
https://doi.org/10.1111/cgf.14393
This document is a preprint version.

COMPUTER GRAPHICS forum

At-Most-Hexa Meshes

Dennis R. Bukenberger1, Marco Tarini2, Hendrik P. A. Lensch1

1Eberhard Karls University, Tübingen, Germany 2Università degli Studi di Milano, Italy

Input Hull or Point Cloud Relaxed Unit Cubes Merged Edge Structures At-Most-Hexa Mesh

Figure 1: Left to right: Stages of our pipeline from input samples to the final volume mesh with 9.5k primitives (89.5% hex).

Abstract
Volumetric polyhedral meshes are required in many applications, especially for solving partial differential equations on finite
element simulations. Still, their construction bears several additional challenges compared to boundary-based representations.
Tetrahedral meshes and (pure) hex-meshes are two popular formats in scenarios like CAD applications, offering opposite
advantages and disadvantages. Hex-meshes are more intricate to construct due to the global structure of the meshing, but
feature much better regularity, alignment, are more expressive, and offer the same simulation accuracy with fewer elements.
Hex-dominant meshes, where most but not all cell elements have a hexahedral structure, constitute an attractive compromise,
potentially unlocking benefits from both structures, but their generality makes their employment in downstream applications
difficult. In this work, we introduce a strict subset of general hex-dominant meshes, which we term “at-most-hexa meshes”, in
which most cells are still hexahedral, but no cell has more than six boundary faces, and no face has more than four sides. We
exemplify the ease of construction of at-most-hexa meshes by proposing a frugal and straightforward method to generate high-
quality meshes of this kind, starting directly from hulls or point clouds, e.g., from a 3D scan. In contrast to existing methods
for (pure) hexahedral meshing, ours does not require an intermediate parameterization other costly precomputations and can
start directly from surfaces or samples. We leverage a Lloyd relaxation process to exploit the synergistic effects of aligning an
orientation field in a modified 3D Voronoi diagram using the L∞ norm for cubical cells. The extracted geometry incorporates
regularity as well as feature alignment, following sharp edges and curved boundary surfaces. We introduce specialized opera-
tions on the three-dimensional graph structure to enforce consistency during the relaxation. The resulting algorithm allows for
an efficient evaluation with parallel algorithms on GPU hardware and completes even large reconstructions within minutes.

CCS Concepts
• Computing methodologies → Mesh geometry models; Mesh models; Volumetric models; Point-based models;

1. Introduction

Due to reduced element count and more harmonic structures, quad-
meshes are often preferable over triangular-meshes for specific
tasks like solving partial differential equations or CAD applications
[BLP∗13]. The same rivalry arises for volumetric meshes, where
hexahedral meshes are often preferred over tetrahedral meshes
[SHG∗19]. Hex-meshes feature considerably fewer cells than tet-

meshes for the same simulation accuracy, which is a desirable cri-
terion for specific numerical solvers or finite element simulations.
Their semi-regularity is a better fit for parallelized computation
and makes their construction considerably more intricate due to the
constraints implied by the global semi-regular lattice structure. On
the other hand, tet-meshes are easier to construct and provide more
direct control over the tessellation density, i.e., allowing for adap-
tive meshing resolution while still being conforming.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.14393


D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Hex-dominant meshes, where the majority of cells are still hexahe-
dra, are a category of polyhedral meshes that are of interest because
previous work [SRUL16, GJTP17] suggests that their construction
can be achieved more reliably than in the more complicated case of
pure hexahedral meshes (where all elements are hexahedra).

We propose to adopt a strict subset of hex-dominant meshes, called
“at-most-hexa meshes”, where no cell exceeds six bounding faces,
which are at maximum quadrangular, otherwise triangular. More
specifically, all cells are either a hexahedron or are any valid poly-
hedron that can be obtained by starting from a hexahedron and col-
lapsing a few of its edges (see Figure 2); at-most-hexa meshes are
still conforming (free from T-junction).

Conceptually, the motivation for this choice is to ease the construc-
tion of the mesh as much as possible by relaxing the definition of
hex-meshes while at the same time not sacrificing their usability by
the downstream application. A linked motivation is that, because
our cells can be considered special cases of hexas, many tech-
niques applicable to pure-hexa meshes easily extend to deal with
this new type of mesh. For example, internal representations, adja-
cency structures, and file formats designed for hex-meshes, can be
readily adapted (Section 2).

The present work exemplifies how the construction of at-most-hexa
meshes can be at least as reliable and fast as the construction of hex-
dominant meshes. We are motivated by the intuition that at-most-
hexa can be easier to process than the more general, hex-dominant
meshes, which can feature arbitrary complex polyhedra while still
inheriting most of the advantages from pure-hexa meshes.

To this end, we propose a pipeline based on a 3D Lloyd relaxation
under the L∞ norm for a harmonious hexahedral cell layout. Ex-
tracted geometry serves as the basis for a graph matching algorithm
to identify all possible at-most-hexa primitives. The final mesh is
then assembled with an iterative construction algorithm, prioritiz-
ing regular primitives over smaller polyhedra.

Many recently proposed approaches excel in solving a specific sub-
problem that contributes to the overall challenge of hexahedral
meshing, but that has to be set into the perspective of what specif-
ically tailored input is required. Our proposed concept is not ex-
plicitly designed to supersede all state-of-the-art techniques in ev-
ery domain but extends this collection of possibilities with a novel
start-to-finish procedure. A CAD-like specification, surface mesh,
hex-dominant volume mesh, or solely a point cloud, as 3D scans
acquire it, is already sufficient for our fully autonomous pipeline to
produce at-most-hexa meshes. Nevertheless, we demonstrate how
our results can compete or improve some established approaches in
terms of hex-quantity and quality.

Key novelties and contributions of our proposed meshing ap-
proach can be briefly summarized with the following points:

• At-Most-Hexa: Primitives in our result meshes never exceed the
base case of a hexahedral cell, which comes with many benefits
over general hex-dominant meshes, as elaborated in the upcoming
Section 2. We provide explicit graph matching routines with mini-
mal branching for efficient primitive extraction. • Simple, versatile
input: We do not assume input volume data, surface or volumetric
parameterizations, frame-fields, or a consistent meshing of the sur-
face. Hull meshes or sparse surface samples of arbitrary size and

resolution are sufficient. • Alignment: Our method can be guided
by an input orientation field if one is available, but this is not re-
quired. Initial orientations extrapolate from the input and then align
to form an orthogonal vector field, further optimized during the re-
laxation process. • Regularity and isometry: The method strives
to obtain regular meshing where most cells are hexahedral, most
edges are regular, and cells are equally sized and well-shaped. •
Object hull: Volumetric cells of the employed L∞ Voronoi dia-
gram materialize as final mesh primitives, thus there is no need
to compensate for hull shrinkage as it is common with Delaunay
graph meshing, e.g., with Lp-CVTs [LL10]. While this is trivial
when the input is a closed mesh, we can also guarantee closed
and feature-aligned result meshes starting from point cloud input
because the kNN-graph provides robust and straightforward in/out
labels, even for complex objects of higher genera. • Implicit par-
allelism: Our method leverages several sub-steps, where the con-
struction and maintenance of the kNN-graph and the Lloyd re-
laxation rely on massively parallelized GPU code and the graph
matching algorithms on multithreaded CPU implementations.

1.1. Related Work

Construction of Pure Hexa-Meshes There is a variety of hex-
meshing approaches striving to automatically produce hex-meshes,
which achieve high-shape quality, low-singularity, feature-aligned,
or all-hex meshes [LBK16, SRUL16, GJTP17, LZC∗18, CAS∗19,
Tak19, GSP19, LPP∗20]. The required input for these approaches
is, however, far from trivial to generate and primarily dictates the
achieved result quality. Tetrahedral input meshes, parameteriza-
tions, mappings, frame fields, or singularity graphs often have to
be determined beforehand, sometimes with heavy computation or
manual effort to guide automation in the right direction. The re-
lationship between source-mesh and input frame field also often
poses a non-trivial causality dilemma of which to compute, i.e., de-
rive from the other, first.

Approaches like QEx [EBCK13] for quad-mesh extraction from
triangulations can be transferred to the hex-mesh extraction sce-
nario as shown by Lyon et al. [LBK16] using parameterization
[NRP11]. The all-hex meshing procedure proposed by Gregson et
al. [GSZ11] relies on a given tet-mesh that is first transformed to
PolyCubes [THCM04]. The all-hex method of Li et al. [LLX∗12]
focused on high-quality primitives using a singularity-restricted
field. The octree-based method of Gao et al. [GSP19] does well
in preserving features in the final hex-mesh by adapting the res-
olution where necessary but entirely omits all curvature and flow
alignment. Takayama’s method [Tak19] for all-hex meshes relies
on user-defined planes (dual-sheets) bisecting the object. In a re-
cent publication, Livesu et al. [LPP∗20] developed this idea fur-
ther and extracted loop cuts automatically from a mesh with a set
of (sometimes manually) marked sharp feature edges and a frame
field, resulting in high-quality hex-dominant meshes. On volumet-
ric data, Zhang et al. [ZB06] published methods for high-quality
quad- and hex-mesh extraction. As hex-meshes consist of hexa-
hedral primitives with six quadrilateral faces each, one can eas-
ily comprehend that the surface of a pure hex-mesh is a quad-
mesh. Calvo et al. [CI00], and Kremer et al. [KBLK14] proposed
techniques to go the other way round and come up with a hex-
mesh with only the quad-faced hull given. Early work by Shep-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

herd et al. [SJ08] formulated general constraints for hexahedral
meshing. More recent publications focus on the extraction of hex-
meshes from tet-meshes using frame-fields or parameterizations
[SVB17, GJTP17, RSR∗18, CAS∗19] or structural modification to
make an object suitable for hex-remeshing [GPW∗17]. Others de-
scribe constraints on the octahedral fields of existing hex-meshes
to minimize singularities [LZC∗18] which then qualify as ”me-
shable” input for further elaborate orientation field computations
[CC19]. Meshkat and Talmor [MT00] proposed a graph matching
algorithm to extract hexahedra from a given tet-mesh. The publica-
tion by Sokolov et al. [SRUL16] extends this concept extensively
with formal proofs and improves upon the results of Lévy and Liu
[LL10] and Baudouin et al. [BRM∗14]. Recently Pellerin et al. re-
visited the idea from tet- to hex-dominant mesh with a vertex-based
approach [PJVR18]. A detailed review on the distinctions between
Lévy and Liu’s Lp-CVT based hex-dominant meshing approach
and ours is featured in Section 6.2.

Analogy with quad-remeshing Many of the concepts above, and
our construction technique, can be considered extensions of ideas
originated in quad meshing. Our approach is inspired by the im-
age stylization technique of Hausner [Hau01] to simulate mosaic
images using Lloyd relaxations with an adapted metric and faces
similar challenges as the quad-meshing approach by Pellenard et al.
[PAM11] but with three dimensions. Furthermore, a smooth object-
aligned octahedral flow field [SVB17, GPW∗17] is created along-
side the relaxation. We extended the method for fast computation of
generalized Voronoi diagrams using graphics hardware [HIKL∗99]
to three-dimensional space. Our procedure utilizes a specially tai-
lored graph matching algorithm to extract at-most-hexa primitives
for the final mesh structure. As our approach relies on faces instead
of tetrahedra [SRUL16], the graph matching search space signifi-
cantly reduces to only one valid traversal path per primitive type.

Constructing Meshes from Point Clouds Our construction
method, which can start from a point cloud, has direct concep-
tual predecessors in surface remeshing or point cloud reconstruc-
tion. Spatially harmonious triangulations of points in 2D or even
on a 3D surface are easily determined with a Delaunay triangula-
tion, the equivalent for points in a 3D volume results in a tetrahe-
dral mesh structure. However, neither concept extends directly to
quad or hexa meshes. The popular Poisson surface reconstruction
[KBH06] utilizes the orientation of the samples to come up with
a closed surface representation for a given point cloud. Although
simple triangulations of these surfaces are trivially possible by ex-
tracting isosurfaces, quad meshes with feature-aligned topology are
often the more favorable option. The concepts proposed by Jakob
et al. [JTPSH15] and Schertler et al. [STJ∗17] use flow-fields to
extract such quad meshes from oriented point clouds. Other works
[ZLGH10, BL18] proposed techniques that do not require scanned
or precomputed normals for the point cloud to come up with a sur-
face or, in the latter case, with a quad-mesh.

