ⟨C
split

(𝑘 | Θ)⟩ exceeds our splitting threshold
𝑡
split

. The split operation replaces the original component by two

new components, where we use principal component analysis to

favorably initialize their respective initial mean directions (App. A.4).

These new components undergo a partial wEM step [Ueda et al.

2000a,b], to fit the sample data previously assigned to the original

component. The other components are kept fixed during this step.

We subsequently re-evaluate the splitting criterion to check if any

component needs to be split again.

Merging. The objective of merging is to first avoid overfitting,

and second, to increase the computational efficiency of the model.

If too many components are available, EM-based algorithms tend to

either overfit the observed data or to generate multiple components

with the same or similar shape only differing in weights. Striving for

an efficient MC estimator, components should only be merged when

the variance increase is insignificant compared to the increase in

evaluation efficiency. Similar to previous work, a recursive compo-

nent reduction strategy identifies the cost of merging for all possible

pairs of components and then merges the combination with the low-

est cost. We define the cost of merging the pair of components (𝑖, 𝑗)
into one component 𝑘 by measuring the increase in normalized vari-

ance using the Pearson 𝜒2
-divergence between the original mixture

V (Θ) and the merged mixture V (Θ′):
𝐷𝜒2

(
V (Θ)



 V (Θ′)
)

=

∫
𝑆2

(𝜋𝑖 v (𝜔 |Θ𝑖 ) + 𝜋 𝑗 v (𝜔 |Θ𝑗 ) − 𝜋 ′𝑘 v (𝜔 |Θ′
𝑘
))2

V (𝜔 |Θ′)
d𝜔,

(23)

where 𝜋 ′
𝑘
= 𝜋𝑖 + 𝜋 𝑗 . The parameters Θ′

𝑘
of the merged component

are computed in closed form (App. A.3). By concentrating just on

the involved components, Cmerge is formulated as the upper bound

of the divergence:

𝐷𝜒2

(
V (Θ)



 V (Θ′)
)
≤ Cmerge (𝑖, 𝑗 | Θ)

=

∫
𝑆2

(𝜋𝑖 v (𝜔 |Θ𝑖 ) + 𝜋 𝑗 v (𝜔 |Θ𝑗 ) − 𝜋 ′𝑘 v (𝜔 |Θ′
𝑘
))2

𝜋 ′
𝑘

v (𝜔 |Θ′
𝑘
) d𝜔.

(24)

As evaluating Cmerge by a Monte-Carlo estimator involving the

samples 𝑆 for all
𝐾2−𝐾

2
pairs (𝑖, 𝑗) would be too costly, we derive an

efficient and exact closed-form solution for Eq. 24 that only involves
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the parameters of the pair (𝑖, 𝑗). Our solution makes use of two

features of the vMF distribution: First, the closed-form solution for

evaluating the integral of the product of two vMF lobes (App. A.1):

v (Θ𝑖 ) ⊗ v (Θ𝑗 ) =
∫
𝑆2

v (𝜔 |Θ𝑖 ) v (𝜔 |Θ𝑗 ) d𝜔. (25)

Second, the fact that the distribution of the multiplicative inverse

of a vMF lobe results in another, scaled vMF lobe (App. A.2):

v−1 (𝜔 |𝜇, 𝜅) = 1

v (𝜔 |𝜇, 𝜅) =
4𝜋2 (1 − exp(−2𝜅))2

𝜅2
exp(−2𝜅)

v (𝜔 |−𝜇, 𝜅). (26)

Using these two features, the closed-form solution for Eq. 24 is

obtained as the sum of several integrated vMF products:

Cmerge (𝑖, 𝑗 | Θ) =
𝜋2

𝑖
𝑠𝑖𝑖

𝜋 ′
𝑘

v (Θ𝑖𝑖 ) ⊗ v−1 (Θ′
𝑘
)

+
2𝜋𝑖𝜋 𝑗𝑠𝑖 𝑗

𝜋 ′
𝑘

v (Θ𝑖 𝑗 ) ⊗ v−1 (Θ′
𝑘
) +

𝜋2

𝑗
𝑠 𝑗 𝑗

𝜋 ′
𝑘

v (Θ𝑗 𝑗 ) ⊗ v−1 (Θ′
𝑘
) − 𝜋 ′

𝑘
,

(27)

where, for example,Θ𝑖 𝑗 represents the product distribution between

the 𝑖th and 𝑗th component and 𝑠𝑖 𝑗 the corresponding scaling factor.

Each component pair (𝑖, 𝑗), for which Cmerge evaluates below our

defined threshold 𝑡merge, is replaced by a merged component 𝑘 ,

whose parameters are again computed in closed form (App. A.3).

Since both C
split

and Cmerge are based on the same per-component

𝜒2
-divergence, either evaluated from sample data or in closed form,

using similar threshold values for 𝑡
split

and 𝑡merge could lead to cycli-

cal splitting and merging of the same components across iterations.

To discourage this behavior, we chose 𝑡
split

= 0.5 over a magnitude

larger than 𝑡merge = 0.025, accounting for potential variance in the

MC estimate of C
split

.

Advantages of the 𝜒2 Split and Merge Metric. In the context of

importance sampling, using the 𝜒2
-divergence as the criterion for

split and merge has the advantage that the fitting process focuses di-

rectly on reducing the variance of the resulting MC estimator. Other

commonly used criteria, such as the Kullback Leibler (KL) diver-

gence, or the integrated squared difference (ISD), on the other hand,

concentrate on fitting the distribution closely in high-valued regions

in the observed sample data and neglect regions with low values.

This neglect can lead to an MC estimator which undersamples these

regions, resulting in high-variance samples (i.e., fireflies).

