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Abstract
One of the most elementary application of a lattice is the quantization of real-valued s-dimensional vectors into finite bit
precision to make them representable by a digital computer. Most often, the simple s-dimensional regular grid is used for this
task where each component of the vector is quantized individually. However, it is known that other lattices perform better
regarding the average quantization error. A rank-1 lattices is a special type of lattice, where the lattice points can be described
by a single s-dimensional generator vector. Further, the number of points inside the unit cube [0, 1)s is arbitrary and can be
directly enumerated by a single one-dimensional integer value. By choosing a suitable generator vector the minimum distance
between the lattice points can be maximized which, as we show, leads to a nearly optimal mean quantization error. We present
methods for finding parameters for s-dimensional maximized minimum distance rank-1 lattices and further show their practical
use in computer graphics applications.

Keywords: signal processing, methods and applications, colour compression, image and video processing, weird math, methods
and applications
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1. Introduction

The use of quantization of data points is one of the most basic and
often used tools for algorithms in computer graphics. For example,
colours are quantized in 8-bit per colour channel for image display
or normal vectors are packed into 24-bit normal maps. This principle
is easily generalized to arbitrary dimensions s by quantizing each
dimension separately. This can then be used in practical applications
for almost any data that occur in a graphics algorithm.

More formally, this kind of quantization is the construction of a
s-dimensional regular grid where the number of discrete points is
2bs (with b being the number of bits chosen to represent a value per
dimension). While for specific use-cases, there are always highly
sophisticated methods for data reduction or quantization that lead
to superior results, the regular grid is still widely used. It is easy to
implement and understand; quantization is straightforward and fast
to convert back to the original domain. It is thus an indispensable
tool for the computer graphics practitioner.

Despite its wide use the regular grid has two major drawbacks.
First, the number of discretization points is the product of the number
of points per dimension (i.e. for 8-bit RGB images it is 2563) and it
is not possible to arbitrarily adjust the number of points and thus the
bit-depth to, for example, 17. Adjusting the bit-depth per dimension
has the problem of different quantization errors per dimension and
thus is not optimal, if, for example, all dimensions are equally
important. The second drawback is that it is known that the regular
grid is not optimal regarding the quantization error for s > 1 (for
s = 1 the regular grid is just equidistant points).

In this paper, we propose and discuss the use of a replacement
for the regular grid quantization by the use of rank-1 lattices. These
lattices solve both problems mentioned above while still being as
simple and fast to use in practical applications. Even though the
mathematical theory of these lattices can be quite complex, we
show in this paper that they can be easily used for quantization
in any algorithm. We start in Section 3 by giving a more formal
introduction to general lattice quantizers in s dimensions and define
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the quantization error. In Section 4, we present the theory of rank-1
lattices and show how they can be constructed to perform always
better than the regular grid.

Section 5 gives a step-by-step practical guide on how to use our
proposed quantization scheme in combination with a table contain-
ing commonly used bit-depths up to 6 dimensions.

2. Background

The scope of our work is to present a general quantization ap-
proach using rank-1 lattices that can be used as a replacement for
ad hoc regular grid quantization. We thus target no specific use
case besides representing multi-dimensional data with a fixed pre-
allocated amount of depth. Here, we concentrate on presenting the
related work regarding the theoretical foundation of the use of lat-
tices. For any specific use case there are many possible choices
of compression algorithms that perform better than any general
quantization.

As a generalization of lattice quantization, vector quantization is
extensively studied for many application domains. See, for exam-
ple, [GG91]. Compared to our approach it is a lot more complex to
implement and use however.

Lattices other than the s-dimensional Cartesian lattice Z
s have

been studied for their use in computer graphics applications. The
hexagonal lattice has been used because of its optimal sampling
efficiency in two-dimensional space [VVPL02, MS05, CVFH08].
In particular, the problem of resampling between regular and hexag-
onal images is addressed. The permutohedral lattice has been used
for high-dimensional data filtering [ABD10].

The general theory of s-dimensional optimal lattices is connected
to sphere packings and their applications, where [CS10] provides
a comprehensive discussion. Because of its optimal sampling ef-
ficiency in three-dimensional space, the body-centred cubic lattice
(BCC) has been used for sampling and visualization of volumet-
ric data [EVDVM08, Cse05, LLWQ13]. In addition, the 4-D BCC
lattice is used for 4-D data visualization in [NM02, LQ11].