Hex-dominant Meshes The construction of hex-dominant meshes
is studied as an interesting and convenient relaxation of pure hexa
meshes. In recent works [SRUL16,GJTP17], hex-dominant meshes
are obtained by fusing or conglomerating tetrahedral cells into
more complex polyhedra, which are often but not always hexa-

hedra. The hex-dominant approaches are categorized according to
the polyhedra that are allowed for non-hexahedral cells. In the pro-
posal by Sokolov et al. [SRUL16], these polyhedra are limited to
quad-based pyramids, prisms, and tetrahedra (plus “slivers”). Our
at-most-hexa meshes are a further relaxation, allowing for these
shapes but also others, making the construction considerably less
intricate than the one proposed by Sokolov et al. [SRUL16]. In the
proposal of Gao et al. [GJTP17], there is no assumption made on
the shape of the resulting non-hexahedral cells. While this max-
imally simplifies construction, the results are less usable for the
reasons discussed below.

2. At-Most-Hexa Meshes

In this section, we define at-most-hexa meshes, which are the out-
put of our construction technique, and outline a few of their fa-
vorable characteristics. In our meshes, each cell is definable as the
locus of a tri-linear combination of the hexahedron’s (possibly co-
inciding) vertices. In other words, each cell is a polyhedron that can
be obtained by starting from a hexahedral cell and collapsing zero
or more edges.

A

B

C

D

E

F

G

H

A BC

D

E

F

G

H

A BC

D

E FG

H
8 Hex 7 HexPrism 6 Prism

[0,1,2,3,4,5,6,7] [0,1,1,2,3,4,5,6] [0,1,1,2,3,4,4,5]

A BC

D

EH

FG
AE

BC

D

FG

H

A
BC
FGD

E

H
5 Slice 4 Pyra

[0,1,1,2,3,4,4,3] [0,1,1,2,0,3,3,4] [0,1,1,2,3,1,1,4]

A BC

DHE

F

G

A BF C

DHE
G

AE

BC

FG
DH

3 Prysm 2 Tie 1 Tet
[0,1,1,2,3,4,5,2] [0,1,2,3,4,1,5,3] [0,1,1,2,0,3,3,2]

Figure 2: The collection of at-most-hexa primitives featured in our
meshes (except the grayed-out ones). The list is exhaustive up to
rotational and reflection symmetries. Each configuration can be
obtained by collapsing up to four non-adjacent edges of a hexa-
hedron. This is modeled by duplicating the indices in a list of 8
vertices from the hexahedron.

In Figure 2 we exhaustively list all the cell topologies that can be
obtained in this way (up to symmetries). Not all possibilities are

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

useful for our purposes. Specifically we can exclude the following
cases from further consideration:

• The “Prysm” (case 3) is topologically equivalent to the triangu-
lar Prism (case 6), with an additional diagonal on one quad face.
Following the rules for extracting prisms (Figure 22), prysm con-
stellations would be trivially included, thus result as a subset of
all prisms. As the use of prysms would actively promote more
triangular constellations and sliver elements, the regular prism
is always the more favorable option. Therefore, prysm constella-
tions are not considered in the extraction.
• The “Tie” (case 2) can be seen as the combination of two Tetra-

hedra (case 1) sharing one edge.

Two distinct configurations result in a pyramidal shape (case 4).

Volumetric Definition of Solid Objects Both pure tetra-meshes
and pure hex-meshes, but not generic hex-dominant meshes, allow
for a straightforward definition of the represented object’s interior
(and the boundary) as the union of their cells. A tetrahedral cell
trivially defines as the set of all linear interpolations of the mesh
vertices at its four corners; in hexahedral meshes, and also in our
meshes, all cells are polyhedra which can be defined as the set of the
trilinear interpolations of the eight vertices at their corners. Conve-
niently, the interiors of any two adjacent cells (cells sharing a face)
are disjoint sets, and their union is a simply connected locus of
points (i.e., no gap is left between them, despite cell faces not be-
ing necessarily planar). This construction does not extend trivially
to generic hex-dominant meshes because it is unclear how to com-
bine the vertices at the corner of an irregular polyhedron (with non-
flat faces). Conversely, our at-most-hexa meshes generalize this sit-
uation. The cell’s interior defines as the trilinear interpolation of
the corners, but, in the occasional non-hexahedral cells, a few of its
corners are instances of the same (x,y,z) mesh vertex. Additionally,
when a cell reduces to a tetrahedron, the above definition is equiv-
alent to a linear interpolation of the 4 surviving distinct vertices,
meaning that the proposed structure generalizes both tetrahedral-
and hexahedral-meshes.

Signal Interpolation Any scalar or vectorial signal sampled at the
tet- or hex-mesh vertices can trivially interpolate for any point in-
side its interior (or boundary). Therefore, the same set of weights
used to define an interior point p as a linear combination of the
corners of its cell is employed to combine the signal defined at the
vertices. This results in the definition of a scalar or vectorial field
inside the mesh, which is C0 everywhere (and C∞ in the interior of
the cells). Once again, this functional principle is inherited directly
by at-most-hexa meshes, preserving all the properties, but not by
general hex-dominant meshes (as a generalization of barycentric
coordinates is not trivial even in 2D [HS17]).

Compact Representations Both pure tet- and hex-meshes can be
internally represented as indexed meshes [BKP∗10], a succinct data
structure consisting of a set of vertices and a set of cells; tetra cells
and hex cells are stored as a sequence of 4 (respectively, 8) in-
dices of vertices at their corners, in some prescribed order. This
can be useful for storing the mesh on drives, for example, in in-
terexchange formats. A general hex-dominant mesh does not allow

for such representations because non-hex elements have no struc-
ture that is known a priori. Conversely, cells of an at-most-hexa
mesh can be represented the same way as hexahedra, where a few
of the vertex indices at the corners (in non-hex cells) repeat as listed
in Figure 2. This representation is not only convenient for storing
meshes, allowing, for example, to reuse the same file formats of
hexa meshes but also allows for easy application of common hex-
meshing operations like subdivision [WSK06].

A note on cell convexity Our meshes are analogous to pure hex-
meshes in that their cells are not necessarily convex unless special
care is taken to ensure that every quadrangular face is exactly pla-
nar. While face planarity is implicitly pursued as a soft objective by
our construction strategy, we did not experiment with its strict en-
forcement. The same issue arises with quad surfaces, where strictly
enforced solutions have been proposed (PQ-meshes, [LPW∗06]).

3. Overview of the Meshing Algorithm

Input:
Hull or PC

kNN-Graph
Voronoi-Dia.

Orientation
Field

Lloyd
Relaxation

Geometry
Generation

Topology
Extraction

Output:
AMH-Mesh

Figure 3: The schematic pipeline of our method.

3.1. Steps Breakdown

The diagram in Figure 3 outlines the basic steps of our pipeline:

I Input Preparation: The input object’s volume (plus margins) is
populated with points (sites) on a regular 3D grid, serving as seeds
of a Voronoi diagram. Each site creates a cell in the diagram, and
will generate one at-most-hexa primitive in the final output mesh.
I k-Nearest-Neighbor Graph: This graph stores the nearest-
neighbor relationships between sites, and is crucial for an efficient
evaluation of all subsequent steps.
I Orientation Field: Orientations from the input hull or point
cloud are extrapolated once and further on jointly aligned during
the relaxation following parallel and orthogonal flow constraints.
I Lloyd Relaxation on Hex-like Cells: By exchanging the Eu-
clidean norm (L2) in the Lloyd relaxation with the Chebyshev norm
(L∞), the cell structure becomes more cubical, which is suitable for
further interpretation as a hex-like mesh structure.
I Geometry Generation: Geometry is established by materializ-
ing the hex-like cells as proportionally scaled unit cubes. Vertices
and edges are created with a simple match-and-merge operation.
I Topology Extraction: With geometry established, tri- and quad-
faces are collected to form the base for all at-most-hexa primitives.
The primitives are then collected via graph matching, using small
dedicated state-machine algorithms, effectively minimizing the re-
quired search space.
I Output: The final assembly routine allows for prioritizing regu-
lar hexahedra of high quality. Therefore, result meshes solely fea-
ture the at-most-hexa primitives listed in Figure 2 where the abso-
lute majority are hexahedra.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

3.2. Terminology

To counteract misunderstandings, we first want to establish a uni-
form terminology for involved entities: We will refer to the points
in a Voronoi diagram as sites while the same point is a node in
the associated graph structure. A cell refers to the associated space
around each site. Points on the input surface, or point cloud points
themselves, are referred to as samples. For simplicity, we call these
entities si in all instances and the unique index i may also be used
to identify corresponding properties like depth di, in/out-label li or
a normal ni. In the upcoming section for geometry extraction, cells
will materialize as scaled unit cubes, each defined with eight virtual
vertices. As the geometry extraction progresses, virtual vertices are
merged to real ones. The geometric entities emerging from the
topology extraction process feature hexa-, tetra-, and other poly-
hedra, collectively called primitives.

4. Relaxation

The relaxation is essential to capture characteristic features of the
input. Therefore, the space inside and outside of the input object
is populated with volumetric cells, which eventually align with the
model’s shape and curvature. Rather than relying on a predefined
frame-field providing the orientation for volumetric cells, our re-
laxation optimizes the orientation and position of all sites in a col-
laborative process. Besides alignment to surface features, the goal
of this stage is to obtain equally sized and cube-shaped cells.

Therefore, the necessary optimization is performed similarly to a
Lloyd relaxation with specific constraints to favor the generation of
hex-like cell structures. Eventually, the relaxation process outputs
sites with optimized location and orientation, defining the input to
the mesh extraction stage of Section 5.

4.1. Voronoi Diagram

The basis for the Lloyd relaxation is the underlying Voronoi di-
agram, which computes on a face-centered cubic (fcc) lattice
[CS98, HAB∗17] with at least 123 times more lattice points than
sites in the diagram. This has proven to be a sufficiently high reso-
lution that is still practically feasibly with limited GPU memory.
Further, the fcc lattice is preferable over a regular cubical grid
to avoid axis-aligned bias but is in contrast to lattice-guided ap-
proaches [YS03,NZH∗18] merely a convenient way to label space.
The diagram is computed on the GPU using a z-buffer [HIKL∗99]
extended for three dimensions. In this context, the publication
Meshless Voronoi on the GPU [RSLL18] comes to mind. But, as
elaborated in the following, our distance metric is not orientation-
invariant as in a standard Voronoi diagram, which drastically com-
plicates the integration of a cell. Therefore, this concept is not triv-
ially suitable for our objective.

To propagate information between all sites S, the relaxation relies
on two different mechanisms: Lloyd iteration to optimize site po-
sitions and cell extents and a kNN-graph to align orientations and
eventually promote hex-favorable grid structures.

Site Population In the first step, the object’s bounding box plus
margin is populated with sites Sv initialized on a regular or jittered

grid, filling the entire volume. The number of sites in the diagram
directly gives the final mesh’s resolution. A partitioning is speci-
fied for one dimension of the bounding box and scaled accordingly
for the others. It can be either used-defined to approach a certain
target resolution or heuristically derived from the input, i.e., based
on minimum widths in the input geometry. The whole set of sites
in the diagram consists of two disjunct subsets S = Spc ∪Sv. Sites
of Sv, which are close to the hull, spawn a second set of surface
samples Spc positioned directly on the input hull. In Appendix B
we propose to replace the Spc set with an actual point cloud as an
alternative to meshed input. However, for now, Spc solely serves as
query points for the orientation extrapolation.

Input Hull As the relaxation treats all cells equally, there is no
distinction between cells in or outside the object. However, in the
end, only the inside cells are relevant for further use. Therefore,
inside-outside labels for all cells are determined using fast winding
numbers [BDS∗18] of the input surface. During the relaxation, the
mesh also acts as a natural boundary, limiting the individual cell’s
extents and protects them from crossing the hull.

Distance Metric Sites thrive to increase the distance between each
other during the relaxation, which eventually creates primitives of
homogeneous size and maximum mesh isotropy. For a 2D example,
if one would keep the Euclidean distance (L2) as a metric, the ma-
jority of relaxed cells would resemble hexagons (like a honeycomb)
because this is the densest 2D packing of circles [CW10]. There-
fore, we employ the Chebyshev metric (L∞) for our relaxation: 2D
cells would now approximate squares [Hau01, MB12] and respec-
tively, 3D cells actually become cubical [LL10, BRM∗14]. In each
iteration of the Lloyd relaxation, sites update with the geometric
center of their cell, computed as the averaged position of their la-
beled lattice points.