4.2 Incremental Fitting/Update Scheme

After fitting VMMs to an initial set of samples 𝑆 , the next task is

to derive an iterative update scheme. Sampling from the current,

potentially coarse, approximations of 𝐿i will already improve the

quality in the next batch of samples 𝑆 ′. These higher-quality samples

need to be integrated into the following training iteration, to fit

more precise approximations of 𝐿i, which ultimately improve the

sampling quality in the final rendering process.

In a guiding framework like ours, the shape of the 𝐿i-distribution

approximated by a region can change with every additional training

iteration due to the refinement of the spatial subdivision structure.

Therefore, straight-forward accumulation of the information gath-

ered from 𝑆 and 𝑆 ′ may be counterproductive, as they are not guar-

anteed to describe the same 𝐿i-distribution (e.g., due to occlusion).

Müller et al. [2017] avoid this issue by re-fitting all distributions

using statistics solely collected form 𝑆 ′. To ensure that each region

aggregates enough samples after spatial subdivision, the number of

samples is doubled in each training iteration, also doubling the time

until updated distributions can be used for guiding. In our wEM-

based adaptive VMM fitting approach (Sec. 4.1), this would require

storing the exponentially growing amount of sample data collected

during each training iteration, which is infeasible in practice.

To make the best use of the laboriously gathered sample data, we

instead propose an incremental approach that robustly updates the

directional distributions even from small batches of samples. Our

training process benefits from immediate updates, converging faster

to the true distribution of 𝐿i (Fig. 3).

We model the relationship between the updated distribution and

the distribution that resulted from the previous training iteration by

applying a Bayesian VMM fitting approach [Bagchi and Guttman

1988; Bangert et al. 2010]. The previous VMM parametersΘ are used

as a prior to update the novel parameter set Θ′
in a maximum a

posteriori (MAP) estimation. Specifically, we optimize the posterior

log likelihood L (𝑆 ′), which combines the log likelihood of the novel

data of 𝑁 ′
samples with the weighted log likelihood of the prior

distribution 𝜌 (Θ′ | Θ) derived from 𝑁 previously observed samples:

Θ̂′ = arg max

Θ′
L (𝑆 ′) = 𝑁 log 𝜌 (Θ′ | Θ) +

𝑁 ′∑
𝑛=1

𝑤 ′
𝑛 log V

(
𝜔 ′
𝑛 | Θ′)

= 𝑁

𝐾∑
𝑘=1

log 𝜌 (𝜋 ′
𝑘
, 𝜇 ′
𝑘
, 𝜅 ′
𝑘
| 𝜋𝑘 , 𝜇𝑘 , 𝜅𝑘 )︸                          ︷︷                          ︸

per component priors

+
𝑁 ′∑
𝑛=1

𝑤 ′
𝑛 log V

(
𝜔 ′
𝑛 | Θ′) .

(28)

This scheme will produce robust updates even for small numbers of

novel samples. Indeed, even individual novel samples are robustly

incorporated.

When using a distribution from the exponential family, such as the

vMF or Gaussian distribution, this MAP formulation corresponds

directly to the incremental EM formulation by Neal and Hinton

[1998] resulting in the following, rather simple MAP parameter

estimation for the sufficient statistics:

𝑟 ′′
𝑘
= 𝑟𝑘 + 𝑟 ′𝑘 , 𝑁 ′′ = 𝑁 + 𝑁 ′. (29)

The MAP estimates for the sufficient statistics (𝑟 ′′
𝑘
and 𝑁 ′′

) are then

used to estimate Θ′
using the MLEs for the different VMM param-

eters (𝜋𝑘 , 𝜇𝑘 , and 𝜅𝑘 ) as described in Sec. 4.1 (Eq. 15 and 16). After

an update step, directional splitting and merging is performed to

quickly adapt to entirely new information and to adjust the num-

ber of VMM modes. If the overall sample batch size is significantly

bigger than the number of samples used by each incremental up-

date, Neal and Hinton [1998] have shown that the incremental EM

approach can achieve a similar fitting quality as batch EM but at a

significantly lower computational cost.

Incremental Update after Spatial Split. The MAP formulation of

the incremental fitting process in Eq. 28 and 29 assumes that all, pre-

vious and newly observed, samples originate from the same target

distribution. In our application, spatial subdivision can violate this

assumption. E.g., the radiance described by samples that contributed

to the fitted parameters of the parent region might not be visible in
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Exp. Iteration 1 (4spp + 512spp) Exp. Iteration 3 (28spp + 512spp) Exp. Iteration 6 (252spp + 512spp)
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Living Room

relMSE: 0.721 relMSE: 0.504 relMSE: 0.224

relMSE: 0.721 relMSE: 0.377 relMSE: 0.218

Fig. 3. Comparing the effectiveness of our proposed incremental fitting approach (bottom), using 4spp per training iteration, to traditional, batch-based

fitting (top), which doubles its training samples in each successive iteration. The quality of each method is evaluated by rendering 512spp after every other

exponential training iteration has finished (e.g., 1
st
, 3

rd
, and 6

th
). While starting with the same initial fit (left), our incremental approach quickly benefits from

the more frequent updates of the guiding distributions, leading to a faster learning rate: exp. 3
rd
vs. inc. 7

th
(middle) and exp. 6

th
vs. inc. 63

rd
iteration (right).

all of its children. Also, the new sample data is likely to contain less

variance due to improved sampling and should thus contribute more

to the combined estimate. To adjust for these changes, we decay the

strength of the sufficient statistics describing the prior observations

upon spatial subdivision, when a VMM distribution and its gathered

statistics are passed from a parent node to its children:

𝑟𝑘 := 𝛼𝑟𝑘 , 𝑁 := 𝛼𝑁, where 𝛼 = 0.25. (30)

Newly observed samples, gain, thereby, more importance, such

that new information can be learned quickly. Due to the globally

decreasing variance in the sample data and the continued application

of splitting and merging, the approach remains robust.

