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Figure 1. Aesthetically pleasing images. The complex matter of aesthetics depends on many factors like visual appearance, composition,

content, or style, and makes it almost impossible to directly compare all images if they are similarly beautiful.

Abstract

Rating how aesthetically pleasing an image appears is a

highly complex matter and depends on a large number of

different visual factors. Previous work has tackled the aes-

thetic rating problem by ranking on a 1-dimensional rating

scale, e.g., incorporating handcrafted attributes. In this pa-

per, we propose a rather general approach to map aesthetic

pleasingness with all its complexity into an automatically

“aesthetic space” to allow for a highly fine-grained reso-

lution. In detail, making use of deep learning, our method

directly learns an encoding of a given image into this high-

dimensional feature space resembling visual aesthetics. In

addition to the mentioned visual factors, differences in per-

sonal judgments have a substantial impact on the likeable-

ness of a photograph. Nowadays, online platforms allow

users to “like” or favor particular content with a single

click. To incorporate a vast diversity of people, we make use

of such multi-user agreements and assemble an extensive

data set of 380K images (AROD) with associated meta in-

formation and derive a score to rate how visually pleasing a

given photo is. We validate our derived model of aesthetics

in a user study.Further, without any extra data labeling or

handcrafted features, we achieve state-of-the-art accuracy

on the AVA benchmark data set. Finally, as our approach is

able to predict the aesthetic quality of any arbitrary image

or video, we demonstrate our results on applications for re-

sorting photo collections, capturing the best shot on mobile

devices and aesthetic key-frame extraction from videos.

1. Introduction

The widespread use of digital devices allows us to take

series of photos so as not to miss any big moment. Man-

ually picking the best shots afterwards is not only time-

consuming but also challenging. In general, approaches

to automatically rank images towards their aesthetic appeal

can be useful in many applications, e.g., to handle personal

collections or for retrieval tasks. Overall, deciding how aes-

thetically pleasing an image appears is a highly complex

matter and depends on a large number of factors like visual

appearance, image composition, displayed content, or style.

Fig. 1 shows a set of beautiful images with different appear-

ance. Assume one would score each of them separately,

e.g., using grades {1, 2, . . . , 10} to obtain some granularity.

This is not only a challenging task but, even more critical,

the mapping of these scores to an absolute scale can lead

to wrong relationships between them. Asking for relative

comparisons is not only an easier task to accomplish but

also results in a more reliable scaling. For images like in

Fig. 1 it is still almost impossible to directly compare all of

them, e.g., the beautiful warmth of a sunset can hardly be

generally related to the coolness of an image in style “noir”.

Overall, it is often unclear which particular attribute influ-

ences the aesthetic comparison of an image pair the most.

Thus, we propose to arrange images in a high-dimensional

space to gain a better understanding on a very fine-granular

level of how the aesthetic appeal correlates between them

without predefining specific factors. On saliency maps, we

further demonstrate the necessity of considering global fea-

tures in aesthetic tasks.
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Figure 2. Overview. Based on images we assemble from Flickr,

we derive a model that scores aesthetic appeal of an image from its

“views” and “faves”. This model then guides the training process

to learn fine-grained relations in the high-dimensional “aesthetic

space”. Finally, our trained CNN is able to generate encodings for

any arbitrary image leading to several applications.

Additionally to the previously mentioned factors, dif-

ferences in personal judgments have a large impact on the

likeableness of a photograph. Nowadays, online platforms

allow users to “like” or favor certain content with a sin-

gle click. Usually people “like” beautiful images or, in

other words, aesthetically pleasing ones. Sometimes, peo-

ple might also favor images for other reasons like based on

their scene content, e.g., picturing the newest mobile phone.

However, our user study indicates that our derived model is

still reliable. In this work, we consider both, the complex-

ity of aesthetics in its high-dimensionality as well as a huge

diversity of multi-user online ratings to obtain broad infor-

mation about aesthetic relations without extra data labeling.