Directly related to our work are applications of two-dimensional
rank-1 lattices in computer graphics. They have been studied exten-
sively by Dammertz et al. for image synthesis and texture processing
in [DK08, DDKL09]. Algorithms for finding parameters for two-
dimensional rank-1 lattices in order to maximize the minimum dis-
tance between the lattice points are presented in [DDK09, Dam09].
These maximized minimum distance (MMD) rank-1 lattices closely
approximate the hexagonal lattice. Notably in [DDKL09], the equiv-
alence of hexagonal lattices and a special class of rank-1 lattices is
proven.

3. Lattice Quantizers

In this section, we first give a brief introduction to lattices and quan-
tizers in general. Then we discuss the properties of lattice quantizers.
For a more detailed and rigourous treatment of the subject we refer
the reader to [CS10].

3.1. Lattices

A lattice is a discrete additive subgroup of R
s , i.e. a subset � ⊆ R

s

which satisfies:

subgroup � is closed under addition and subtraction,

discrete there is an ε > 0 such that two distinct
points x �= y ∈ � are at distance at least
‖ x − y ‖≥ ε.

The second rule is only important for theoretical considerations as
this rule is enforced by the finite precision of a digital computer. The
first rule, however, ensures that the basic operations of addition and
subtraction do not lead to additional quantization (round-off) errors.
A simple example of a lattice is the s-dimensional cubic lattice Z

s .

3.1.1. Lattice basis

Each point of an s-dimensional lattice can be represented as an
integer linear combination of s linear independent basis vectors
b1, . . . , bs:

x =
s∑

i=1

ξibi, (1)

where ξ = (ξ1, . . . , ξs) is an arbitrary integer vector. As such, the
matrix B = (b1, . . . , bs)T is also a generator of the lattice. Note that
each matrix where any integer linear combination of the row vectors
lead to the same points as in Equation (1) is a generator of the same
lattice.

3.2. Quantizers

A general quantizer can be defined as follows:

� N points P1, . . . , PN ∈ R
s are chosen.

� Input: arbitrary point x ∈ R
s .

� Output: closest Pi to x.
� If closest Pi is not unique, chose one of them at random.

The procedure of quantization can also be described as:

� The points Pi partition the R
s into Voronoi cells V (Pi),

� if x ∈ V (Pi), the output is Pi .

3.2.1. Quantization error

In general, the average mean-squared error per dimension for a
given quantizer is

E = 1

s

∫
Rs

‖ x− Pi(x) ‖2 p(x) dx, (2)

where Pi(x) is the closest point Pi to x, ‖ · ‖ denotes the Euclidean
norm and p(x) is the probability density of the input x. As we are
only concerned with lattice quantizers and we assume a uniformly
distributed input, this can be simplified. The Voronoi cells V (Pi) of
a lattice are all congruent to each other and congruent to a polytope
�. If the origin of the coordinate frame is placed at the centroid of
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Table 1: This table shows the quantization error G(�) from Equation (4) for the best known s-dimensional lattice quantizers (for an elaborate list and the
construction of the higher-dimensional lattices D4, D∗5 and E∗6 we refer to [CS10]), for the Cartesian lattice Z

s and for maximized minimum distance rank-1
lattices in Korobov form with 216 points found through computer search. The value G(�) for the rank-1 lattices is computed via excessive Monte Carlo
integration (10 million samples). It can be seen that the rank-1 lattices provide a near optimal quantization for each dimension.

Dimension Optimal lattice G(�) Regular grid G(�) Rank-1 g = (1, a, a2, . . .) G(�)

1 Z 0.083333 Z 0.083333 a = 1 0.083333
2 A2, hexagonal 0.080188 Z

2 0.083333 a = 25 962 0.080188
3 D∗3 , BCC 0.078543 Z

3 0.083333 a = 23 128 0.078752
4 D4 0.076603 Z

4 0.083333 a = 20 166 0.076973
5 D∗5 0.075625 Z

5 0.083333 a = 2616 0.076320
6 E∗6 0.074244 Z

6 0.083333 a = 20 836 0.075806

�, (2) becomes

E =
1
s

∫
�

x · x dx

Vol(�)
, (3)

where Vol(�) is the volume of the Voronoi cell. This formulation is
not independent of the scale of the lattice (i.e. expansion or contrac-
tion of the lattice with the same constant factor in each dimension
would lead to a different error). In order to compare lattices of dif-
ferent scales, the error needs to be additionally normalized for the
scale of the lattice:

G(�) = E

Vol(�)
2
s

=
1
s

∫
�

x · x dx

Vol(�)1+ 2
s

, (4)

the value G(�) is the normalized second moment of �. For more
details we refer to [CS10].