4.2. kNN-Graph

To allow for fast information propagation during the relaxation,
we incorporate a decentralized network between the sites, namely
kNN-graphs, where each site links to its k nearest neighbors. Par-
ticularly, N26 and N6 neighborhoods are used. N26 is purely based
on geometric distances. k = 26 corresponds to 3×3×3−1 cubes
stacked in a 3D grid. In irregular arrangements, Nk might also con-
tain sites that are not direct neighbors, but this hardly impacts the
optimization. In Section 4.4, another N6 neighborhood promotes
hexahedral grid alignment. Whereas Nk includes neighbors based
on their geometric distance alone, N6 also incorporates a site’s ori-
entation: It features only the most suitable six neighbors from each
direction (left, right, up, down, front, back) at an edge-length’s dis-
tance e. As formulated in Equation 1, the N6 can be derived as a
subset of the Nk where Mi is a site’s orientation and~r corresponds
to the coordinate axes.

N6(i) =
{

min
j∈Nk(i)

||(si +(Mi ·~r)e)− s j||2
}

~r∈[±x,±y,±z]

(1)

Furthermore, each node also maintains an n-hop-distance di (Equa-
tion. 2), which counts the number of steps required to reach the
closest sample nodes on the hull.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

di =

{
0 if si ∈ Spc

min
j∈Nk(i)

[
d j
]
+1 else (2)

Construction & Maintenance The kNN graph initializes by set-
ting the neighbors of each node randomly. With a simple parallel
update routine on all nodes S, the randomly initialized graph be-
comes an actual nearest neighbor graph:

• For the node si collect the neighbors of all neighbors.
N2

k (i) =
⋃

j∈Nk(i) Nk( j).

• Sort by geometric distance ||si− s j||2 where j ∈ N2
k (i).

N2
k(i) := sort(N2

k (i))
• Update Nk(i) with the first k elements in N2

k(i).

It can be shown [DML11] that only 7 update steps are required to
get an almost perfect kNN approximation from random input con-
nections. As the relaxation progresses, sites in the Voronoi diagram
change their position with every step, and therefore, the graph also
has to be updated with every iteration. However, once the graph is
established, neighborhood fluctuation is marginal and usually only
one, or to be sure two, update cycles have to be performed.

Figure 4: Nodes with di = 1 (dashed) determine their initial orien-
tation from samples on the hull. Nodes of di > 1 derive theirs from
neighboring nodes closer to the surface using portions of the N26
graph. The right side shows the N6 graph, transcending the outer
hull so that adjacent cells on the in and outside can align.

4.3. Constrained Relaxation

The Lloyd relaxation process is an iteration alternating two steps:
1. compute a Voronoi diagram based on the given site positions,
2. reposition each site to the geometric center of its cell. But as our
employed distance metric is no longer orientation invariant, we also
have to maintain individual orientations for all sites.

Orientation Initialization Each node in our graph carries its own
orientation, defined by the three orthogonal base vectors: normal,
tangent and bitangent, represented for interpolation by quaternions.

For samples Spc on the input hull, orientation is determined as the
surface normal plus principal curvature vectors [PdC76,Rus04]. As
initialization, the orientations of Spc are extrapolated once through
the volume for all sites in Sv. This is done in a wave-front prop-
agation manner [OBB∗13] over the discrete node positions of the
graph. Portions of the Nk graph are shown in Figure 4 (left): Dis-
crete n-hop-distances di as well as real geometric distances are em-
ployed to weight individual orientations during propagation.

Maintaining Orientations During relaxation, the orientation and
the spatial arrangement of neighboring cells jointly align, result-
ing in the best fitting constellation concerning the geometrical con-
straints imposed by the input hull. In contrast to a predefined vol-
umetric frame-field, orientations emerge from the alignment itself
and are bound to the individual cells and their discrete site posi-
tions. Orientations of adjacent neighboring sites are optimized to
be consistent, herein defined with invariance to axis-permutating
rotations. This constraint is beneficial for the mesh extraction step
in Section 5, where neighboring cells shall become adjacent primi-
tives, forming hex-like structures.

Therefore, in each iteration, the orientation of a site is aligned to
a distance-weighted combination of all orientations from its neigh-
bors in Nk. This is realized analogously to the extrinsic smoothness
energy minimization formulated by Jakob et al. [JTPSH15], which,
summed up briefly, means: The base vectors for each site should
point in close-to-parallel or orthogonal directions compared to their
neighbor sites, regardless of their signs.

Convergence Whereas Lloyd relaxations are known to con-
verge to Centroidal Voronoi Tesselations using the L2 norm
[DEJ06], it has yet to be shown that the same holds
for higher dimensions or other norms. However, in prac-
tice, we could not provoke scenarios that showed tendencies
of non-convergence or one that resulted in a bi-stable state.

0 50 100
0
2
4
6
8

10

0.
03

4
0.

03
5

This graph plots the accumulated
movement of all sites and the aver-
age volume of their cells over 100 re-
laxations. While the movement drops
below numerical accuracy within the
first 50 iterations, the volume also ap-
proaches a steady fix-point.

4.4. Regularization

So far, sites Sv freely move around during the relaxation, maximiz-
ing the distance to each other and orient themselves accordingly.
However, for the upcoming geometry extraction step, sites should
be positioned to form a grid if possible. The constellation on the
left in Figure 5 resembling a brick wall is not unlikely to emerge
with aligned orientations alone and without positional constraints.
To counteract this brick wall alignment, we introduce a position-
ing scheme using the N6 neighborhood. Equation 3 formulates the
updated center c as the weighted sum of the Voronoi cell’s geomet-
ric center cg and the center of its six neighbors cN6 . For constant
w(p) = 0, the process is equivalent to Lloyd’s algorithm.

c = (1−w(p)) · cg +w(p) · cN6 (3)

Here it is crucial to note that N6 neighborhoods strictly exclude hull
samples (N6∩Spc = ∅). Therefore, the effect shown on the right in
Figure 5 can benefit from outside cells, too, as illustrated in Fig-
ure 4. Improved results can be achieved using a variable weighting
function that changes throughout the relaxation.

w(p)=
1
2
−

cos
(

4π

(
max( 1

2 , p)− 1
2

))
2

(4)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Figure 5: Left: Coherent orientation is no guarantee for proper
alignment of adjacent cells. Right: The N6 graph reintroduces reg-
ularity to the relaxed system.

Heuristic experiments suggest letting the first half of the relaxation
run based on cg centers alone, then increase the contribution of cN6

centers (forcing the sites to from a hex grid) with a cosine curve
peaking at 75% of the procedure and have them converge to 0 again
towards the end of the relaxation. Other strategies for w(p) like a
linear, squared, quadratic, or sinusoidal decrease, increase, or both
(as a peak) are possible but were outperformed by the curve, for-
mally expressed in Equation 4 with progress p ∈ [0,1).

Split Cells Some geometry might cause unfavorable constellations
in the relaxed graph, like neighborhood clusters. A cluster occurs
if a node is considered as a direct neighbor by more than 6 other
nodes. As the N6 graph constantly updates during the relaxation,
one can quickly determine and resolve such clusters by splitting
the affected node. However, if a node is split too early, e.g., with
a cluster size of 7, the two resulting split nodes will have an un-
derpopulated neighborhood, which is why we chose a split-limit of
10. The to-be-split node is replaced by two new nodes, inheriting
its neighbors and linking to each other. Their geometric position is
based on the split-node’s site position, shifted in the positive or neg-
ative direction of the cells principal direction vector, respectively.

5. Mesh Extraction

The focus of this section is the post-relaxation domain, schemat-
ically outlined in Figure 6, which is to extract the geometry and
topology of the mesh from the relaxed sites. Since every site posi-
tion represents the center of a primitive, the relaxed Voronoi dia-
gram, hence the kNN graph, only gives the dual of the anticipated
hex-mesh, which its vertices should define. Geometry and topology
are gathered for the at-most-hexa mesh by utilizing all the informa-
tion that was accumulated for each site during the relaxation: 3D
position and orientation, cell extent and volume, N6 direct neigh-
bors, in/out state, and n-hop distance. Simply put, our approach is
to place actual hexahedra in all cells and fuse them wherever triv-
ially possible. A closed mesh can still be guaranteed by introducing
non-hex primitives where necessary.

The strict mechanisms for extracting the at-most-hexa mesh are de-
signed to make inverted primitives impossible. Therefore, the re-
sulting mesh does not contain negative Jacobians.

Relaxation
Unit Cube
Merging

Graph
Matching

Assembly

Site / Cell
Data

Vertices
and Edges Primitives AMH Mesh

Figure 6: The post-relaxation domain: Extracting vertices and
edges from relaxed sites (5.1) followed by the collection and as-
sembly (5.2) of at-most-hexa primitives for the final mesh.

5.1. Stage One: Geometry

The geometric basis for the further steps is based on the material-
ization of all Voronoi cells with small cubes centered on their sites’
position. This contrasts previous Lp-CVT based hex-dominant
meshing concepts [LL10,BRM∗14,SRUL16], which solely operate
on the bi-graph of the relaxed diagram, by assembling hexahedral
primitives from the Delaunay tetrahedralization. In our approach,
each cube is scaled uniformly to approximate the extent of its cor-
responding cell and is rotated to the site’s orientation. Boundary
cells are ensured to grow such that the boundary faces align with
the input hull or point cloud. This stage is illustrated in Figure 7
and as example in Figure 1 (center,left).

One can easily comprehend how two neighboring cubes should be
connected: Take the quad of each cube that is facing the other cube
and merge them into one. The eight virtual vertices of these two
virtual quads shall become four real vertices of one real quad.

This task may sound fairly simple, but it is rather complex to deter-
mine robust connections geometrically. The left of Figure 7 shows
relaxed cells; the right illustrates how uniform cubes are placed in
this scenario. A simple snap-merge approach could succeed on very
regular structures, but as soon as cells approximate curved surfaces,
the distances between potential merge partners vary heavily due to
keystone deformations of the cells. A merge criterion only based
on geometric distance is therefore not very robust.

Figure 7: Voronoi cells (left) and materialized cubes (right). Due
to the cell’s keystoning, the distances between virtual vertices may
vary significantly and is therefore not a robust criterion for a merge.

Our algorithm incorporates topology information provided by the
six nearest neighbors N6 of each node to approach this issue in the
merging step. If there is a mutually unique link established between
two cubes, they can be trivially interconnected. However, while the
regularization in Section 4.4 vastly improves the number of mutu-
ally unique relationships, they cannot be established everywhere.
Some node might be considered as a neighbor to fewer or more
than six other nodes. Those complicated cases will be considered
after the trivial cases.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Matching Scores To find the best suitable matches of the cube’s
quads to be merged, we first determine a score for each pair. There-
fore, the merging order determines by a global score-sorted priority
queue over all possible faces that could fuse two cubes. For each
face of a cube, the algorithm queries suitable faces of all six neigh-
bors and computes a geometric score ϕ as formulated in Equation 5,
expressing how well the two cubes match.

ϕ(U,V ) =

(
2− arccos(~nu ·~nv)

π

)
∑

i∈(0,1,2,3)
||ui− vi||2 (5)

where ui are vertices of face U , vi vertices of face V and~nu,~nv are
the face normals respectively. Assuming the best suitable permu-
tation for the vertices on the other face has been determined, the
scoring function computes the accumulated pairwise distance be-
tween face vertices scaled by an angular component based on the
face normals. For normals perfectly facing each other, the angu-
lar factor is 1, and it can grow up to 2 for face normals pointing
in the same direction. Face pairs and corresponding neighbors are
collected in the priority queue, sorted by ascending score values.
Faces for which there is no inside neighbor are labeled as part of
the outer hull of the final hex-mesh.

Vertex Merging With the face-merging order in place, we have to
find a suitable way to merge vertices. In an entirely regular sce-
nario, the corners of eight cubes would make up one vertex for
the final mesh. However, in an irregular arrangement, sometimes
more or fewer than eight virtual vertices make up one real vertex.
Positions of real vertices in the final hex-mesh are set to be the geo-
metric centers of the associated sets of virtual vertices. By working
off the priority queue, the information which virtual vertices are
to be merged comes in serial form and has to be assembled en-
tirely before the vertices can actually be combined. Therefore, the
merging process itself is split up into two steps: In the first run, all
merge-relevant information is collected and the virtual vertices ac-
cumulate in merge-sets. In the second run, all merge-sets compute
the real vertex position for the final hex-mesh.

Processing the priority queue As mentioned before, the majority
of all cubes can be connected straightforwardly, but some may re-
quire extra care. Our implemented algorithm to process the priority
queue follows a simple defensive strategy promoting only high-
quality mesh output. Therefore, a bit-field is maintained, which
keeps track of already merged and unmerged faces. If a face pair is
up-next in the priority queue and one of the faces is already flagged
as merged, the pair is skipped and left open.