An overview of our method is illustrated in Fig. 2. First,

we assemble a large amount of images from Flickr and

present a new database to exploit Aesthetic Ratings from

Online Data (AROD). Therefrom, we derive a model of aes-

thetics to score the quality of an image by making use of the

huge amount of available online user behavior, the “views”

and “faves”. Then, we make use of deep learning and in-

clude the introduced measurements of aesthetic appeal in-

directly as hints to guide the training process. Thereby, we

only incorporate the information if two images are aesthet-

ically similar or not instead of using the direct score. This

allows us to consider every single image relatively to other

images – even if they do not seem visually comparable, i.e.,

due to large differences in their visual factors like appear-

ance, displayed content, or style. Our trained CNN is then

able to directly learn an encoding of any given image in a

high-dimensional feature space resembling visual aesthet-

ics. Our “aesthetic space” encodes the complex matter of

aesthetics, that not every pair can be directly compared, on

a highly fine-grained resolution of relative distances. Fi-

nally, as those encodings can be obtained for any arbitrary

image, we demonstrate how they can be easily transferred

into several applications on images as well as videos. In

summary, our main contributions are:

• A new large-scale data set containing dense and di-

verse meta information and statistics to reliably predict

visual aesthetics and which is easily extendable.

• A model that approximates aesthetic ratings on a broad

diversity without specifically requesting expensive la-

bels beforehand and which we validate in a user study.

• Formulating the complexity of aesthetic prediction as

an encoding problem to directly learn the feature space

allowing for fine-granularity of relative rankings on a

high-dimensional level.

• Application prototypes such as an app for mobile de-

vices, a photo-collection manager powered by visual

aesthetic prediction as well as a video processing tool

to score frames.

2. Related Work

Aesthetics in Images. Previous research on visual aes-

thetics assessment focused on handcrafted visual cues such

as color [37, 6, 36], texture [6, 19], or content [7, 30].

Generally, no absolute rules exist to ensure high aesthetic

quality of a photograph. Photo quality has been explored to

distinguish between high and low quality [19] or classify

between the aesthetic quality of a photograph taken from

a professional vs a laymen [40]. Besides of quality, inter-

est has arisen towards the importance of images. Thereby,

previous work has exploited if and to which extent an im-

age can be predicted as “popular” [20], “memorable” [14],

or “interesting” [7, 11, 8]. Thereby, aesthetics played roles

like how it influences the memorability of an image [14].

Also, the relationship between aesthetics and images has

been explored from multiple perspectives [17]. Further,

making use of deep learning, the “style” of an image has

been of recent interest: either to recognize a specific im-

age style [18] or even to manipulate images by transferring

artistic style from a painting to a captured photo [9, 16].

Such style attributes have been incorporated to improve aes-

thetic categorization [28]. In addition to style, the composi-

tion of an image largely influences aesthetic pleasingness

and has been explored in terms of rules or enhancement

[15, 26, 10]. Overall, many approaches have investigated a

lot of work to find adequate attributes to approach aesthet-

ics, e.g., generic image descriptors [32], attributes humans

might use [7], cues performing psychological experiments

[11], features based on artistic intuition [6], content-based

features [30], or features with high computational efficiency

[27]. Other methods have focused on classifying the aes-

thetic appeal restricting their content to consumer photos

with faces [23, 24], consumer videos [34, 1] or other visual

domains, e.g., paintings [22] or evolved abstract images [4].

In contrast to those previous methods, we aim for a gen-

eral approach to explore the global overall aesthetic appeal

without any necessity to restrict image content or define any

specific attributes or properties.



Table 1. Comparison of different data sets containing images for

judging visual pleasingness of images. * Per image

properties AVA [35] AADB [21] AROD (ours)

max ratings* 549 5 2.8M

mean ratings* 210 5 6868

rating distr. normal normal uniform

number of images 250K 10K 380K

avg. image size 602×689 773×955 1926×2344

Deep Metric Learning. Neural networks are capable of

organizing arbitrary input in a latent space. Approaches di-

rectly manipulating this space have been successfully ap-

plied to signature verification [2], face recognition [5, 41]

and comparing image patches [42] for depth estimation.