4.3 Parallax-Aware Incident Radiance Representation

Amajor shortcoming of most recent local path guiding approaches is

the fact that they use a static approximation of the incident radiance

distribution within each spatial region. This used approximation is

a marginalization (i.e., average) of the incident radiance distribu-

tion over the area covered by the region (Fig. 4 top). Especially in

early training iterations, when these regions are still large, such a

representation leads to high-variance artifacts towards the edges

of such regions, where the actual incident radiance distribution

deviates most from the marginalized one (Fig. 1 left and Fig. 5 left).

The primary causes of these deviations are close-by contributions

that experience parallax. These artifacts diminish as the sizes of the

spatial subdivision regions are getting smaller but may require long

training times until a sufficient subdivision is reached. Moreover,

the efficiency of the intermediate training iterations suffers from

the high-variance sample data gathered early on.

(Ir)radiance cachingmethods successfully deal with spatially vary-

ing illumination by gradient-aided interpolation [Ward and Heck-

bert 1992; Křivánek et al. 2005a,b; Marco et al. 2018]. We address this

issue by introducing a parallax-aware VMM representation (Fig. 4

bottom), which encodes the perceived origin o𝑘 of the incident ra-

diance covered by each vMF-component indirectly via a reference

location p (e.g., the mean sample position) and a per-component

distance 𝑑𝑘 between o𝑘 and p. Using these quantities, we define

the parallax-aware vMF-distribution vp, which resolves to a regular

vMF-distribution for any sampling location x:

vp (x, 𝜔 | p, 𝜇𝑘 , 𝑑𝑘 , 𝜅𝑘 ) = v (𝜔 | 𝜇x,𝑘 , 𝜅𝑘 ) . (31)

Where the x-position dependent mean direction 𝜇x,𝑘 is defined as:

𝜇x,𝑘 =
o𝑘 − x
∥o𝑘 − x∥ for o𝑘 = p + 𝜇𝑘𝑑𝑘 . (32)

The values of 𝜇𝑘 and 𝜅𝑘 are determined by the regular fitting proce-

dure. However, first, each sample 𝑠𝑛 is reprojected to the reference

location p, adapting the direction 𝜔𝑛 and distance 𝑑𝑛 accordingly:

𝜔 ′
𝑛 =

o𝑛 − p
𝑑 ′𝑛

and 𝑑 ′𝑛 = ∥o𝑛 − p∥, where o𝑛 = x𝑛 + 𝜔𝑛𝑑𝑛 . (33)

Through this reprojection, the sample data represents a precise

directional distribution at the reference location p during the fitting

process (Fig. 4 middle). The resulting distribution vp can then be

warped to any sample location x, where it also closely matches the

incident radiance up to some remaining error, e.g., due to occlusions.

Similar to previous work in (ir)radiance caching [Ward et al. 1988],

we use the harmonic mean to estimate the per-component distance

𝑑𝑘 , where we weight each sample’s distance by the product of its

weight, soft-assignment, and the component’s PDF to put more

weight on samples close to the center of the vMF lobe:

𝑑𝑘 =

(∑𝑁
𝑛=1

𝑤𝑛𝛾𝑘 (𝜔𝑛) v (𝜔𝑛 | Θ𝑘 )𝑑 ′−1

𝑛∑𝑁
𝑛=1

𝑤𝑛𝛾𝑘 (𝜔𝑛) v (𝜔𝑛 | Θ𝑘 )

)−1

. (34)

The sample distances 𝑑𝑛 are defined as the distance to the next

diffuse surface interaction encountered along the remaining path

(including glossy surfaces with a roughness of at least 0.3). On spec-

ular reflections or refractions, distances add up. Additionally, at

refractions, we scale the remaining distance by the following cor-

rection factor to convert the true distance to the apparent distance:���� cos𝜃int

cos𝜃ext

���� · 𝜂ext

𝜂int

, (35)

where 𝜂ext is the optical thickness of the medium in which the

remaining path continues in direction 𝜔ext and vice versa.

In summary, our parallax-compensation approach significantly

reduces approximation errors that are caused by marginalization
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Fig. 4. Comparing different vMF lobe representations: without parallax com-

pensation (top) and with our parallax compensation (bottom), applied to the

sampled data before fitting (middle). When queried for a specific position

x𝑛 , our parallax compensation re-adjusts the vMF-lobe such that it always

sharply points towards the origin o, i.e., the light source (right).

Fig. 5. The commonly used marginalization of the directional distribution

(left) increases the sample variance at the borders of the spatial subdivision.

When only reprojecting samples to a reference location p before fitting (Eq. 33),
this effect is increased (middle) but can be removed by warping (Eq. 32) the

resulting distribution to each sample position x (right).

and therefore increases training efficiency and image quality, as

shown for the Glossy CBox in Fig. 5.

5 IMPLEMENTATION

We implemented our robust fitting and guiding framework as a

plugin for the Mitsuba renderer [Jakob 2010]. We make use of the

SSE instruction set to vectorize sampling, evaluation and fitting of

the VMMs.

Parallax-Aware Merging of Components. Since our merge criterion

in Sec. 4.1 is derived for the standard vMF distribution, it does not

consider the fact that, in our parallax-aware VMM representation,

the directions of the lobes change depending on the actual query

position x. Evaluating Cmerge only at the reference point p may

merge components that are only similar for x = p but differ at other

positions. To prevent such merges, we do not only evaluate Cmerge

for x = p but also for three different random locations inside the

spatial region. Two components are only merged if all four Cmerge

evaluations lie below our merge threshold 𝑡merge.