3.2.2. Lattice quantizer

The set of N points are chosen to be the lattice points in a specific
region in R

s , for example, the unit cube [0, 1)s . The lattice points are
defined through a generator matrix and the output of the quantization
procedure is now an integer vector ξ .

With Equation (4), the quantization performance of different lat-
tices can be compared. In Table 1, we present G(�) for dimensions
1–6 for the Cartesian lattice Z

s , the optimal lattice in the respective
dimension and optimized rank-1 lattices found through computer
search. The rank-1 lattices are near the optimal quantization error
and are presented in the next section.

4. Rank-1 Lattices

First introduced by Korobov [Kor59], rank-1 lattices have been
widely studied since then, especially in the field of numerical anal-
ysis and quasi-Monte Carlo integration [HHW81, Nie92]. For their
use in computer graphics applications see the references given in
the related work, especially [Dam09].

4.1. Definition

The points xi of an s-dimensional rank-1 lattice in the unit cube
I s = [0, 1)s are given by

Ln,g :=
{

xi :=
{

i

n
g

}
1

∣∣∣∣∣ i = 0, . . . , n− 1

}
, (5)

where g ∈ N
s is a suitable integer generator vector for a fixed number

n ∈ N of points. {x}1 is the fractional part of x, i.e. the lattice is
restricted to the unit cube resulting in a one-periodic pattern.

A suitable generator vector g = (g1, . . . , gs) meets the condition:

gcd(g1, . . . , gs, n) = 1, (6)

where gcd(·) is the greatest common divisor of all the generator
vector components and the number of points (i.e. the divisor is
common for all values, as such the values are not required to be rel-
ative prime). If this condition is not met, points would coincide and
the first condition of a lattice would be violated (see Section 3.1).
When the generator vector has the special form g = (1, a, a2, . . .)
for a ∈ [2, n− 1], the lattice is a Korobov rank-1 lattice. This is
the only form we use in this paper as it simplifies the search for a
good lattice by restricting the search space and allows easy com-
putation of the index i of a lattice point xi in s dimensions (see
Section 4.4). Other than that, the rank-1 lattice search in Section 4.3
is independent of that choice.

Note that rank-1 lattices have two main advantages over other
lattices. First, they exist for any number of points in the respec-
tive domain, i.e. the unit cube. Secondly, encoding a lattice point
is simply done through its index i. This gives us the important ad-
vantage to quantize to any number of bits desired. Examples for
two-dimensional rank-1 lattices can be seen in Figure 1.

4.2. Choosing good rank-1 lattices

Not every choice of generator vector leads to a rank-1 lattice that is
suitable for quantization, as can be seen in the first image of Figure 1.
We therefore propose MMD rank-1 lattices for quantization. This
follows the same argumentation as for the two-dimensional case
in [DDKL09]. For higher dimensions, maximization of the minimal
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Figure 1: The first three drawings show the rank-1 lattice L16,(1,5) and how it is constituted by the generator vector. The last three show the
maximized minimum distance rank-1 lattices L32,(1,7), L56,(4,7) and L64,(1,14). The rightmost lattice, however, is MMD-optimized for the region
[0, 2)× [0, 1) instead of [0, 1)2, see Section 4.5.
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Figure 2: Correlation between minimum distance and quantization error plotted for dimensions 2–6. Each dot in the plots represents the
minimum distance and quantization error of an s-dimensional rank-1 lattice with 1024 points, where the generator vector is chosen at random.
In all plots the y-axis (quantization error) covers the range [0.07, 0.14]. Note that both axes are at logarithmic scale. The red line shows the
quantization error for the Cartesian lattice Z

s (always 0.08333) and the green line the quantization error for the best known lattice quantizer
for the corresponding dimension (compare this also to Table 1). The quantization error of the rank-1 lattice was computed via Monte Carlo
integration. It can be seen that maximizing the minimum distance of a rank-1 lattice leads to a small quantization error.

distance leads to minimizing the maximal diameter of the Voronoi
cells of the lattice and as such directly reduces the quantization error
in Equation (4).