Some of the skipped faces, e.g., as in the ambiguous assignment
problem in Figure 8, are resolved implicitly by the vertex merging
step. A cube’s edge can collapse if two virtual vertices are in the
same merge-set. Suppose this occurs on two opposing edges of a
quad-face, then one side of a cube collapses to an edge.

Closing Cuts So-called cuts occur when there is a gap in the
neighborhood topology at the time when matching scores are com-
puted. These topological gaps are totally valid and relatively easy
to fix by running another matching-score iteration before merging
the vertices. If two cubes were not direct but indirect neighbors,
it might happen that two of their virtual vertices will be together

Figure 8: Despite the N6 regularization, ambiguous scenarios as
on the left may still occur. The result on the right emerged from the
automated matching in which a face is collapsed to an edge.

in the same two merge-sets. If those two merge-sets form an edge
that connects open faces from these cubes, they will be considered
neighbors now, and the faces can be merged as well. Figure 9 illus-
trates this process in theory. A very prominent result can be found
in Figure 15 on the long rounded vertical corner of our Fandisk
result in the rightmost image.

Figure 9: The dark-blue cubes have dangling nodes (green) in their
N6 neighborhood. Indirect merges (red) are possible over common
edges (orange) at small enclosing angles.

After these steps, the positions of all real vertices are computed
by averaging over all virtual vertices contained in their respective
merge-sets. In some cases, the vertices generated by a merge can
be a bit off from the anticipated surface. For example, mainly the
narrowing geometry of the Jumpramp in Figure 18 provokes such
merges, which in combination with the concave 90° edge, can cause
displaced vertices. However, a simple optimization step, pulling
vertices onto the input surface (or a Spc surface patch in case of
point cloud input) would allow for an easy fix in such scenarios,
e.g., using the energy-term formulated for feature-aligned vertex
placement in established surface-meshing methods [JTPSH15].

5.2. Stage Two: Topology

This is the point where actual mesh topology comes together. So
far, the simple match-and-merge algorithm has only generated
the final mesh vertices and associated edges derived from the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

merged cube structures. This edge network already features
trivial triangular and quadrangular faces, suitable for at-most-hexa
primitives. However, this complex structure is not yet entirely
suitable for our objective as it also includes constellations that
are unresolvable with at-most-hexa primitives. We can identify
such regions as spirals, shown in Figure 10, and resolve them
by inserting additional edges. This can be done simultaneously
to the identification of trivial tri- and quad-faces (I.). On this
basis, small graph matching state-machine programs, as shown in
Figure 22, extract all possible at-most-hexa primitives (II.) from
the edge-network. The final mesh is then assembled (III.) from a
quality-sorted priority queue.

Figure 10: Spiral structures can not be represented with at-most-
hexa primitives. Identified penta-loops are supplemented with ad-
ditional edges, which are only used where needed in the final mesh.

I. Collect Faces Specified at-most-hexa primitives are based on
triangular and quadrangular faces found in the given edge com-
plex. Triangular faces are identified as loops of three adjacent edges
or four edges for quadrangular faces, respectively. However, there
are also cases where adjacent edge paths do not form closed loops
of length three or four. As shown in Figure 10, topological miss-
configurations can be caused during the relaxation in narrowing
geometry and can not be resolved using at-most-hexa primitives,
thus would cause holes and missing primitives in the final mesh.
Spiraling edge structures are identified and broken down, therefore,
becoming tri- and quadrangulatable. In an iteration over all edges,
a set of penta-loops is gathered, defined as five adjacent edges, not
interconnected by any other existing edge. Spirals can always be
broken down into one or more (overlapping) penta-loops, which
can be easily split up by creating five new interior edges per loop.
Regardless of being a prior existing or newly added edge, they are
only featured in the final mesh as part of a fitting primitive. Further-
more, it is suitable to split very skewed or non-planar quadrangular
faces into two triangles by inserting a diagonal edge in some cases.
For trapezoidal quads, we chose π

4 as the lower limit for corner
angles and π

3 as the upper limit between opposing edges on trape-
zoidal quads. The shortest diagonal of such a quad is then added
and treated equally to prior existing edges.

II. Graph Matching Algorithm Based on the collected tri- and
quad-faces, our algorithm now generates the basic building blocks
for the final mesh assembly, namely the at-most-hexa primitives.
This poses a straightforward graph matching task, but the greedy

search’s complexity escalates quickly if not approached with care.
With insight into possible outcomes, one can specify a strict set
of rules to prune the search tree drastically and avoid incredible
amounts of redundancy early on.

The algorithm in Listing 1 iterates over the available faces, gener-
ating the individual primitive types. The outer loop can be paral-
lelized, such that all primitive types are processed at the same time.
Pruning is achieved as the algorithm obeys the following rules:

• Every face fi is considered as a possible starting point to assem-
ble a primitive.
• Once a face fi was a starting point, all possible primitives featur-

ing fi have been explored.
• Search paths from other starting points f j including fi would

result in redundant results.
• Therefore, used starting points fi are marked and allow for an

early termination of redundant search paths f j.

The state-machine programs featured in Figure 22 are designed
for as little branching as possible. Therefore, a triangular face
is favorable over a quad as a primary face due to only three
open edges, hence branching directions; except for the hexahe-
dron obviously and the pyramid due to symmetry. This prese-
lection of suitable tri/quad faces is also implemented in the fol-
lowing algorithm. Our face-based state-machines can be formu-
lated with as little as only one, or at maximum two, possible as-
sembly sequences. This contrasts common tet-based hex-assembly
[MT00,LL10,BRM∗14,SRUL16], where the hexahedron alone can
be formulated in 10 different constellations, featuring 5, 6 or 7
tetrahedra plus sliver elements.

1 primitives = {}
2 facesUsed = {}
3 for primType in [8,7,6,5,4,1]:
4 primitives[primType] = []
5 facesUsed[primType] = zeros(numFaces)
6 for fi, face in enumerate(faces):
7 if face is quad and primType in [8,4] \
8 or face is tri and primType in [7,6,5,1]:
9 newPrims = findPrims(fi, primType)

10 primitives[primType] += newPrims
11 facesUsed[primType][fi] = 1

Listing 1: Loop over all faces with specialized state-machine
algorithms, as shown in Figure 22. The outer loop may be
parallelized for the individual at-most-hexa primitive types.

Listing 2 describes the general algorithm to generate at-most-hexa
primitives from a given starting face fi, as illustrated in Figure 22.
While there are unfinished primitives in the openPrims list, the
algorithm queries for adjacent, unused and type-suitable candidate
faces f j (line 7). New candidate faces explicitly qualify by sharing
one of the open edges in the unfinished primitive. A new primitive
struct is generated by adding face f j to the open primitive (line
8). If this leads to a complete primitive, it is added to the result
set (line 10). If the new primitive is not yet complete but a valid
state, it is added to the set of open primitives for the next round
(line 13). If neither case is satisfied, the new primitive is an invalid
state and rejected. For the same starting face fi, the algorithm may
return multiple primitives, i.e., two hexahedra sharing a common
quad face, but never any duplicates.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

1 def findPrims(fi, primType):
2 donePrims = []
3 openPrims = [[fi]]
4 while len(openPrims):
5 newOpenPrims = []
6 for openPrim in openPrims:
7 for fj in cFaces(openPrim, primType):
8 newPrim = openPrim + [fj]
9 if done(newPrim, primType):

10 donePrims.append(newPrim)
11 continue
12 if valid(newPrim, primType):
13 newOpenPrims.append(newPrim)
14 openPrims = newOpenPrims
15 return donePrims

Listing 2: The search for all possible primitives of a given type
including a specified starting face.

For the upcoming assembly routine, the at-most-hexa primitives
are sorted by quality within their class. Minimum Scaled Jacobians
(MSJ) are employed as an intuitive quality property. Not all prim-
itives support this property as trivially as the hexahedron with 8
suitable vertices. However, as the primitives derive from a hex-
ahedron by collapsing edges, each primitive trivially maps to a
unit cube. Collapsed edges result in a Jacobian of 0 on affected
vertices. Therefore, Jacobians are computed on non-hex primitives
only where possible, namely on vertices connected to three edges.

III. Assembly With all available primitives at hand, we will now
focus on the concept of assembling a full mesh. The upper his-
togram in Figure 12 shows the proportional amount of the differ-
ent types from all collected primitives. As illustrated, each collec-
tion of primitives is internally sorted by quality (MSJ). With the
following algorithm, the final mesh is assembled by incrementally
adding the best suitable primitives to the existing set as exemplified
in Figure 11. The relaxation produces a hex-dominant mesh, where
the majority of hexahedra can be adopted on the fly to initialize
the assembly’s starting point in Listing 3: All available hexahedral
primitives (type 8) with a certain quality (MSJ > 0.5) are directly
added to the amhMesh set. If there are conflicting hexahedra (i.e.,
partial overlaps) within this set by initialization, the lower quality
primitives of conflict-pairs are removed until amhMesh is conflict-
free. Further, faces used by two adjacent primitives are considered
closed. Faces used only once are collected in the openFaces set.

The algorithm’s design ensures it prioritizes larger (favorably
hexahedral) elements of high quality. Smaller primitives serve
as a fallback solution, especially the tetrahedron, as a last resort
to fill up the smallest gaps in the volume. Therefore, the criteria
for primitives to be considered candidates start high and will be
automatically lowered if there are no elements to be added with
the current settings, and reset if there was progress again.

Each iteration of the assembly algorithm in Listing 3 consists of
three phases: • First (line 4-11) a preselection, where the main
criteria for being considered in the next step are the primType,
the minimum number of how many open faces a primitive should
close cLim, and a minimum quality threshold minQ which we

set at 0.25. Suitable primitives are collected in the newPrims
set and sorted (lexicographically) by their qualification criteria;
first by their two integer keys (primitive type and the number of
closeable faces), then the float quality measure: primType > c
> prim.Q. Therefore, the first newPrim element of this sorted
list has the maximum primitive type, closes the most open faces,
and is of the highest quality. • Second (line 13-19), primitives are
added but only if they are not in conflict (primInConflict())
with the existing mesh. Our conflict definition follows the relaxed
interface-conformity constraints for hex-dominant meshes [YS03],
prohibiting partial overlaps or inclusions, i.e., two prisms in a hex-
ahedron. If it is safe, newPrim is added to the amhMesh set and
the openFaces set is updated with a symmetric difference set op-
eration (4 in the pseudo-code). Possible conflicts may arise for
newPrims with each newly added primitive, while they still await
their turn, queued in newPrims. Therefore, this check has to be
performed individually and not for all elements in the preselec-
tion. • Lastly (line 21-26), the qualification constraints for the next
addable primitives are either lowered or reset.

1 primType = 8
2 cLim = 4
3 while primType > 0:
4 newPrims = []
5 for prim in primitives:
6 prim.c = |openFaces ∩ prim|
7 if prim.t >= primType \
8 and prim.c >= cLim \
9 and prim.Q > minQ:

10 newPrims.append(prim)
11 newPrims = lexSort(newPrims, keys = [t,c,Q])
12

13 primsAdded = 0
14 for newPrim in newPrims:
15 if not primInConflict(newPrim):
16 amhMesh.append(newPrim)
17 openFaces = openFaces 4 newPrim
18 primsAdded += 1
19 primitives.remove(newPrim)
20

21 if not primsAdded:
22 primType -= cLim < 4
23 cLim = max(2, cLim-1)
24 else:
25 primType = 8
26 cLim = 4

Listing 3: Assembly algorithm to construct the at-most-hexa mesh.
amhMesh is initialized with non-conflicting hexas (≥ minQ).

The lower histogram in Figure 12 gives the composition of the re-
sulting at-most-hexa mesh after the assembly algorithm in List-
ing 3, most dominantly featuring hexahedral elements. However,
the assembly routine is not necessarily as straightforward as Fig-
ure 11 suggests; the enclosing while loop is allowed to lower and
reset the adding criteria multiple times. Further, the loop only may
terminate when there was not a single tet (type 1) left that would
close up any more faces. Consequently, as the tetrahedron is the
smallest possible primitive, the final mesh is completely filled up.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Figure 11: Progress (left to right) of the assembly routine on a cut open example of the Twistcube. This visualizes iterations of the while
loop in Listing 3, lowering the primType each round (8 hex > 7 hexPrism > 6 prism > 5 slice) to close open faces (white). The start
amhMesh on the left is initialized with hex-only elements of high quality.