Materials, Mirrors and Glass. For product guiding, similar to Her-

holz et al. [2016], we fit the BSDF using PMMs. However, we only

use one lobe for diffuse and one for glossy components, for simplic-

ity. Especially in the presence of anisotropic BSDFs, a more detailed

representation should provide more efficient sampling distributions.

For materials with discrete components (e.g., mirrors or glass), we

first decide whether to sample that component based on the BSDF

model’s internal selection weight. For the discrete directions, guid-

ing has zero probability and we therefore only sample the BSDF.

BSDF Selection Weight. During training and rendering, we sample

new directions using a one-sample MIS combination (Eq. 3) of our

guiding distribution 𝑝𝑔 and BSDF importance sampling 𝑝 𝑓s with a

selection weight for sampling the BSDF of 𝛼 = 0.5. Only when guid-

ing according to the complete reflected radiance integrand (Eq. 5),

we found it safe to lower the selection weight to 𝛼 = 0.25, which

leads to an additional performance increase. Using the same value

when just guiding based on the incident radiance distribution, or

the cosine product, leads to a substantial variance increase in most

scenes during training and rendering.

Integrating Next-Event Estimation in Path Guiding. In modern

rendering systems, it is common practice to increase the efficiency

of estimating the direct contribution 𝐿
dir

by combining a path-based

estimator

〈
𝐿

path

dir

〉
with a next-event estimator

〈
𝐿NEE

dir

〉
(NEE), using

multiple importance sampling (MIS) [Veach and Guibas 1995b]:〈
𝐿MIS

dir

〉
= 𝑤

path
·
〈
𝐿

path

dir

〉
+𝑤NEE ·

〈
𝐿NEE

dir

〉
. (36)

The MIS weights𝑤
path

and𝑤NEE try to combine the outcome of the

individual estimators in such a way, that the resulting variance of〈
𝐿MIS

dir

〉
is lower than the variance of the individual estimators. Pre-

vious work did usually neglect the MIS combination and either fully

include or exclude the contribution from

〈
𝐿MIS

dir

〉
during training,

when next-event estimation is enabled. While the first completely

ignores the potential advantages of NEE, the latter assumes that the

NEE is optimal and has zero variance. Ideally, a guiding distribution

should only sample those direct light contributions which cannot

be handled well by NEE. We encourage the fitting to consider the

MIS combination (Eq. 36) by multiplying the MIS weight 𝑤
path

of

the guided estimator to gathered direct light estimates in the sample

data. This weight will be high in cases where the probability of

sampling this contribution using NEE is low, e.g., due to many other

emitters that could be chosen instead. On the other hand, this weight

will be low for contributions that can be reliably sampled by NEE.

Initially, almost all light sources are handled better by NEE than by

the untrained guided estimator (i.e., only using BSDF importance

sampling), leading to low values for𝑤
path

. So, applying the weight

immediately would remove most direct light contributions from

the sample data, leaving very little chance for later recovery. This

is why we only apply the weight after a small burn-in phase, e.g.,

the first 12spp of training. At this point, it is worth noting that, in

our framework, sample data is only generated for the primary light

transport paths and not for directions sampled by NEE.

EM Initialization and MAP Priors. We Initialize our VMMs with 16

components distributed by the spherical Fibonacci point set [Hannay
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and Nye 2004] to uniformly cover the sphere. Similar to Vorba et al.

[2014] and Herholz et al. [2019], we avoid overfitting by replacing

the weighted maximum likelihood estimators (wMLEs) for 𝜋𝑘 and

𝜅𝑘 , which are used in the M-step of wEM fitting, by their weighted
maximum a posteriori (wMAP) counterparts:

𝜋 ′
𝑘
=
𝜋𝑘 + 𝜋prior

1 + 𝐾𝜋prior

, and 𝑟 ′
𝑘
=
𝑟𝑘𝜋

′
𝑘
𝑁 + 𝑟prior𝑁prior

𝜋 ′
𝑘
𝑁 + 𝑁prior

. (37)

In particular, we use a weight prior value of 𝜋prior = 0.01 to ensure

that each component represents at least 1/𝐾 percent of the inci-

dent radiance. The concentration prior 𝑟prior = 0 applies the prior

assumption that the data represented by a component is distributed

uniformly. This assumption is only applied to 𝑁prior = 0.2 virtual

samples. These priors are also applied during our incremental fitting

approach described in Sec. 4.2, where the total number of samples

𝑁 is not subject to the decay introduced in Eq. 30 to allow this prior

to vanish with increasing number of samples.

Spatial Subdivision Structure. We use a kd-tree as a spatial data

structure for guiding. Each node contains a VMM representing

the local distribution of incident radiance. We start with a single

region covering the whole scene space and subdivide regions that

gathered at least 32k non-zero samples. By counting only the non-

zero valued samples, we ensure that sufficiently many valid samples

are available to fit the VMMs. We collect statistics about the sample

positions within each region, including mean, variance and their

bounding box. The subdivision process splits the region at the mean

position in the dimension of highest variance. This results in an

approximately even division of samples.

Spatial Sample Splatting. In some cases, the important incident

radiance contributions are sampled so scarcely, that they are only

ever sampled within a small subset of the regions where they could

be observed. In those regions, the directional distribution model

will learn about this contribution and improve its sampling strategy

accordingly. However, its neighboring regions may lack this infor-

mation and still need to find out about it by chance. To facilitate

information sharing across regions, we spatially splat samples, i.e.,

randomly reposition them within a small region around their true

location. To limit the blurring of directional information across the

spatial domain we splat within an ellipsoid whose form factor and

size is derived from the bounding box of the samples previously

observed in the local region.