To illustrate this, and verify that there are actually rank-1 lat-
tices in higher dimensions with small quantization error, we plotted
quantization error graphs in Figure 2 for random generator vectors.
The minimum distance is plotted versus the quantization error G(�)
of the corresponding lattice. It can be seen that a large minimum
distance results in a smaller error, even in higher dimensions.

Since there is no known method to directly construct generator
vectors of MMD rank-1 lattices, the generator vectors need to be
determined by a computer search. Methods for two dimensions can
be found in [DDK09]. In the following we show how these methods
can be generalized to higher dimensions.

Source code for generator vector search and quantization can be
found in the supplemental material. Updated versions will be made
available on the rank-1 lattice project website rank1lattice.org.

4.3. MMD rank-1 lattice search

The basic procedure for finding rank-1 lattices with (nearly optimal)
MMD consists of the following steps:

(1) Choose candidate generator vector.
(2) Construct a lattice basis out of this generator vector.
(3) Apply a basis reduction algorithm.
→ This leads to the shortest vector in the lattice.

(4) Termination: go to step 1 until ‘good’ lattice found.

Basically, these steps are the same as for the two-dimensional
case. Only the steps 2 and 3 need to be modified. A python imple-
mentation of the computer search can be found in the supporting
information, see end of Section 4.2.

4.3.1. Choose candidate generator vector

To restrict the search space, we use generator vectors in Korobov
form g = (1, a, a2, . . .) for a ∈ [2, n− 1]. The a value is enumer-
ated, or chosen at random. The length of the generator vector is a
trivial upper bound for the actual minimum distance of the lattice, as
such, short candidates can be skipped before actual basis reduction.
Note that the following algorithms also work for general generator
vectors as defined in Section 4.1.

4.3.2. Construct initial lattice basis

Constructing a lattice basis out of a given generator vector for two di-
mensions is shown by [Rot97]. Apparently, an s-dimensional rank-1
lattice Ln,g can be constructed by s + 1 vectors u1, . . . , us+1, where
u1 := g and ui+1 = n · ei (i = 1, . . . , s and ei denotes the ith unit
vector in s-dimensions). The idea now is to construct an unimodu-
lar matrix Ds+1 (square integer matrix with determinant+1 or−1),
such that

(u1, . . . , us+1)Ds+1 = (0, b1, . . . , bs), (7)

where b1, . . . , bs is the demanded initial basis.

Let α = (α1, . . . , αs+1) be the first column of that matrix. Then

α1u1 + · · · + αs+1us+1 = 0, (8)

C© 2013 The Authors
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is demanded by Equation (7) and as such α can be set to α1 =
n, α2 = −g1, . . . , αs+1 = −gs . Note that gcd(α1, . . . , αs+1) =
gcd(g, n) = 1 (see Equation (6)). Given only the single integer col-
umn vector α of the matrix Ds+1, the matrix can be completed to
the full unimodular matrix [New72]. D2 is given by:

D2 =
⎛
⎝ α1 σ

α2 ρ

⎞
⎠ , (9)

where the integer elements ρ and σ can be determined via the
extended Euclidean algorithm [Knu73]:

ρα1 − σα2 = δ2. (10)

Note that δ2 = gcd(α1, α2) and is equal to the determinant of the ma-
trix D2. By the following scheme, Ds can be completed recursively
to the full unimodular matrix Ds+1:

Ds+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1σ

δs

Ds
α2σ

δs

...
αsσ

δs

αs+1 0 · · · 0 ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where ρ and σ are now determined such that ρδs − σαs+1 = δs+1,
with δs+1 = gcd(α1, . . . , αs+1). Note that the last column results in
an integer vector despite the division operation, as δs is an integer
factor of α1, . . . , αs .

4.3.3. Basis reduction

For the basis reduction step during the rank-1 lattice search, we
use the algorithm given in [NS04] as this algorithm works fully in
integer arithmetic (i.e. no round-off errors) and finding the reduced
basis for dimensions up to 6 is guaranteed. The algorithm computes
the Minkowski-reduced basis, which has the important property that
in the reduced basis b1 corresponds to the shortest vector in the
lattice and determines the minimum distance between the lattice
points.