8 7 hexPrism 6 prism 5 slice 4 pyra 1 tet
0

0.25

0.5

0.75

Q: 1
All available primitives (200k)

10.9%21.3%27.9%14.4%19.3%6.
2%

8 hex 7 6 5
0

0.25

0.5

0.75

Q: 1

minQ

Used primitives (9.5k)

2.
5%

5.
5%

2.
3%

89.5%

Figure 12: Quality histograms of primitives for the Fandisk model,
lex-sorted by hexType then quality (MSJ). Stats are shown before
(top) and after the assembly (bottom). The final mesh only features
high-quality (>minQ) primitives, primarily hexahedra.

6. Experiments and Discussion

We have tested our construction strategy on a number of examples.

#: 75.8% | V: 86.9% #: 87.8% | V: 93.9% #: 65.0% | V: 81.1%
Figure 13: The percentage of hexahedral cells (#) and volume (V)
obtained by our construction algorithm, on models with complex
geometries and high genera.

6.1. Requirements on input

One strength of our construction strategy is the versatility in terms
of input. The input shape can be given as a triangular boundary
mesh, a generic hex-dominant volume mesh, or even, as described
in the dedicated Appendix B, an unstructured point cloud.

Normal and orientation initialization is sampled from the input hull
or point cloud. Surface orientation can be robustly extracted using
winding numbers [BDS∗18] for meshes, or various strategies for

point clouds [JBG19]. A frame-field is not required, and cell orien-
tations get implicitly aligned to boundaries during the relaxation.
The method is robust with varying sampling density in the input,
and the input boundary is not required to be closed (as exemplified
by the Bunny dataset and the Minerva dataset in Figure 14, which
are open at the bottom). Manifolds of higher genera and complex
geometries can also be meshed correctly, as shown in Figure 13.

(l)

#: 77.6% | V: 88.9% #: 76.7% | V: 88.2% #: 81.5% | V: 90.8%
Figure 14: Minerva [Bol09] features over 100k primitives, recon-
structed from a point cloud of only 8k points. The Bunny [Sta14]
and the Hand were given as meshes and feature around 48k each.
Stats show the percentage of hexahedra as: #: number | V: volume.

6.2. Experimental Results

We tested our construction method on several 3D objects, both
with a mechanical and an organic shape. For comparison purposes
against competing approaches, we included popular 3D test ob-
jects. We used the real 3D scan data of Minerva in Figure 14 and
synthetic point cloud examples for our results of the Cylinder in
Figure 19 and Igea in Figure 25. Table 1 lists numerical evaluations
of our results compared to other approaches. Shown results and
measurements reflect the native outcome of our procedure, without
any further optimization, which would be possible [LSVT15].

Comparisons & Quality Table 1 offers comparisons, in terms of
mesh quality, of the results obtained with our method with the ones
resulting from existing hex-meshing approaches. As confirmed by
direct visual comparison, shown in Figure 19, our results are on par
with the state-of-the-art in terms of quality. This is in spite of our
method working with much fewer assumptions on the input, which
is a main motivation in our work. Many competing method methods
require a starting tet-mesh, and additional inputs such as additional
frame-fields [LLX∗12, SRUL16, SVB17, LPP∗20] (which can be
computed as part of the method, such as in [GJTP17]), volumetric
parameterizations [GSZ11, LBK16, RSR∗18, CAS∗19], and hand-
crafted singularity graphs [LZC∗18,CC19], dual-sheets [Tak19] or
feature-edge selections [LPP∗20].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

These required inputs can be constructed in separate, non-trivial
and preliminary steps, each subject to own lines of research: E.g.,
the construction of a tet-mesh from a boundary tri-mesh [SJ08,
Si15, HZG∗18], of a tri-mesh from a point cloud [BTS∗17], of
a volumetric directions-field from boundary geometry [BRM∗14,
SVB17], or sharp-feature lines from a boundary mesh [MAR∗20].
Despite the recent advancements in each of these fronts, we con-
sider it advantageous to bypass the need for these tasks.

0.9 1 1.1

As the relaxation strives to maximize uni-
formity, equidistantly distributed sites gen-
erate primitives of approximately the same
size. The inset histogram shows the dis-
tribution of edge lengths of the Fandisk
model of Gao et al. compared to our result.

The plot is zoomed in on the median peak, which was scaled to 1.

Figure 12 reports quality measure histograms for the Fandisk model
of all gathered primitives from the relaxation (top) and the used
ones in the final mesh (bottom). The hexahedral cells in our out-
put feature very regular shapes and a high Average Scaled Jaco-
bians [PTS∗08], matching or even superior to the ones obtained
with state-of-the-art procedures. As expected, the Minimum Scaled
Jacobians never fall below our threshold minQ of 0.25. In terms of
the number of hexahedral elements, the proportions of hexahedral
primitives in our at-most-hexa meshes (> 80%) exceed recent hex-
dominant procedures. Feature alignment and homogeneous edge-
flow is similar to the one obtained with existing meshing algorithms
focusing on this feature [GSZ11].

Figure 16 shows a comparison that highlights the limitation of ex-
isting all-hex methods [Tak19, LPP∗20], in terms of reliance on
complex-to-produce input. In these cases, irregular cell shapes,
widely varying element sizes, and inverted elements are produced
with the competing strategies. Authors of LoopyCuts [LPP∗20] at-
tribute this failure case to a limitation of their procedure, which
only performs well on suitable input frame-fields with evenly dis-
tributed singularities.

Figure 15 illustrates another direct comparison with the hexa-
dominant result of Gao et al. [GJTP17], highlighting all non-
hexahedral elements. The crucial difference is that their results fea-
ture generic polyhedra with more than eight vertices and faces with
more than four vertices. In contrast, our method produces at-most-
hexa meshes, with the consequences discussed in Section 1. In
this experiment, we modify our construction algorithm to refine an
existing generic hexa-dominant mesh into one valid at-most-hexa
mesh: we simply skip the relaxation part to generate the geometry
and directly break down the input structure, and then reassemble
the final elements as usual.

As an experiment, we also tested the same procedure starting
from existing irregular tet-meshes, such as the ones produced by a
TetWild [HZG∗18] (see results in Figure 20). In this case, the input
fails to provide any flow or direction information to guide the con-
struction, so it is expected that the results will be less regular and
less hexa-dominant. Nevertheless, by lowering the quality thresh-
old minQ to 0.1, the assembly routine managed to recover 21.4%
hexahedral elements.

# prims hex (%) vol (%) MSJ ASJ t

an
c1

01 Ours 84551 93.3 96.9 0.261 0.983 1590
[LL10] 105000 77.1 - - - 720

[GSP19]* 188886 - - 0.094 0.865 46.3k

ar
ie

s Ours 14004 94.8 97.6 0.255 0.987 1255
[GSP19]* 22547 - - 0.092 0.813 4568

bu
nn

y

Ours (l) 49243 76.7 88.2 0.252 0.939 1639
Ours (s) 3201 71.4 84.9 0.258 0.935 153

[SRUL16] - 60.6 88.6 - 0.950 469
[RSR∗18] - - 92.2 - - -
[GJTP17] 2135 66.2 65.2 0.285 0.953 -
[Tak19]* 2832 - - −0.771 0.749 -
[GSP19]* 29698 - - 0.292 0.790 -
[LPP∗20]* 2172 - - 0.451 0.911 112

cy
lin

de
r Ours (g) 1665 93.4 97.0 0.373 0.973 22

Ours (n) 1671 85.8 93.1 0.298 0.964 16
[SRUL16] - 64.7 90.9 - 0.960 327
[RSR∗18] - - 99.3 - - -

fa
nd

is
k

Ours 9523 89.5 95.3 0.303 0.973 780
[SRUL16] - 51.4 77.8 - 0.969 10
[GJTP17] 7069 88.4 87.7 0.668 0.986 -
[Tak19]* 1774 - - 0.217 0.905 -

fe
rt

ili
ty Ours 4997 75.8 86.9 0.261 0.946 645

[SRUL16] - 33.6 78.4 - 0.930 1121
[GJTP17] 4769 72.0 72.6 −0.330 0.960 1429

ha
ng

er Ours 12706 91.1 95.8 0.256 0.976 1905
[GSP19]* 26918 - - 0.155 0.828 1536
[Tak19]* 1382 - - 0.333 0.944 -

ig
ea Ours 27015 76.8 88.2 0.251 0.941 1228

[GJTP17] 12936 81.0 81.0 −0.230 0.970 -

ro
d

Ours 7409 87.2 94.1 0.355 0.968 541
[GSP19]* 26918 - - 0.155 0.828 1536
[Tak19]* 600 - - 0.221 0.763 -

sc
ul

pt Ours 5247 77.1 89.1 0.251 0.934 667
[GSP19]* 15202 - - 0.104 0.759 826
[LPP∗20]* 168 - - 0.806 0.918 18

sp
hi

nx

Ours 2100 81.5 90.9 0.312 0.963 200
[GJTP17] 2170 76.7 77.9 0.158 0.971 -
[GSP19]* 45348 - - 0.182 0.814 -
[LPP∗20]* 3944 - - −0.803 0.808 672

O
ur

s

hand 47132 81.5 90.8 0.253 0.950 521
holeblock 7491 87.8 93.9 0.250 0.970 175
jumpramp 1460 97.3 98.7 0.776 0.994 9
minerva 100567 77.6 88.9 0.251 0.940 1235
trefoil 8526 65.0 81.1 0.252 0.917 362

twistcube (s) 1301 88.9 95.6 0.488 0.978 7
twistcube (m) 5695 96.2 98.5 0.571 0.992 16
twistcube (l) 15841 96.2 98.4 0.316 0.990 76
twistcube (t) 2836 21.4 41.3 0.125 0.801 -

Table 1: Quality measures for our results and results obtained with
competing approaches. We list the total number of primitives, as
well as the proportions of hexahedra and their volume. The quality
metric of Scaled Jacobians (best is 1) is given with Minimum and
Average. The Cylinder (Figure 19) is included as the native (n) and
guided (g) version, the Twistcube (Figure 20) with three resolutions
(s,m,l) and the tet-based example (t). The total construction time (in
seconds) is also reported.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Gao et al. [GJTP17] | #: 88.36% | V: 87.74% [GJTP17] + Ours | #: 90.6% | V: 96.1% Ours | #: 89.5% | V: 95.3%
Figure 15: A direct comparison of results for the Fandisk model. Cells with more than six faces (larger than hexahedra), which are avoided in
our solutions, are colored in red. Cells that are not hexahedral, but are at-most-hexahedral, are colored in yellow. The center column shows
the results we obtain using, as input, the hex-dominant from the left. Stats show the percentage of hexahedral cells (#) and their volume (V).

Gao et al. [GJTP17] Takayama [Tak19] Ours (s)

Gao et al. [GJTP17] Livesu et al. [LPP∗20] Ours
Figure 16: Results of the Bunny and Sphinx with about the same
resolution each. General (larger than hexa) polyhedra are shown
in red, smaller ones in yellow and inverted primitives in magenta.

Comparison to Lp-based Meshing Lévy and Liu [LL10] exten-
sively studied Centroidal Voronoi Tessellations (CVT) under the
Lp norm. While their focus lies on the formulation and deriva-
tion of Lp-CVTs, they also propose their use for quad and hex-
dominant meshing. There are clear distinctions between their ap-
proach and ours: Whereas our approach aims to materialize the
hexahedral cells of the diagram itself, Lévy and Liu utilize the di-
agram bi-graph for the geometry extraction. Similar to Sokolov et
al. [SRUL16], the graph matching approach of Meshkat and Talmor
[MT00] is employed to assemble hex-like cells from the diagram’s
Delaunay tetrahedralization. As their mesh vertices are actually for-
mer cell centroids, they have to compensate for the resulting shrink-
age on the most outer hull layer. This is not required in our approach
where a cell itself corresponds to a mesh primitive, thus there is no
gap between generated geometry and the targeted hull. The con-
cept of Lévy and Liu also does not allow for control over the mesh
regularity, as their cell’s positional alignment is solely based on
the relaxation. In contrast to that, our internal graph structures can
enforce specific favorable alignments during the relaxation, as in-
troduced in Section 4.4 with the N6 graph. Furthermore, our Nk
graph provides the possibility to propagate and interpolate orienta-
tions throughout the diagram, thus it allows for cells aligned to the
input hull but also to each other. In the diagram of Lévy and Liu,
individual cell orientations are queried from anisotropy matrices
associated with outer hull faces, based on single nearest-neighbor
connections. Therefore, adjacent cells are not necessarily similarly
oriented but solely depend on their closest connection to the outer

hull. This effect is prominently visible in Figure 17 on the cut-open
Anc101 model: In Lévy and Liu’s Lp-CVT result, the rounded cap
of the pin-cavity dominates large portions of the interior cells. In
our result, the small cavity only has a minor influence as the cells
primarily align with the dominant outer shape of the model.