6 EVALUATION

In this section, we evaluate the proposed techniques individually on

a number of challenging scenes.We evaluate our approach regarding

three aspects: First, we evaluate the fitting procedure (Sec. 6.1), then

we compare various guiding approaches (Sec. 6.2) and finally, we

compare our approach against the work of Müller et al. [2017]

(Sec. 6.3). Quality is measured by the relative mean squared error

(relMSE). To exclude outliers, we discard the 0.1% highest error

values before computing the average. A small epsilon of 𝜀 = 0.001

is added to the denominator to avoid divisions by zero.

Except for the equal-time comparisons, or unless explicitly stated

otherwise, we used 1020spp total for training and 1024spp for the

final rendering of our images. Our incremental training approach

(Sec. 4.2) uses the sample data gathered from using 4 samples per

pixel (SPP) in each training iteration. All our evalautions are per-

formed on a machine with 512GB of RAM and two Intel(R) Xeon(R)

Gold 5115 CPUs @ 2.40GHz, using all 40 logical cores.

6.1 Fitting Procedure

In the following, we analyze the performance of the proposed fitting

method (Sec. 4.1 and Sec. 4.2), the appropriateness of the splitting

and merging thresholds, as well as the distribution and progression

of the number of components.

Variance-Based Adaptive Fitting. As shown in Fig. 2, the tradi-

tional EM-based algorithm results in unpredictable fit quality, pro-

ducing high-variance artifacts in the rendered image. Our adaptive

fitting method refines the VMMs by splitting and merging, gener-

ates more reliable guiding distributions and thus reduces the error

significantly, e.g., in Fig. 8 (+adaptive) and Fig. 9 (ours).

Varying Split and Merge Thresholds
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Fig. 6. Average number of components𝐾 and relMSE for varying thresholds

of the split and merge criteria, evaluated at equal samples. Raising the

thresholds results in mixtures with less components and thus higher error.

Changing the thresholds in the variance-based split and merge criteria

correlates with a change in relMSE.

Split and Merge Thresholds. The thresholds set for the split and
merge criteria determine the balance between approximation and

estimation error, i.e., the balance between a fast-to-evaluate and

an accurate model. Fig. 6 shows how the number of components

and the image quality varies based on these thresholds. Setting the

merge criterion’s threshold to zero corresponds to a special case,

which only allows for merging of exactly overlapping components

and, therefore, often results in higher error when mixtures reach

the implementation-defined maximum number of components (32),

and splitting is no longer possible. We chose low thresholds for high

quality, which are barely above the range where further increases

in quality would start to require exponentially more components.

Mixture Component Usage. For different scenes, the average num-

bers of mixture components needs to adapt to the complexity of the

local subsets of the incident radiance field. The data shown in Fig. 7

left shows that, in the beginning, a higher number of components is

used, as the initially large regions contain more diverse information

about the radiance. With increased spatial subdivision, the average
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Fig. 7. Our splitting and merging criteria result in a stable, scene-dependent

number of components that our VMMs converge towards during training.

The Jewelry scene shows that more components are required e.g. in areas

with varying surface normals, where a wider range of incident radiance is

visible. Areas with high variance utilize mixtures with the maximum amount

of components to reduce their variance as much as possible, while areas

with simpler illumination use smaller, fast-to-evaluate mixtures.

number of components decreases to a point, where it remains stable

even after prolonged training. The directional distributions typi-

cally become simpler with decreasing region size, which can then

be represented using fewer components, as seen in the Jewelry

scene (Fig. 7 right). Only in areas with complex incident radiance, a

high number of components is required.

Incremental Fitting. The incremental fitting approach presented

in Sec. 4.2 reduces the turnaround time after which the knowledge

contained in the gathered sampled data can be used to make more

informed sampling decisions. As an example, Fig. 3 shows how the

incremental approach can speed up the learning of complex light

transport paths compared to an exponential approach. In Table 1,

we compare the incremental and exponential approaches in a wide

range of scenes. It shows that the incremental approach is generally

faster, as distributions do not need to be fitted from scratch, but

can instead be updated quickly. The amount of memory required to

store the sample data is orders of magnitude lower, as the exponen-

tial approach requires twice the amount of memory each iteration.

Superior results can be achieved, processing the same number of

samples, since features, once found, can be explored quickly and

then be shared with neighboring regions each iteration via spatial

splatting (Sec. 5). This especially benefits scenes with small, hard to

reach light sources such as Bathroom, Clocks, and Living Room.

6.2 Guiding Methods

In Fig. 8, we incrementally improve upon the results of a guided path

tracer with parallax-compensation, adaptive fitting, the cosine- and

BSDF-products, as well as next-event estimation (NEE). We have

already shown in Fig. 5 that the parallax-compensation can greatly

improve image quality in the presence of close-by contributors. We

Table 1. Comparing the exponential and incremental training approaches.

Exploring complex light transport earlier, combined with better retention of

learned information and a low update cost, allows the incremental approach

to outperform the exponential approach in most scenes. Less time and vastly

less memory is required when compared to the last exponential training

iteration, which had to gather the samples from 512spp rather than 4spp.

Exponential Incremental

Scene time relMSE mem. time relMSE mem.

(MB) (MB)

Bathroom 59.6m 0.308 28 823 46.7m 0.143 330
Clocks 5.1m 0.373 1 759 5.0m 0.197 19
C.-Kitchen (Day) 12.5m 0.056 17 014 10.9m 0.043 137
C.-Kitchen (Night) 11.5m 0.096 16 093 9.3m 0.087 131
Glossy CBox 6.8m 0.112 10 934 6.2m 0.078 100
Jewelry 8.4m 0.371 4 222 6.1m 0.353 34
Kitchen 24.6m 0.140 16 062 12.1m 0.123 127
Kitchenette 28.6m 0.120 42 895 25.5m 0.106 343
Living Room 15.7m 0.213 15 389 12.1m 0.120 127
Pool 8.3m 0.016 16 129 7.1m 0.012 126
Torus 6.3m 0.054 15 472 5.1m 0.055 121

Table 2. By computing the cosine product, vMF-components on the lower

hemisphere are mostly eliminated and the ratio of invalid samples (for

which the BSDF evaluates to zero) can be greatly reduced, resulting in

higher-quality light-transport path samples and lower relMSE in equal time

(10m). In the absence of Russian roulette, the improved sampling quality

increases the average path length (avg. p. l.) and thereby reduces the number

of samples per pixel (SPP) that can be evaluated.