Algorithm 1. Greedy basis reduction

Require: Ordered basis [b1, . . . , bs]≤, ‖ b1 ‖≤ . . . ≤‖ bs ‖
Ensure: Minkowski-reduced basis [b1, . . . , bs]≤

k← 2
while k ≤ s do

Compute a vector c ∈ L[b1, . . . , bk−1] closest to bk

bk ← bk − c
if ‖ bk ‖≥‖ bk−1 ‖ then

k← k + 1
else

insert bk at his length rank k′ (vectors are sorted ≤)
end if
k← k′ + 1

end while

Computing the vector c is done by solving a linear equation
system,

bk = ξ [b1, . . . , bk−1], (12)

and clamping the resulting coefficients ξi of the vector ξ to integer
values. Then c is chosen according to:

c = (ξ +
)[b1, . . . , bk−1], minimize ‖ c− bk ‖, (13)

where 
 is an s-dimensional vector, where each component 
i

is either 0 or 1 and all possible 2s combinations are enumerated
for finding the minimum of (13). For dimension s ≥ 5, the clos-
est vector computation needs to be altered in order to find the
reduced basis, instead compute c ∈ L[b1, . . . , bk−1, bk+1, . . . , bs]
closest to bk. For further details and proof of correctness, we refer
to [NS04].

4.3.4. Termination

As quality of a candidate generator vector, we use exclusively
the minimum distance of the lattice. In all our test, we found a
lattice with large minimum distance in less than 216 iterations.
These lattices had always good quantization properties, near the
optimal.

For early termination, the following two strategies can be used.
The first strategy is to compute the ratio of the minimum distance
l to the minimum distance lmin of a (hypothetical) Cartesian lattice
with n points in the unit cube:

lmin = s

√
1

n
. (14)

Alternatively, the ratio to an upper bound can be used. As noted
in [Dam09], the minimum distance in a densest sphere packing
lattice can be used as an upper bound for the maximal min-
imum distance of rank-1 lattices. In contrast to [Dam09], we
use the centre density of a lattice [CS10] to derive this upper
bound:

δ = ρn · (det B)−
1
2 , (15)

where ρ is the radius of one sphere. As (detB)
1
2 = Vol(�) = 1

n
for

a rank-1 lattice with n points in the unit cube, and with l = 2ρ, we
get an upper bound for the minimum distance:

l = 2 · s

√
δ

n
≤ lmax = 2 · s

√
δmax

n
, (16)

where δmax is the centre density of the densest lattice sphere packing
in the respective dimension:

s 2 3 4 5 6

δmax
1

2·√3
1

4·√2
1
8

1
8·√2

1
8·√3

C© 2013 The Authors
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As generic limits, for lattices with n ≥ 216, we suggest the fol-
lowing limits:

s 2 3 4 5 6
l/ lmin 1.07 1.08 1.09 1.12 1.09
l/ lmax 0.99 0.96 0.92 0.91 0.84

4.4. Quantization with a rank-1 lattice

Quantizing a vector v ∈ [0, 1)s is done by first solving the linear
equation system

v = ξ [b1, . . . , bs], (17)

and clamping the resulting coefficients of ξ to integer values (com-
pare to (12)). This results in the Cartesian coordinates of a lattice
point p. The lattice point p is the anchor point of a parallelepiped
given by,

(ξ +
)[b1, . . . , bs], where 
 ∈ [0, 1)s , (18)

containing no other lattice point but the point v (compare to (13)).
By enumerating all corner points of the parallelepiped the nearest
lattice point pnear is found. This is in fact very similar to the previews
method for finding the vector c during basis reduction.

What remains is to translate the Cartesian coordinates of pnear into
its index inear in the rank-1 lattice (5). If the first component of the
generator vector g1 is equal to 1 (which is the case for g in Korobov
form), then the index i of the lattice point p is given by its first
component i = p1 (this directly follows from (1) and (5)). Hence,
for a rank-1 lattice with 2b points, we need b-bits to store i, which
directly translates to the quantized vector via the given generator
vector g.

Note that computing the closest lattice point (also referred to as
Closest Vector Problem) is in general NP-hard for high dimensions,
even if the reduced basis is known [AEVZ00, HS07]. However, for
dimensions up to 6 this is not severe as can be seen in Table 2
where we measured the performance of this procedure. Also see the
discussion in Section 6.3.