Lp-CVT Ours

Figure 17: In the Lp-CVT mesh [LL10] the rounded cavity cap
dominates the interior alignment; our cells are more aligned to the
outer shape. Here we adopted the color scheme of Lévy and Liu
with yellow hull faces and white for the exposed cut-open interior.

Regularity and Alignment The results presented in Figure 18 are
prime examples of the synergy of hull samples and cell orientations
during the relaxation with no frame-field given. On planar surfaces,
as on the Jumpramp, only surface normals are determined robustly,
primary curvature directions are just random guesses. Since there
was no consistent curvature field, the cell alignment of the flanks
dominates during the relaxation, and the orthogonally aligned ori-
entations follow along, so the resulting arrangement is as regular as
possible. Nevertheless, hex-like cells also intuitively align to more
distinctively shaped geometry like the Fandisk in Figure 15, featur-
ing creases, flat, angled, curved, and narrowing regions.

Figure 18: The Jumpramp is challenging for hex-meshing ap-
proaches based on regular parameterizations or integer mappings.
Nevertheless, our relaxation is flexible enough to cope with the an-
gled and narrowing geometry. Inner faces are shaded blue, non-hex
primitives (all triangular prisms) are highlighted in yellow.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

The relaxation process also promotes homogeneity throughout the
whole object. For example, the Cylinder in Figure 19 features
equally sized primitives in its center as well as on the outer hull.
Some hex-meshing algorithms tend to mimic proportions of the
hull in deeper layers which leads to an unnecessarily high reso-
lution towards the core of an object [LBK16, SRUL16, SVB17].
Cells are not explicitly bound to stay close to their initial position
or neighborhood. Although objects like the Cylinder or the Hole-
block (Figure 13) can’t provide much vertical support, cells do not
twist out of control and maintain a quite regular vertical alignment.

[LZC∗18] [CAS∗19] [CC19] Ours (n) Ours (g)
Figure 19: Results of other recent work using tet-meshes, polycube
mappings, and singularity graphs as input compared to ours based
on hull points only. This also compares a native (n) outcome of our
procedure with an experimentally guided (g) version.

The choice for initial site positions on an axis-aligned regular grid
is well suited for objects that also feature axis-aligned parts like
the Jumpramp, the Holeblock, or the CAD models in Figure 21.
Nevertheless, the relaxation is very flexible and able to approximate
organic shapes without explicitly axis-aligned parts faithfully. But
to be fair, even organic shapes like Minerva or Fertility are usually
not given with an arbitrary rotation but are also often oriented for
at least axis-aligned symmetry.

12
11
10

(s) (m) (l) (t)

Figure 20: The Twistcube [JTPSH15] in three different resolutions
(s,m,l) and with a cutout. The rightmost cube (t) is based on a De-
launay tetrahedralization [HZG∗18] instead of our relaxed input.

The Twistcube in Figure 20 illustrates how the relaxation also max-
imizes isotropy on objects with non-axis-aligned surfaces: The
curved point cloud hull acts as inside/outside separation on the ini-
tially regular grid cells. This rasterized initialization is resolved in
the relaxation with a varying number of homogeneously shaped
primitives instead of squashed and stretched ones.

Guidance Due to the relaxation, the mesh’s flow naturally aligns
to object curvature, based on surface features alone. Nevertheless,
it is quite easy to supplement this process with guiding structures
inside the object to control the internal flow-field and orientations.
For the Cylinder in Figure 19, we extended Spc with additional
samples on two orthogonal planes, intersecting on the rotational
axis of the object, similar to dual-sheet meshing [Tak19]. This
pushes the anticipated regularity for simple geometric shapes even
further by guiding the relaxation to obey symmetry or similar char-
acteristics.

Performance Due to the decentralized graph structure (Sec-
tion 4.2), the relaxation part of our pipeline is easily parallelized.
Timings were measured with an implementation in CUDA, run on a
GeForce GTX 1080Ti graphics card. The performance of the relax-
ation heavily depends on the selected parameters, e.g., grid resolu-
tion and the dimensions of the input structure. Included results were
created using 150 relaxation iterations. The Minerva object, one
of the larger reconstructions listed in Table 1, features about 225k
Voronoi cells (including the space outside of the object). One com-
plete relaxation iteration includes: Computing Voronoi cells and re-
centering their sites, updating the N6 and N26 neighborhood graphs
and n-hop distances, updating and interpolating separate individual
positions and orientations, and combining them with the progress-
dependent weighing function. With a neighborhood size of k = 26,
one iteration for these 225k elements is done in 2.43s. For recon-
structions of coarser resolution, e.g., the Jumpramp model, our im-
plementation reaches about 18 iterations per second. The vertex
merging steps for geometry generation as well as the graph match-
ing for topology extraction are also easily parallelizable and finish
within a few seconds on a multithreaded Python CPU implemen-
tation: As described in Section 5.2, the outer loop in Listing 1 can
be parallelized for the individual primitive types to be acquired and
sorted simultaneously. How much time is spent in each step varies
and depends on the chosen parameters as well as on the input ob-
ject: The GPU relaxation time correlates with the chosen mesh res-
olution, thus the overall number of cells in the diagram. An ob-
ject’s shape directly influences the time that is consumed by the
primitive-collection and mesh-assembly routines. For blocky ob-
jects like the Twistcube in Figure 11, the assembly routine starts
with a strongly hex-dominant initialization. In organic shapes or
contorted CAD models like the Fandisk in Figure 15, the initial-
ization contains larger quantities of non-hex cavities to be fill-up,
hence also a larger pool of at-most-hexa primitives to choose from.
This assembly routine (Listing 3) is the only serial CPU operation
in our pipeline. Nevertheless, the straight ordering of the priority
queue (Figure 12) allows for an efficient execution of the assembly,
which also terminates within minutes.

An extensive comparison of number-of-primitives vs. time stats
with a recent publication might be rather misleading due to the fol-
lowing reasons: Our relaxation currently (see Outlook) operates on
all cells within the objects bounding box volume. And as mentioned
above, filigree objects (Figure 13) would do rather poorly com-
pared to massive blocky objects (Figure 20). On the other hand,
timings of other approaches with similar primitive count usually
also heavily depend on the task to be solved and the given in-
put conditions. Our heterogeneous mixture of Cuda GPU-, single-
, and multithreaded Python CPU code introduces further bias on
the comparison with single-core C++ implementations of compet-
ing methods [LL10,GJTP17,Tak19,LPP∗20]. Nevertheless, Table 1
lists our measured timings for the included result.

Figure 12 lists about 200k gathered primitives of which only 9.5k
were used in the final mesh. This brute-force approach seems
wasteful but still outperformed more advanced alternatives. An in-
terleaved routine, alternating assembly steps with primitive collec-
tion queries only where needed caused overall too much overhead.
The simplest method proved to be the fastest: Gather primitives in
parallel and run the assembly on sorted data.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

#: 93.3% | V: 96.9% #: 91.1% | V: 95.8% #: 87.2% | V: 94.1% #: 77.1% | V: 89.1% #: 94.8% | V: 97.6%
Figure 21: More results on CAD models. Stats show the percentage of hexahedra as: #: number | V: volume.

6.3. Outlook

Additional Guidance As experimentally introduced in Figure 19,
the relaxation can be supplied with guidance from additional geom-
etry. Possible scenarios in future research could be to explore the
utilization of common and more explicit guiding structures. Dual-
sheets, frame-fields, or singularity graphs are currently not required
in our method but could improve result quality.

Non-uniform Cells Cells of non-uniform size and/or shape bear
geometric challenges which have yet to be explored. However,
solving them may pay out in the form of improved hex-mesh qual-
ity or adaptive meshing options. Formulating non-hex cells in the
relaxation or cells scaled anti-proportional to the n-hop distance
would allow for a more resourceful and detail-focused evaluation.

Exclude far away Cells To further improve the relaxation perfor-
mance, it could be beneficial to investigate mechanisms to exclude
far-away outside cells at an early stage of the relaxation. A com-
bined criterion with an n-hop distance > 1 would already exclude
many cells from further computation, probably without too much
impact on the closest relevant cells on the hull’s inside.

7. Conclusion

In this work, we present a new and innovative way to construct at-
most-hexa mesh structures. Further, our proposed procedure suc-
ceeded in bridging the gap between surface point clouds and vol-
ume hex-mesh generation. The quantity and quality of hexahe-
dral elements in our meshed results are improved compared to
established state-of-the-art algorithms. We introduce at-most-hexa
meshes, a novel class of hex-dominant meshes, where non-hex el-
ements are linear combinations of hexahedra. This allows for triv-
ial interpolation of scalar or vector signals within the volume and
greatly simplifies the internal representation due to the suitability
for indexed meshes. Contrasting common requirements for such
tasks, arbitrary meshes or point clouds of various sizes and densi-
ties are sufficient as input. The resolution for the resulting mesh can
be selected independently. The proposed approach consists of two
parts, starting with a Lloyd relaxation that eventually reintroduces
constrained regular structures. In contrast to previous Lp relaxation
methods using Delaunay tetrahedralizations, our geometry extrac-
tion is based on the actual materialization of the relaxed Voronoi
cells. At-most-hexa primitives are extracted with specialized state-
machine programs, and the final mesh assembles from a quality-
sorted priority queue. The interaction between fixed hull or point

cloud samples and relaxed cells generates a homogeneous orthog-
onal vector field for feature-aligned mesh structures. Therefore, the
approach is suitable to reconstruct organic and curved objects as
well as flat surfaces, sharp edges, or angled geometry with well-
aligned hexahedral primitives.

Acknowledgments

This work has been partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC number 2064/1 – Project num-
ber 390727645.

References
[BDS∗18] BARILL G., DICKSON N. G., SCHMIDT R., LEVIN D. I., JA-

COBSON A.: Fast winding numbers for soups and clouds. ACM Trans-
actions on Graphics (TOG) 37, 4 (2018), 43. 5, 11, 20

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LÉVY B.:
Polygon mesh processing. AK Peters/CRC Press, 2010. 4

[BL18] BUKENBERGER D. R., LENSCH H. P. A.: Hierarchical Quad
Meshing of 3D Scanned Surfaces. Computer Graphics Forum 37, 5
(2018), 131–141. doi:10.1111/cgf.13497. 3

[BLP∗13] BOMMES D., LÉVY B., PIETRONI N., PUPPO E., SILVA C.,
TARINI M., ZORIN D.: Quad-mesh generation and processing: A survey.
Comput. Graph. Forum 32, 6 (Sept. 2013), 51–76. doi:10.1111/
cgf.12014. 1

[Bol09] Dept. of Math. Bologna University Scan Repository, 2009.
Online; accessed Oktober-2017, http://www.dm.unibo.it/
~morigi/homepage_file/research_file/scan_db/res_
scan.html. 11

[BRM∗14] BAUDOUIN T. C., REMACLE J.-F., MARCHANDISE E.,
HENROTTE F., GEUZAINE C.: A frontal approach to hex-dominant
mesh generation. Advanced Modeling and Simulation in Engineering
Sciences 1, 1 (2014), 8. 3, 5, 7, 9, 12

[BTP∗19] BRACCI M., TARINI M., PIETRONI N., LIVESU M.,
CIGNONI P.: Hexalab.net: An online viewer for hexahedral meshes.
Computer-Aided Design 110 (2019), 24 – 36. URL: https://www.
hexalab.net/, doi:10.1016/j.cad.2018.12.003. 17

[BTS∗17] BERGER M., TAGLIASACCHI A., SEVERSKY L. M., ALLIEZ
P., GUENNEBAUD G., LEVINE J. A., SHARF A., SILVA C. T.: A sur-
vey of surface reconstruction from point clouds. In Computer Graphics
Forum (2017), vol. 36, Wiley Online Library, pp. 301–329. 12

[CAS∗19] CHERCHI G., ALLIEZ P., SCATENI R., LYON M., BOMMES
D.: Selective padding for polycube-based hexahedral meshing. In Com-
puter Graphics Forum (2019), vol. 38, Wiley Online Library, pp. 580–
591. 2, 3, 11, 14

[CC19] CORMAN E., CRANE K.: Symmetric moving frames. ACM
Trans. Graph. 38, 4 (2019). 3, 11, 14