Scene % invalid relMSE SPP avg. p. l.

𝐿i cos𝜃i 𝐿i cos𝜃i 𝐿i cos𝜃i 𝐿i cos𝜃i

average (all scenes) 32.21 19.74 0.114 0.106 3 255 2 577 5.90 6.93

Bathroom 36.12 13.41 0.470 0.395 440 316 10.54 12.89

C.-Kitchen (Night) 40.22 20.19 0.053 0.051 2 888 2 032 7.49 9.09

Glossy CBox 42.86 33.51 0.038 0.035 5 780 4 296 7.24 8.27

Living Room 24.77 11.24 0.094 0.092 2 324 1 732 3.85 4.47

also examined the adaptive fitting procedure in the previous sec-

tion. In the following, we examine the remaining product sampling

approaches and the NEE-weights.

Hemispherical Guiding with Spherical Distributions. Using spher-

ical distributions for guiding in the presence of varying surface

normals, such as on corners or edges, can lead to high amounts of

invalid samples. By proposing directions on the lower hemisphere,

the random walk is terminated immediately. The probability of such

samples can be significantly reduced by computing the product with

the surface-normal oriented cosine-lobe just before sampling. The

increased sampling quality allows long light transport paths to be

established more reliably, increasing average path length and image

quality, as shown in Table 2.

Not all long light transport paths contribute to the image by an

amount that warrants the required computation, though. To improve

efficiency, stochastic path termination, e.g., [Vorba and Křivánek

2016], could be used to terminate less important paths early in a

controlled fashion.
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PT (BSDF) 𝐿i +parallax +adaptive +cos𝜃 i +BSDF +NEE

2960 | 1.365 2336 | 0.465 2016 | 0.210 1984 | 0.097 1472 | 0.094 1440 | 0.067 928 | 0.038
0.34× 1.0× 2.21× 4.79× 4.95× 6.94× 12.24×

Living Room

SPP | relMSE

speedup

PT (BSDF) 𝐿i +parallax +adaptive +cos𝜃 i +BSDF +NEE

5148 | 16.131 3648 | 0.259 3168 | 0.182 3168 | 0.185 2624 | 0.190 1952 | 0.078 1536 | 0.076
0.02× 1.0× 1.42× 1.40× 1.36× 3.32× 3.41×

Jewelry

SPP | relMSE

speedup

Fig. 8. Equal time comparison (10 min.) successively including more components of our framework. Each method was trained for 3 minutes and rendered for

another 7 minutes. The unguided path tracer used all 10 minutes for rendering.

Product Importance Sampling & NEE. With the addition of product

importance sampling [Herholz et al. 2016], an even better sampling

distribution can be achieved on glossy surfaces which only reflect

within narrow lobes. With our NEE-weights, next event estimation

can be safely incorporated into the guided path tracer to further

improve efficiency. Fig. 8 shows these improvements for a small set

of scenes.

6.3 State-of-the-Art Comparison

We compare our approach to the exponential forward-learning ap-

proach by Müller et al. [2017]. In their approach, we enabled the

spatio-directional splatting from their improved version presented

in [Vorba et al. 2019], along with their proposed smaller spatial

tree threshold (4k instead of 12k), which consistently surpassed the

results of their traditional approach in our testing. We did not ap-

ply any of their further presented improvements, which are mostly

orthogonal to the guiding approach. For a fair comparison, we did

also not enable the BSDF-product or NEE in our method. We also

first executed the method of Müller et al. [2017] with a 10 minute

budget and used the same training and rendering times as the ones

automatically chosen by their method. Table 3 shows the detailed

results, most importantly the relative mean squared error (relMSE).

In most scenes, our variance-aware incremental learning scheme

and the parallax-aware distributions explore the path space more ef-

ficiently, leading to a significant error reduction. Müller et al. [2017]

can process more samples in the same time and achieve slightly

better results in the Torus and Kitchen scenes, which are mainly

illuminated by the sun. Partially, this is due to the shorter average

path length, which, to some extent, is the result of unintended path

termination when sampling the lower hemisphere in the absence of

a cosine-product distribution (see Sec. 6.2).

In Fig. 9, a visual comparison is shown for two scenes. There, we

additionally compare our BSDF-product which provides additional

significant improvements in quality on glossy materials.

7 DISCUSSION AND LIMITATIONS

Inadequate Spatial Subdivision. The used spatial subdivision strat-

egy is rather naïve (i.e., only based on the number of samples). It

completely neglects characteristic light transport effects such as

local changes in irradiance (e.g., caustics, or occlusions) or scene

geometry and how well these can be represented by a parallax-

aware VMM-distribution. As a consequence, regions with spatial

variation beyond parallax may not be resolved fine enough, while

others, that could be represented by a single distribution may be
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Table 3. Equal time comparison. Samples per pixel (SPP) for training (T) and rendering (R), average path length (avg. p. l.), average number of VMM components

(avg. 𝐾 ), number of regions, memory consumption (mem.) in MB by the guiding (G) and sample (S) data, and relative mean squared error (relMSE) of the final

image after 10 minutes total. The method of Müller et al. [2017] automatically chooses its training time. For a fair comparison, we used the same training and

rendering times in our method. Our adaptive training method, parallax-compensation and cosine-product significantly reduce the error in most scenes.