4.5. Quantization on the hyperrectangle

As data are often not equally wide distributed in all dimensions, it
is desirable to have the quantization method not be restricted to a
hypercube. Quantizing data on a hyperrectangular region [0, x1)×
[0, x2)× . . .× [0, xs) with a given rank-1 lattice is straightforward.
The points of the rank-1 lattice inside the hypercube [0, 1)s need to
be scaled to match the hyperrectangle, this is done by simply scaling
the lattices basis before solving for Equation (17). To compute the
index of the lattice point, the point needs to be scaled back to the
[0, 1)s domain. The other steps of quantization remain the same as
in Section 4.4.

What remains is to optimize the rank-1 lattice for MMD on the
scaled domain (see Figure 1, rightmost lattice). This is achieved
by scaling the initial basis (7) before basis reduction, as shown
by Dammertz [Dam09]. This results in a rank-1 lattice which is

Table 2: Time measurements (in seconds) for quantization and reconstruc-
tion of 1 GB of double precision data with a straight forward C++ im-
plementation of the presented algorithms. Measurements were taken on a
computer with two Intel Xeon X5660 6 Core CPUs with 2.80 GHz. The
cost of the reconstruction step is clearly independent of the dimension (one
multiplication and one modulo operation per component (5)). The quantiza-
tion step, however, shows an exponential increase with higher dimensions,
but still in a practical range. Other than that, it scales perfectly with mul-
tiple cores as each s-dimensional vector can be quantized independently.
Quantization bit-depth was set to 48-bits.

Single core 12 Cores

s Quant. Recon. Quant. Recon.

2 4.22 0.574 1.61 0.089
3 5.71 0.538 1.62 0.089
4 13.45 0.536 1.84 0.086
5 24.23 0.527 2.22 0.086
6 45.32 0.518 4.02 0.084

optimized for the scaled domain. See Figure 5 where this method is
applied to the Stanford Buddha.

5. Practical Application of Rank-1 Quantizers

In this section, we present a step-by-step guide on how to use our
proposed quantization scheme in practical applications. We assume
that the input data is in the unit cube [0, 1)s , or on a hyperrectangle.
A python implementation of the quantization steps can be found in
the supporting information.

For ease of reference here is a summary of the used symbols:

s dimension of the data
b quantization bit-depth (i.e. 32-bits)
n n = 2b , number of rank-1 lattice points
g the generator vector
i index of a data point (represented by b-bits)
di the corresponding data point to index i

For the preparation and quantization of the input data, three steps
need to be performed:

(1) Bit-Depth and Dimension: First, the dimensionality of the
input data needs to be known and the target bit-depth needs to
be defined.

(2) Choose Generator Vector: Next, the corresponding optimal
generator vector for the rank-1 lattice needs to be selected.
This can be done by either looking it up in a table (a short-
ened version of these data can be found in Table 3) or by
using the provided python implementation of the search from
Section 4.3.

(3) Quantization: Finally, all data points need to be quantized
by projection onto the corresponding basis and the resulting
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Table 3: List of the a parameter of the Korobov generator vectors g =
(1, a, a2, . . .) for near-optimal rank-1 lattices for selected bit-depths b and
dimensions s.

s\b 16 32 48 64

2 25 962 306 994 221 529 218 4 615 321 823
3 23 128 264 892 2 697 033 365 423 322
4 20 166 234 139 373 961 16 832 394
5 2616 191 538 143 618 1 494 331
6 20 836 57 697 12 284 227 042

integer point index i is the quantized representation of this
data point, see Sections 4.4 and 4.5.

To use the quantized data only a simple computation needs to be
performed:

(4) Reconstruct: Reconstructing the quantized data from the
index is now done by a simple multiplication with the
generator vector and a modulo operation:

di = 1

n
(i g mod n).

This can be efficiently implemented on any current hardware
architecture when n is chosen as a power of two with a bit-wise
and operation instead of the modulo. Note that the result needs

to be additionally scaled when the quantization was performed
on a domain other than the unit cube [0, 1]s .

6. Example Applications and Discussion

Here, we show two example applications of ad hoc quantization of
multi-dimensional input data and compare the results to the regular
grid quantization. The first application is the quantization of 3d

vertex position in a triangle mesh. In the second application, we
quantize 6d spectral reflectance textures.