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.13497
https://doi.org/10.1111/cgf.12014
https://doi.org/10.1111/cgf.12014
http://www.dm.unibo.it/~morigi/homepage_file/research_file/scan_db/res_scan.html
http://www.dm.unibo.it/~morigi/homepage_file/research_file/scan_db/res_scan.html
http://www.dm.unibo.it/~morigi/homepage_file/research_file/scan_db/res_scan.html
https://www.hexalab.net/
https://www.hexalab.net/
https://doi.org/10.1016/j.cad.2018.12.003


D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

[CI00] CALVO N. A., IDELSOHN S. R.: All-hexahedral element mesh-
ing: Generation of the dual mesh by recurrent subdivision. Computer
Methods in Applied Mechanics and Engineering 182, 3-4 (2000), 371–
378. 2

[CS98] CONWAY J. H., SLOANE N. J. A.: Sphere packings, lattices and
groups. Springer, 1998. 5

[CW10] CHANG H.-C., WANG L.-C.: A simple proof of thue’s theorem
on circle packing. arXiv preprint arXiv:1009.4322 (2010). 5

[DEJ06] DU Q., EMELIANENKO M., JU L.: Convergence of the lloyd
algorithm for computing centroidal voronoi tessellations. SIAM journal
on numerical analysis 44, 1 (2006), 102–119. 6

[DML11] DONG W., MOSES C., LI K.: Efficient k-nearest neighbor
graph construction for generic similarity measures. In Proceedings of the
20th international conference on World wide web (2011), ACM, pp. 577–
586. 6

[EBCK13] EBKE H.-C., BOMMES D., CAMPEN M., KOBBELT L.: Qex:
robust quad mesh extraction. ACM Transactions on Graphics (TOG) 32,
6 (2013), 168. 2

[GJTP17] GAO X., JAKOB W., TARINI M., PANOZZO D.: Robust hex-
dominant mesh generation using field-guided polyhedral agglomeration.
ACM Transactions on Graphics (TOG) 36, 4 (2017), 114. 2, 3, 11, 12,
13, 14

[GPW∗17] GAO X., PANOZZO D., WANG W., DENG Z., CHEN G.: Ro-
bust structure simplification for hex re-meshing. ACM Transactions on
Graphics 36, 6 (2017). 3

[GSP19] GAO X., SHEN H., PANOZZO D.: Feature preserving octree-
based hexahedral meshing. In Computer Graphics Forum (2019), vol. 38,
Wiley Online Library, pp. 135–149. 2, 12

[GSZ11] GREGSON J., SHEFFER A., ZHANG E.: All-hex mesh genera-
tion via volumetric polycube deformation. In Computer graphics forum
(2011), vol. 30, Wiley Online Library, pp. 1407–1416. 2, 11, 12

[HAB∗17] HALES T., ADAMS M., BAUER G., DANG T. D., HARRISON
J., LE TRUONG H., KALISZYK C., MAGRON V., MCLAUGHLIN S.,
NGUYEN T. T., ET AL.: A formal proof of the kepler conjecture. In
Forum of mathematics, Pi (2017), vol. 5, Cambridge University Press. 5

[Hau01] HAUSNER A.: Simulating decorative mosaics. In Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques (2001), ACM, pp. 573–580. 3, 5, 19

[HIKL∗99] HOFF III K. E., KEYSER J., LIN M., MANOCHA D., CUL-
VER T.: Fast computation of generalized voronoi diagrams using graph-
ics hardware. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques (1999), ACM Press/Addison-Wesley
Publishing Co., pp. 277–286. 3, 5

[HS17] HORMANN K., SUKUMAR N.: Generalized barycentric coordi-
nates in computer graphics and computational mechanics. CRC Press,
2017. 4

[HZG∗18] HU Y., ZHOU Q., GAO X., JACOBSON A., ZORIN D.,
PANOZZO D.: Tetrahedral meshing in the wild. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 60. 12, 14

[JBG19] JAKOB J., BUCHENAU C., GUTHE M.: Parallel globally con-
sistent normal orientation of raw unorganized point clouds. Com-
puter Graphics Forum 38 (08 2019), 163–173. doi:10.1111/cgf.
13797. 11

[JTPSH15] JAKOB W., TARINI M., PANOZZO D., SORKINE-HORNUNG
O.: Instant field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189–
1. 3, 6, 8, 14

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Proceedings of the Fourth Eurographics Symposium
on Geometry Processing (Aire-la-Ville, Switzerland, Switzerland, 2006),
SGP ’06, Eurographics Association, pp. 61–70. 3

[KBLK14] KREMER M., BOMMES D., LIM I., KOBBELT L.: Advanced
automatic hexahedral mesh generation from surface quad meshes. In
Proceedings of the 22nd International Meshing Roundtable. Springer,
2014, pp. 147–164. 2

[LA] LEVY B., ALONSO L.: Graphite. URL: http:
//alice.loria.fr/index.php/software/3-platform/
22-graphite.html. 17

[LBK16] LYON M., BOMMES D., KOBBELT L.: Hexex: robust hexa-
hedral mesh extraction. ACM Transactions on Graphics (TOG) 35, 4
(2016), 123. 2, 11, 14

[LL10] LÉVY B., LIU Y.: L p centroidal voronoi tessellation and its
applications. In ACM Transactions on Graphics (TOG) (2010), vol. 29,
ACM, p. 119. 2, 3, 5, 7, 9, 12, 13, 14

[LLX∗12] LI Y., LIU Y., XU W., WANG W., GUO B.: All-hex meshing
using singularity-restricted field. ACM Transactions on Graphics (TOG)
31, 6 (2012), 177. 2, 11

[LPP∗20] LIVESU M., PIETRONI N., PUPPO E., SHEFFER A., CIGNONI
P.: Loopycuts: Practical feature-preserving block decomposition for
strongly hex-dominant meshing. ACM Transactions on Graphics 39, 4
(2020). doi:10.1145/3386569.3392472. 2, 11, 12, 13, 14

[LPW∗06] LIU Y., POTTMANN H., WALLNER J., YANG Y.-L., WANG
W.: Geometric modeling with conical meshes and developable surfaces.
In ACM SIGGRAPH 2006 Papers. 2006, pp. 681–689. 4

[LSVT15] LIVESU M., SHEFFER A., VINING N., TARINI M.: Practical
hex-mesh optimization via edge-cone rectification. ACM Transactions
on Graphics (TOG) 34, 4 (2015), 141. 11

[LZC∗18] LIU H., ZHANG P., CHIEN E., SOLOMON J., BOMMES D.:
Singularity-constrained octahedral fields for hexahedral meshing. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 93. 2, 3, 11, 14

[MAR∗20] MATVEEV A., ARTEMOV A., RAKHIMOV R., BO-
BROVSKIKH G., PANOZZO D., ZORIN D., BURNAEV E.: Def: Deep
estimation of sharp geometric features in 3d shapes, 2020. arXiv:
2011.15081. 12

[MB12] MOUTON T., BÉCHET E.: Lloyd relaxation using analytical
voronoi diagram in the l_infinite norm and its application to quad op-
timization. Proceedings of the 21st International Meshing Roundtable
(2012). 5

[MT00] MESHKAT S., TALMOR D.: Generating a mixed mesh of hexa-
hedra, pentahedra and tetrahedra from an underlying tetrahedral mesh.
International Journal for Numerical Methods in Engineering 49, 1-2
(2000), 17–30. 3, 9, 13

[NRP11] NIESER M., REITEBUCH U., POLTHIER K.: Cubecover–
parameterization of 3d volumes. In Computer graphics forum (2011),
vol. 30, Wiley Online Library, pp. 1397–1406. 2

[NZH∗18] NI S., ZHONG Z., HUANG J., WANG W., GUO X.: Field-
aligned and lattice-guided tetrahedral meshing. In Computer Graphics
Forum (2018), vol. 37, Wiley Online Library, pp. 161–172. 5

[OBB∗13] ORZAN A., BOUSSEAU A., BARLA P., WINNEMÖLLER H.,
THOLLOT J., SALESIN D.: Diffusion curves: a vector representation
for smooth-shaded images. Communications of the ACM 56, 7 (2013),
101–108. 6

[PAM11] PELLENARD B., ALLIEZ P., MORVAN J.-M.: Isotropic 2d
quadrangle meshing with size and orientation control. In Proceedings
of the 20th International Meshing Roundtable. Springer, 2011, pp. 81–
98. 3

[PdC76] PERDIGÃO DO CARMO M.: Differential geometry of curves and
surfaces. 6

[PJVR18] PELLERIN J., JOHNEN A., VERHETSEL K., REMACLE J.-F.:
Identifying combinations of tetrahedra into hexahedra: A vertex based
strategy. Computer-Aided Design 105 (2018), 1–10. 3

[PTS∗08] PÉBAY P. P., THOMPSON D., SHEPHERD J., KNUPP P.,
LISLE C., MAGNOTTA V. A., GROSLAND N. M.: New applications
of the verdict library for standardized mesh verification pre, post, and
end-to-end processing. In Proceedings of the 16th International Mesh-
ing Roundtable (2008), Springer, pp. 535–552. 12

[RSLL18] RAY N., SOKOLOV D., LEFEBVRE S., LÉVY B.: Mesh-
less Voronoi on the GPU. ACM Transactions on Graphics 37

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.13797
https://doi.org/10.1111/cgf.13797
http://alice.loria.fr/index.php/software/3-platform/22-graphite.html
http://alice.loria.fr/index.php/software/3-platform/22-graphite.html
http://alice.loria.fr/index.php/software/3-platform/22-graphite.html
https://doi.org/10.1145/3386569.3392472
http://arxiv.org/abs/2011.15081
http://arxiv.org/abs/2011.15081


D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

(2018). URL: https://hal.inria.fr/hal-01927559, doi:
10.1145/3272127.3275092. 5

[RSR∗18] RAY N., SOKOLOV D., REBEROL M., LEDOUX F., LÉVY
B.: Hex-dominant meshing: mind the gap! In SPM 2018 - International
Conference on Solid and Physical Modeling (Bilbao, Spain, June 2018).
URL: https://hal.inria.fr/hal-01927557. 3, 11, 12

[Rus04] RUSINKIEWICZ S.: Estimating curvatures and their derivatives
on triangle meshes. In 3D Data Processing, Visualization and Transmis-
sion, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on
(2004), IEEE, pp. 486–493. 6

[SHG∗19] SCHNEIDER T., HU Y., GAO X., DUMAS J., ZORIN D.,
PANOZZO D.: A large scale comparison of tetrahedral and hexahedral
elements for finite element analysis, 2019. arXiv:1903.09332. 1

[Si15] SI H.: Tetgen, a delaunay-based quality tetrahedral mesh genera-
tor. ACM Transactions on Mathematical Software (TOMS) 41, 2 (2015),
1–36. 12

[SJ08] SHEPHERD J. F., JOHNSON C. R.: Hexahedral mesh generation
constraints. Engineering with Computers 24, 3 (2008), 195–213. 3, 12

[SRUL16] SOKOLOV D., RAY N., UNTEREINER L., LÉVY B.:
Hexahedral-dominant meshing. ACM Transactions on Graphics (TOG)
35, 5 (2016), 157. 2, 3, 7, 9, 11, 12, 13, 14

[Sta14] The Stanford 3D Scanning Repository, 2014. Online; accessed
Oktober-2017, http://graphics.stanford.edu/data/
3Dscanrep/. 11

[STJ∗17] SCHERTLER N., TARINI M., JAKOB W., KAZHDAN M.,
GUMHOLD S., PANOZZO D.: Field-aligned online surface reconstruc-
tion. ACM Transactions on Graphics (TOG) 36, 4 (2017), 77. 3

[SVB17] SOLOMON J., VAXMAN A., BOMMES D.: Boundary element
octahedral fields in volumes. ACM Trans. Graph. 36, 3 (May 2017),
28:1–28:16. doi:10.1145/3065254. 3, 11, 12, 14

[Tak19] TAKAYAMA K.: Dual sheet meshing: An interactive approach
to robust hexahedralization. Computer Graphics Forum (proceedings of
Eurographics) 38, 2 (2019), 37–48. doi:10.1111/cgf.13617. 2,
11, 12, 13, 14

[THCM04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.:
Polycube-maps. In ACM transactions on graphics (TOG) (2004), vol. 23,
ACM, pp. 853–860. 2

[WSK06] WADA Y., SHINBORI J., KIKUCHI M.: Adaptive fem anal-
ysis technique using multigrid method for unstructured hexahedral
meshes. In Key Engineering Materials (2006), vol. 306, Trans Tech Publ,
pp. 565–570. 4

[YS03] YAMAKAWA S., SHIMADA K.: Fully-automated hex-dominant
mesh generation with directionality control via packing rectangular solid
cells. International journal for numerical methods in engineering 57, 15
(2003), 2099–2129. 5, 10

[ZB06] ZHANG Y., BAJAJ C.: Adaptive and quality quadrilateral/hex-
ahedral meshing from volumetric data. Computer methods in applied
mechanics and engineering 195, 9-12 (2006), 942–960. 2

[ZLGH10] ZHANG L., LIU L., GOTSMAN C., HUANG H.: Mesh re-
construction by meshless denoising and parameterization. Computers &
Graphics 34, 3 (2010), 198 – 208. Shape Modelling International (SMI)
Conference 2010. doi:10.1016/j.cag.2010.03.006. 3

Appendix A: At-Most-Hexa Primitives

The base case of our at-most-hexa mesh is a simple hexahedron
with 8 vertices and 6 quad faces. All other allowed primitives are
listed in Figure 22 and derive from this base case by collapsing up
to four edges.