Our Method Müller et al. [2017]

Scene time SPP avg. avg. #reg- mem. relMSE SPP avg. #reg- mem. relMSE

T R T R p. l. 𝐾 ions G S (speedup) T R p. l. ions G (baseline)

Bathroom 244s 356s 140 316 12.90 26.2 6 547 14.7 337.2 0.395 (14.46×) 252 348 11.93 46 830 219.7 5.713 (1.0×)
Clocks 35s 565s 244 4 460 4.09 17.7 324 0.7 14.8 0.126 (73.98×) 508 6 484 4.00 4 537 20.7 9.321 (1.0×)
C.-Kitchen (Day) 75s 525s 208 2 468 9.06 20.9 3 830 8.6 136.1 0.024 (1.25×) 508 4 360 7.15 13 482 58.3 0.030 (1.0×)
C.-Kitchen (Night) 168s 432s 528 2 032 9.09 18.8 10 080 22.7 140.9 0.051 (1.69×) 1 020 2 908 8.35 20 021 87.4 0.086 (1.0×)
Glossy CBox 46s 554s 212 4 296 8.27 12.3 2 888 6.4 106.1 0.035 (25.89×) 508 6 332 7.30 10 340 47.8 0.906 (1.0×)
Jewelry 66s 534s 272 3 496 3.52 19.1 1 475 3.3 38.3 0.168 (1.98×) 508 4 732 3.33 9 456 46.5 0.332 (1.0×)
Kitchen 102s 498s 228 1 908 5.20 23.0 4 292 9.7 130.2 0.088 (0.94×) 508 2 980 4.65 15 260 71.3 0.083 (1.0×)
Kitchenette 218s 382s 248 708 10.48 20.7 12 996 29.2 367.0 0.155 (1.06×) 508 896 8.95 33 596 139.5 0.164 (1.0×)
Living Room 108s 492s 248 1 732 4.47 19.8 4 644 10.4 132.2 0.092 (2.34×) 508 2 608 4.02 17 215 79.0 0.215 (1.0×)
Pool 156s 444s 604 2 684 4.91 16.8 12 405 27.8 139.1 0.007 (2.14×) 1 020 3 348 4.89 12 650 55.5 0.015 (1.0×)
Torus 116s 484s 620 4 244 3.83 13.5 12 516 28.1 134.3 0.024 (0.96×) 1 020 5 280 3.76 11 009 48.4 0.023 (1.0×)

Müller et al. 2017 Ours (𝐿
i

cos𝜃
i
) Ours (+BSDF)

6484 | 9.321 4460 | 0.126 2960 | 0.136

1.0× 73.98× 68.54×

Clocks

Müller et al. 2017

Ours

SPP | relMSE

speedup

Müller et al. 2017 Ours (𝐿
i

cos𝜃
i
) Ours (+BSDF)

896 | 0.164 708 | 0.155 548 | 0.072
1.0× 1.05× 2.28×

Kitchenette

Müller et al. 2017

Ours

SPP | relMSE

speedup

Fig. 9. Visual comparison of the results for the Clocks and Kitchenette scenes listed in Table 3 with additional BSDF-product results.

excessively subdivided. Improving the spatial subdivision strategy

in the context of local path guiding is an important direction for

future work, which can probably inherit concepts from previous

work done in the area of (ir)radiance caching [Křivánek et al. 2008;

Schwarzhaupt et al. 2012].

Generalization of Variance-Based Adaptive Fitting to other PMMs.
Conceptually, our variance-based adaptive fitting approach (Sec. 4.1)

is not bound to the vMF distribution. The used PMM and the sam-

ple data need to both support efficient evaluation of the split and

merge criteria (i.e., 𝜒2
-divergence). The presented evaluation of

C
split

aims at fitting the VMM proportional to a function, assuming

that the sample data are random evaluations of this function with a

known PDF. In traditional EM applications, or when learning the

𝐿i-distribution from photons (e.g., [Vorba et al. 2014]), the PDF is

usually unknown. In these cases, the PDF needs to be approximated

using a rather costly kernel density estimation [Ueda et al. 2000a,b].

Incorporation of Local Path Guiding Extensions. Besides the fitting
of local 𝐿i-distributions, there exists a set of orthogonal techniques

such as adjoint-driven Russian roulette and splitting [Vorba and

Křivánek 2016] or inverse-variance merging [Vorba et al. 2019], that

improve the performance of local path guiding. It should, therefore,

be straightforward to integrate them into our presented framework.

Especially the optimization of the BSDF selection weight [Vorba et al.

2019] could lead to a significant improvement, since our framework

supports the sampling of the full product distribution.

Relationship to other EM-Algorithms. Using other variants of the
EM-algorithm, e.g., on-line stepwise EM [Cappé and Moulines 2009;

Vorba et al. 2014] or accelerated EM [Verbeek et al. 2006; Jakob et al.

2011], the storage of individual samples can be avoided entirely.

Instead, in the case of the on-line stepwise EM, mixtures are updated

immediately with each new sample, where each successive sample’s

influence is reduced. Adapting to changes due to spatial subdivision

or the improved variance in subsequent training iterations would

require delicate tuning of the update rate to preserve robustness with

this approach. The accelerated EM fits mixtures by proxy of tabulated

statistics of samples, over which it then iterates instead. While

tractable early on, eventually, per component, the tabulated statistics

will exceed the number of samples and become inefficient. Moreover,

the resolution of the tabulated statistics limit the resolution of local

features beyond the approximation capabilities of the mixture.