6.1. Mesh vertex quantization

A very simple and straightforward application is the quantization
of 3d positions. Figure 3 shows a closeup of different quantization
options used on a mesh and Table 4 shows the quantization error for
different input meshes. The quantization error for all three meshes
is almost identical even though the meshes themselves are quite dif-
ferent because they have no specific structure and enough vertices
to behave almost as random data input regarding the lattices. Quan-
tization using the axis-aligned bounding box as domain instead of
the unit cube is shown in Figure 5.

6.2. Spectral reflectance quantization

Multi-spectral reflectance textures are a good example for the use
of rank-1 lattices for quantization because they are naturally high
dimensional and require a lot of storage space for high resolutions.
Figure 4 shows an example of quantizing a 6d spectral texture and

a) b)

c) d)

Figure 3: This figure shows a direct comparison of different quantization bit-depths for rank-1 lattices. (a) Shows the original Stanford Buddha,
(b) quantized to 30-bit , (c) 33-bit , (d) 36-bit . The bit-depths here were chosen to be directly comparable to a regular grid quantization. For
more and different bit-depths see Table 4.
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Table 4: This table shows the root mean square error quantization error of different lattice configurations applied to three different input meshes.

Buddha Museum Conference

# Triangles 1087542 1468284 1064498
regular grid (30-bit) 2.82 ·10−4 2.84 ·10−4 2.77 ·10−4

regular grid (33-bit) 1.41 ·10−4 1.41 ·10−4 1.41 ·10−4

regular grid (36-bit) 7.04 ·10−5 7.00 ·10−5 7.04 ·10−5

r1-Lattice (30-bit) 2.74 ·10−4 2.74 ·10−4 2.74 ·10−4

r1-Lattice (32-bit) 1.73 ·10−4 1.73 ·10−4 1.72 ·10−4

r1-Lattice (33-bit) 1.37 ·10−4 1.37 ·10−4 1.37 ·10−4

r1-Lattice (36-bit) 6.85 ·10−5 6.86 ·10−5 6.86 ·10−5

r1-Lattice (37-bit) 5.44 ·10−5 5.44 ·10−5 5.44 ·10−5

the corresponding errors. The spectral reflectance textures we use
here were captured in a project [RSK10] at the University of Bonn. It
can be seen that the rank-1 lattice performs as well as the theoretical
considerations in Section 4 predicted. For more comparison images
and bit-depths see the supporting information.

6.3. Discussion

The quantization error reported in the examples above is a direct
result of the theoretical derivation and construction from Section 4.

This shows that similar results can be expected independent of the
application domain as long as the input data are unstructured (i.e.
not already on a regular grid).

One important possible drawback of using rank-1 lattices for
quantization is inherent in the irregular structure. When the in-
put data contain the same value across all dimensions, a rank-1
lattice will produce slightly different values for each dimension
while the regular grid (with equal number of bits per dimen-
sion) will produce the same value for all dimensions. For example,
the vector (0.3, 0.3, 0.3) is quantized to (0.25, 0.25, 0.25) using a

reference 6×4-bit regular 24-bit rank-1 6×6-bit regular 36-bit rank-1

0.0210 0.0125 0.00422 0.00415

Figure 4: This figure shows the result of quantizing a 6d spectral reflectance texture to 24-bit and to 36-bit using a regular grid and a rank-1
lattice. The second row shows the difference to the reference image and the last row the root mean square error of the quantized texture data.
The input data have a resolution of 832× 669× 6 (12.7 MB) and the quantization results in 1.6 MB and 2.1 MB, respectively.
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Original 10 + 12 + 10-bit grid, AABB
RMSE: – RMSE: 1.029 ·10−4

32-bit rank-1 lattice [0,1)3 32-bits rank-1 lattice, AABB
RMSE: 1.726 ·10−4 RMSE: 0.956 ·10−4

Figure 5: Stanford Buddha quantized to 32-bits per vertex. The
configuration of 10+ 12+ 10-bits is optimal for regular grid quan-
tization of this model. However, rank-1 lattice quantization shows
better results than the regular grid when optimized for the axis-
aligned bounding box. Finding the parameters for this lattice took
about 2 min with the python implementation of the search algorithm.
RMSE, root mean square error.

regular grid with 3× 2-bit and (0.26, 0.28, 0.25) with a 6-bit rank-1
lattice.