State-Machine Programs The search for primitives in the set of
quadrangular and triangular faces can be performed very efficiently,
using specifically tailored state-machine algorithms for each prim-
itive type. Starting from the initialization state with only one face,
adding a face is the only supported operation to transition from one
state to the next. If a transition generates a valid state, the search
path continues or is discarded otherwise. The illustration in Fig-
ure 22 shows the progress of the individual state-machines with
color-coded faces and edges. The primary face is the starting po-
sition, providing the first set of open edges. Secondary faces may
only be added on open edges of the primary face. Tertiary faces are
determined indirectly by a specific set of open edges, e.g., in the
penultimate state of the hexahedron, the last four open edges un-
ambiguously specify the last quad face. Since only faces in a direct
adjacent neighborhood (fix size) are considered for a state transi-
tion, the search’s complexity is in O(n).

Interexchange Format At-most-hexa primitives can be formu-
lated as linear combinations of the 8 vertices of a hexahedron. We
use this property to store our results as simple indexed mesh files,
commonly used for hex-meshes. Therefore, corner vertex indices
are duplicated as listed in Figure 2 with 8-vertex-index sets for the
different primitives, respectively. Out in the wild, this format could
easily be read by dedicated hex-meshing applications. However,
some internal routines may struggle with collapsed edges or faces:
Graphite [LA] can load our meshes but may not be able to differ-
entiate between interior and hull faces robustly. Nevertheless, the
HexaLab [BTP∗19], an online visualizer/analyzer that is designed
for pure-hexa meshes, can be used to examine our results, which
are provided in the supplemental material.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://hal.inria.fr/hal-01927559
https://doi.org/10.1145/3272127.3275092
https://doi.org/10.1145/3272127.3275092
https://hal.inria.fr/hal-01927557
http://arxiv.org/abs/1903.09332
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1145/3065254
https://doi.org/10.1111/cgf.13617
https://doi.org/10.1016/j.cag.2010.03.006


D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

8 hex [Q:1, T:0, OE:4] [Q:2, T:0, OE:6] [Q:3, T:0, OE:6|8] [Q:4, T:0, OE:6] [Q:5, T:0, OE:4] [Q:6, T:0, OE:0]

A
B

C
D

E
F

G
H

7 hexPrism [Q:0, T:1, OE:3] [Q:1, T:1, OE:5] [Q:2, T:1, OE:5|7] [Q:3, T:1, OE:5] [Q:3, T:2, OE:4] [Q:4, T:2, OE:0]

A BC

D

E
F

G
H

6 prism [Q:0, T:1, OE:3] [Q:1, T:1, OE:5] [Q:2, T:1, OE:5] [Q:3, T:1, OE:3] [Q:3, T:2, OE:0]

A BC

D

E FG

H

5 slice [Q:0, T:1, OE:3] [Q:1, T:1, OE:5] [Q:1, T:2, OE:4] [Q:2, T:2, OE:0]

A BC

D

EH

FG

4 pyra [Q:1, T:0, OE:4] [Q:1, T:1, OE:5] [Q:1, T:2, OE:4|6] [Q:1, T:3, OE:3] [Q:1, T:4, OE:0]

A
BC
FGD

E

H

1 tet [Q:0, T:1, OE:3] [Q:0, T:2, OE:4] [Q:0, T:3, OE:3] [Q:0, T:4, OE:0]

AE

BC

FG
DH

Figure 22: State-machine programs for the different (used) at-most-hexa primitives, with an initialization state of only one face on the left
and completed primitives on the right. Valid states are encoded in triples: Number of Quads / Tris and the number of Open Edges.

Colors highlight open edges , primary , secondary and tertiary faces.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Appendix B: Point Cloud Input

In addition to supporting closed manifold input, we also propose
a simple extension to our method to require point clouds as input
only. This feature is elaborated analogously to Section 4.

Motivation

While surface reconstruction techniques can easily start from point
cloud samples directly, established hex-meshing algorithms require
complex input like parameterizations, mappings, other volume or
surface meshes. The goal of any signal processing pipeline should
be to avoid the concatenation of lossy processing steps and the ac-
cumulation of errors. Even for well-researched procedures, it is al-
ways important to study alternative ways – if only to prove a point.
So if we can go from point samples to a surface mesh and from
a surface mesh to a volume mesh - why not skip this surface pre-
computation step and generate the volume mesh directly from point
cloud samples? Nevertheless, a surface mesh is indirectly generated
anyway as the outer hull of the volume mesh. Therefore, we pro-
pose an approach to bridge this gap and produce high-quality hex-
dominant meshes and watertight surfaces solely from point cloud
surface samples.

Site Population

The whole set of sites in the Voronoi diagram consists of two
disjunct subsets S = Spc∪Sv: Sv initializes as before. Additionally,
to represent the surface, each 3D point cloud sample creates one
additional site, forming the second set of sites Spc. Sites in Spc
have a fixed location - the one of their point cloud sample - and a
fixed normal derived from the local neighborhood. Both properties
do not change during the optimization. The sites Spc serve two
purposes: They separate inside from outside cells, ensuring that
the created boundary precisely aligns to the implicit hull. Further,
they enforce that the orientation of all other interior sites Sv will
adapt to the surface features.

Point Cloud Hull

In the Voronoi diagram, both site-sets Sv and Spc spawn cells. Sv
cells are uniformly shaped with the Chebyshev metric following
the sites’ orientation and therefore will approximate cuboids; for
Spc cells, an anisotropic transformed norm is applied: These cells
are compressed along the direction of their normal and stretched
along the direction of their tangent and bitangent as illustrated in
Figure 23 (with factors 0.5 and 1.5). Even sparsely sampled point
clouds provide a sufficiently dense hull to separate sites floating
around the in- and outside of the object [Hau01]. Throughout the
relaxation, the height of the Spc cells is slowly reduced to 0 to en-
sure that the hull is not covering any volume (Figure 24, right).
Furthermore, sites Spc are not allowed to move during the relax-
ation. This way sites Sv can move up to the outer hull from the in-
and outside of the object but will not pass the hull. Sites that start
somewhere on this hull will be pushed either in or out of the object
within only a few iterations.

kNN-Graph

There are no modifications required for the kNN-graphs to support
the point cloud input. The N26 is allowed to include neighbors from
S, therefore natively interconnecting Spc and Sv sites. As before, N6
only operates on Sv.

Inter- and Extrapolation

Analogously to Section 4.3, all sites initialize with orientations
propagated from the hull, in this case, point cloud samples. After
the relaxation, an in/out label is propagated.

Orientation Initialization Instead of sampling the hull individu-
ally, nodes of level di = 1 query their orientation from the closest
point cloud neighbors (di = 0), which are naturally included in their
k nearest neighbor list. A Sv may query multiple Spc nodes, and a
Spc node may be shared by multiple Sv nodes as illustrated on the
left in Figure 23.

Figure 23: Nodes with di = 1 (dashed) determine their in/out label
from the dot product of direction~vi and normal ~ni. Nodes of di > 1
derive their label from neighboring nodes closer to the surface, as
illustrated with the graph in magenta. The right side shows the N6
graph (green), transcending the outer hull, so that adjacent cells
on the in- and outside are able to align nevertheless.

Inside/Outside Determining inside-outside labels is no longer as
trivial as with a hull given. Although algorithms specialise in wind-
ing numbers for point clouds, we propose to query the information
at hand using the neighborhood graph and simple geometry. First,
this labeling operation simplifies by focusing only on nodes of level
di = 1, close to the hull. All other nodes with 1 < di easily derive
their state from already labeled nodes in their direct neighborhood.
In/out labels for nodes with di = 1 depend on their normals pointing
towards or away from hull nodes as shown in Figure 23. Vector~vi
in Equation 6 is the normalized average direction from node si to its
direct neighbors s j ∈ Spc with j ∈ N26(i). As formulated in Equa-
tion 7, the in/out label li derives from the sign of the dot product
between direction vector~vi and normal~ni.

~vi =
1

|N26(i)∩Spc| ∑
j∈N26(i)∩Spc

s j− si

||s j− si||2
(6)

li =
{

in if~vi ·~ni > 0
out else

(7)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Bukenberger and M. Tarini and H. Lensch / At-Most-Hexa Meshes

Close to sharp edges, this procedure may cause false-positives. The
scenario illustrated in Figure 24 (left) shows a case where the ma-
jority of direct point cloud neighbors is just around the corner.
Therefore, the derived normal ~ni and averaged direction ~vi point
into the same direction. This is a perfectly valid behavior, but one
can also easily fix such outliers by querying the labels of their N6
neighborhood as illustrated in Figure 24 (center): If a node is la-
beled as inside and has less than three direct neighbors, which are
also labeled as inside, its label is switched to outside.

Figure 24: Left: A node identifies as in because its primary direc-
tion is in accord with the majority of its hull neighbors. Center: A
majority vote of the N6 neighborhood easily fixes false-positives.
Right: Spc cells converge to 0 height at the end of the relaxation, so
the hull no longer covers any volume.

Compared to winding numbers [BDS∗18], our approach trivially
blends in with the rest of the graph operations and does not add
any further computation steps. Since we limit our labeling to points
that are closest to the oriented hull and propagate results for farther
points, our results are practically error-free.

0.0% 0.1% 1.0% 10.0%
Figure 25: Reconstructions of the Igea artifact from 5k points per-
turbed with random noise vectors. Noise magnitude levels are given
in percent of the length of the bounding-box’s diagonal. Raw output
of the relaxation and merging pipeline, no at-most-hexa topology.

Bring the Noise Due to our focus on simple and minimal input,
we never used more than 10k randomly sampled points for included
results. The quality of actual 3D scans is usually higher than what
we aimed for: Modern mid-range 3D scanners can produce high-
density results with millions of points arranged in nice regular pat-
terns. However, robustness to bad input is always crucial for recon-
struction tasks. To explore the limits of our procedure, we artifi-
cially perturbed input samples with noise vectors (sphere samples
with limited random magnitude). Figure 25 illustrates results, us-
ing different magnitudes of noise which are given in percent of the

length of the object’s bounding-box diagonal. Normals and orienta-
tions were computed from the noisy point clouds to simulate unreli-
able data. Furthermore, we did not apply any topology reconstruc-
tion or remeshing steps to these results. Even with a certain amount
of noise, our method can concisely reconstruct the object with only
minor flaws on the hull. Enough noise can also provoke failures, as
shown on the right in Figure 25. With noise magnitudes larger than
the cell size, the hull becomes very vague: The in/out labels of the
outermost layer can no longer be determined with certainty, which
is why there are loose hexahedra floating around. However, already
from the second layer on inwards, the mesh is fine and follows a
smooth orientation field.

Relaxation

The Lloyd relaxation process with point cloud input is equivalent
to the one introduced in Section 4.3 with one exception: As there
is no hull separating interior and exterior cells, the sites Spc are not
altered during the relaxation. They remain in their initial position
during the whole process and also maintain their normal direction.
However, tangent and bitangent are free to be updated according
to the frame field generated during the relaxation. By keeping their
normals fixed, the hull barrier is guaranteed to stay intact, but the
cells can align with dominant surface features.

Limitations Voronoi cells relax under the assumption to approxi-
mate a cubical shape with uniform edge lengths. Cells within ge-
ometry, thinner than the average relaxed edge length, are in a very
unrelaxed state and might be squeezed outside of the object. How-
ever, with samples placed sufficiently dense, it becomes improba-
ble for cells to pass the outer hull, and even thin geometry can be
represented, e.g., with only one layer of hexahedra.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.