8 CONCLUSION

The proposed robust fitting framework adaptively fits von Mises-

Fisher mixture models to locally sampled radiance distributions
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for path guiding, escaping local maxima and selecting a suitable

number of components by splitting and merging. Novel criteria

for splitting and merging of components ensure to minimize the

resulting radiance estimator’s variance. By exploiting closed-form

expressions for the product and the multiplicative inverse of vMF-

distributions, the criteria are evaluated very efficiently. In addition,

instead of fitting on a large number of samples, an incremental

update scheme operating on small sample batches is introduced, that

achieves the same fitting quality but at the same time features faster

learning due to an increased update frequency while minimizing

memory cost. Combined with further improvements by a novel

parallax-aware extension to the vMF-distribution, our approach

significantly boosts quality in forward path guiding.
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A OPERATIONS OF VMF-DISTRIBUTIONS

In the following, a few useful operations on vMF-distributions,

which our method requires, are shortly summarized.

A.1 Product

As presented by Herholz et al. [2019], based on Murray and Mor-

genstern [2010], the product of two vMF-lobes (𝑖, 𝑗) is again a vMF

lobe 𝑖 𝑗 , scaled by the factor 𝑠𝑖 𝑗 :

𝑠𝑖 𝑗 v (𝜔 |𝜅𝑖 𝑗 , 𝜇𝑖 𝑗 ) = v (𝜔 |𝜅𝑖 , 𝜇𝑖 ) v (𝜔 |𝜅 𝑗 , 𝜇 𝑗 ), (38)

𝜅𝑖 𝑗 = ∥𝜅𝑖𝜇𝑖 + 𝜅 𝑗 𝜇 𝑗 ∥, 𝜇𝑖 𝑗 =
𝜅𝑖𝜇𝑖 + 𝜅 𝑗 𝜇 𝑗

𝜅𝑖 𝑗
, (39)

where the scaling factor 𝑠𝑖 𝑗 describes the product’s integral:

𝑠𝑖 𝑗 =

∫
𝑆2

v (𝜔 |𝜅𝑖 , 𝜇𝑖 ) v (𝜔 |𝜅 𝑗 , 𝜇 𝑗 ) d𝜔

=
𝜅𝑖

4𝜋 sinh𝜅𝑖

𝜅 𝑗

4𝜋 sinh𝜅 𝑗

4𝜋 sinh𝜅𝑖 𝑗

𝜅𝑖 𝑗

=
𝜅𝑖𝜅 𝑗 (1 − exp(−2𝜅𝑖 𝑗 )) exp(𝜅𝑖 (𝜇𝑇𝑖 𝜇𝑖 𝑗 − 1) + 𝜅 𝑗 (𝜇𝑇𝑗 𝜇𝑖 𝑗 − 1))

2𝜋𝜅𝑖 𝑗 (1 − exp(−2𝜅𝑖 )) (1 − exp(−2𝜅 𝑗 ))
.

(40)

A.2 Multiplicative Inverse

The multiplicative inverse of the vMF distribution can be derived

directly from its definition:

1

v (𝜔 |𝜅, 𝜇) =
4𝜋 sinh𝜅

𝜅
exp(−𝜅𝜔𝑡 𝜇) =

(
4𝜋 sinh𝜅

𝜅

)
2

𝑣 (𝜔 |𝜅,−𝜇)

=
4𝜋2 (1 − exp(−2𝜅))2

𝜅2
exp(−2𝜅)

v (𝜔 |𝜅,−𝜇). (41)

A.3 Moment-Preserving Merge

When merging the pair of components (𝑖, 𝑗) into a new component

𝑘 , their mixture weights 𝜋 and sufficient statistics 𝑟 simply add up:

𝜋𝑘 = 𝜋𝑖 + 𝜋 𝑗 , and 𝑟𝑘 = 𝑟𝑖 + 𝑟 𝑗 , (42)

where 𝑟 can be recovered from the vMF’s parameters:

𝑟 = 𝜋𝑟𝜇, where 𝑟 = coth𝜅 − 1/𝜅. (43)

The estimation of 𝜅𝑘 and 𝜇𝑘 follow using the regular MLE steps.

A.4 Moment-Preserving Split

To split a component 𝑘 into two components (𝑖, 𝑗), a small offset

from the merged mean direction 𝜇𝑘 is required. Our implementation

uses PCA based on incrementally computed covariance of the gath-

ered samples in the 𝑥𝑦-plane of each component’s local coordinate

frame. We place the new components at ±𝑣𝜆1

√
𝜆1/2 and then project

back into world space, such that they point towards the individual

modes of bimodal data. We further initialize both components with

the same mixture weight 𝜋𝑖 = 𝜋 𝑗 = 𝜋𝑘/2 and the same mean cosine

𝑟𝑖 = 𝑟 𝑗 . To preserve the total sufficient statistics 𝑟𝑘 , we enforce that

𝑟𝑘 = 𝑟𝑖 + 𝑟 𝑗
(43)
⇔ 𝑟𝑘𝜇𝑘 = 𝑟𝑖 (𝜇𝑖 + 𝜇 𝑗 )/2, (44)

Since 𝜇 𝑗 is equal to 𝜇𝑖 mirrored at 𝜇𝑘 by construction, we can solve

Eq. 44 for the appropriate mean cosine:

𝜇 𝑗 = 2𝜇𝑘𝜇
𝑇
𝑘
𝜇𝑖 − 𝜇𝑖 ⇔ 𝜇𝑖 + 𝜇 𝑗 = 2𝜇𝑘𝜇

𝑇
𝑘
𝜇𝑖 . (45)

⇒ 𝑟𝑘𝜇𝑘 = 𝑟𝑖𝜇𝑘𝜇
𝑇
𝑘
𝜇𝑖 ⇔ 𝑟𝑖 = 𝑟 𝑗 =

𝑟𝑘

𝜇𝑇
𝑘
𝜇𝑖
. (46)

The concentration parameter 𝜅𝑘 follows from the regular MLE step.
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