Another aspect of rank-1 lattices in the form we presented above
are the lack of any simple hierarchical structure on them. It is thus not
easily possible to embed finer lattices into parts of the domain as can
be done with regular grids and was done, for example, by Segovia
et al. [SE10] and Garanzha et al. [GBG11] for ray tracing meshes.
The use of rank-1 lattice sequences [HHLL00] could solve this
problem but significantly increase the complexity of implementation
and search.

Our proposed method is limited by the exponential complexity
of basis reduction and quantization with respect to the dimension
(Section 4.4). However, for dimensions up to 6 we have shown
the practicability of this approach. Furthermore, the reconstruction
is always simple and independent of the dimension, which is a
main advantage over other lattices. A general lattice is defined by a
generator matrix (i.e. the lattice basis) and not just a single generator
vector, which makes reconstruction more difficult and further needs
special care when encoding the coefficients.

7. Future Work

As can be seen in Table 1 and Figure 2, the gab to the optimal
quantization lattice gets larger with higher dimensions, though, the

advantage to the Z
s lattice is still improving. This gab needs to

be further investigated, for example, does it substantially improve
when not restricted to Korobov rank-1 lattices?

Another topic is to improve the shortest vector search and the basis
reduction. They may be improved trough generic algorithms, such
as [LLM06], or through exploiting the special arithmetic structure
of rank-1 lattices.

Furthermore, other applications for these lattices can be inves-
tigated, such as sampling and discretization of multi-dimensional
domains.

8. Conclusion

We have demonstrated the theoretical concept of using rank-1 lat-
tices as simple quantizers for practical applications. The main ad-
vantages of rank-1 lattices are:

� Arbitrary bit-depth b, independent of dimension.
� Close to optimal lattice quantization error (always better than

regular grid).
� Very easy and fast to compute the data from the quantized bit

representation (s multiplications and bit masking).
� Same code and structure for any dimension s.

Our experiments have shown that the construction principle for
rank-1 lattices we derived result in lattices that always outperform
the commonly used regular grid while being still almost as easy to
use. We also showed that these resulting rank-1 lattices are close to
the optimal lattice for their respective dimension. The advantage of
the ability to quantize to arbitrary bit-depth allows, for example, to
quantize 3d data directly into 32-bits, which fits current computer
architectures well. This flexibility is achieved without any special
cases by just choosing a different generator vector and the target bit
resolution can be fine-tuned for the current application.
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Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Figure S1. This figure shows the result of quantizing a 6d spectral
reflectance texture to 24bit up to 48bit using a regular grid and
a rank-1 lattice. The given number is the RMSE of the quantized
texture data.

Figure S2. This figure shows the result of quantizing a 6d spectral
reflectance texture to 24bit up to 48bit using a regular grid and
a rank-1 lattice. The given number is the RMSE of the quantized
texture data.

Figure S3. This figure shows the result of quantizing a 6d spectral
reflectance texture to 24bit up to 48bit using a regular grid and
a rank-1 lattice. The given number is the RMSE of the quantized
texture data.

Table S1. Parameters for two dimensional rank-1 lattices.

Table S2. Parameters for two dimensional rank-1 lattices.

Table S3. Parameters for two dimensional rank-1 lattices.

Table S4. Parameters for three dimensional rank-1 lattices.

Table S5. Parameters for three dimensional rank-1 lattices.

Table S6. Parameters for three dimensional rank-1 lattices.

Table S7. Parameters for four dimensional rank-1 lattices.

Table S8. Parameters for four dimensional rank-1 lattices.

Table S9. Parameters for four dimensional rank-1 lattices.

Table S10. Parameters for four dimensional rank-1 lattices.

Table S11. Parameters for five dimensional rank-1 lattices.

Table S12. Parameters for five dimensional rank-1 lattices.

Table S13. Parameters for five dimensional rank-1 lattices.

Table S14. Parameters for five dimensional rank-1 lattices.

Table S15. Parameters for five dimensional rank-1 lattices.

Table S16. Parameters for six dimensional rank-1 lattices.

Table S17. Parameters for six dimensional rank-1 lattices.

Table S18. Parameters for six dimensional rank-1 lattices.

Table S19. Parameters for six dimensional rank-1 lattices.

Table S20. Parameters for six dimensional rank-1 lattices.

Table S21. Parameters for six dimensional rank-1 lattices.
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