Hereby, feature representations of the inputs are optimized

such that they describe similarity relations within the data.

Therefore, metric learning methods such as Siamese net-

works [5] and Triplet networks [13] are widely used. In-

spired by those successful networks, we now approach the

aesthetic learning problem by directly optimizing a metric

to position aesthetic relations in a high-dimensional space.

Deep Learning Aesthetics. Transferring aesthetics into a

deep learning approach without defining hand-crafted fea-

tures has been formulated as a categorization problem based

on extracting patches for training [28, 29]. However, reduc-

ing visual content to small patches can destroy the global

appearance which is important for aesthetic tasks. In con-

trast, we incorporate the entire image and demonstrate the

importance of global features on saliency maps.

Other methods have considered image quality rating as

a traditional classification or regression problem predicting

a single scalar information real or binary [35, 21]. Thus,

they do not meet the complex nature of aesthetics as they

oversimplify the task. They focus on a single scale problem

that even humans might not be able to solve as they proba-

bly disagree on the actual level of visual pleasingness. Fur-

ther, these approaches either use hand-crafted features [21]

or examine a data set of small annotation density [35, 21].

In contrast to those methods, we make use of deep metric

learning to transfer the problem of aesthetic ranking into a

high-dimensional feature space representation. We rely on

the plain image without defining any kinds of attributes.

3. Data Sets

Generally, the training of deep networks requires large

annotated data sets [38, 25] to obtain reliable results. Fur-

ther, as visual aesthetics of photos is highly subjective de-

pending on the current mood as well as any emotion, train-

ing a data-driven model requires extensive, diverse anno-

tations. To overcome flaws of previous benchmark sets, we

introduce a new data set with a comparison given in Table 1.

3.1. Previous Data Sets

AVA. The AVA data set [35] provides 250K images clas-

sified in visually well-crafted and mediocre ones on a fix

scale. These images are obtained from a professional com-

munity of photographic challenges. Through their anno-

tation process only a very small amount of annotations are

collected in comparison to the dimensions of social network

members comprising also non-professional photographers.

Note, to reliably judge image aesthetics it is inevitable to

consider the consensus of highly diverse participants.

AADB. Recently, Kong et al. [21] introduced a new aes-

thetics and attributes data set (AADB) comprising of 10K

images. Each individual image score in AADB repre-

sents the averaged rating of five AMT (Amazon Mechanical

Turk) workers, who are asked to give each image an over-

all aesthetic score. In addition, they provide attribute as-

signments from 11 predefined categories as judged by AMT

workers. Their database maintains photos downloaded di-

rectly from Flickr which are likely to be not post-processed

in contrast to professional results contained in AVA [35].

3.2. Our Flickr Subset

Whereas AADB is quite small, the image data of AVA

seems rather biased. Besides, both only provide a small

amount of collected ratings (Table 1). Thus, we propose a

new, much larger data set comprising aesthetic ratings from

online data (AROD). This data can be downloaded immedi-

ately, including meta-data as well as extensive, diverse la-

bels, without the need to collect extra ratings spending ad-

ditional time, effort, and money.

AROD. A single click allows users to give feedback to

media content. We propose to use this information. E.g.,

Flickr allows to add any photo to a personal list of favorites,

which is counted as “faves”. Since this feature is optionally,

users are absolutely free to add a particular image to their

favorite list. Their only motivation is to tag a photo which is

worth to remember. In addition, these images are uploaded

without a purpose to participate in a concrete challenge and

are not limited to a specific topic.

To collect these image we crawl around 380K photos

from Flickr including meta data such as their number of

views, comments, favorite list containing this photo, title

of the image and their description from the Flickr website.

Our collection contains images which were published and

uploaded between January 2004 and November 2016. As

each photo is visited ∼7K times in average, this allows for

a much finer granularity and gives more hints about aesthet-

ics of images compared to previous data sets. Based on this

data, we derive a model to obtain information about aes-

thetic pleasingness of the underlying image.



4. Model of Aesthetics

In online platforms, people usually tend to “like” beau-

tiful images or, in other words, aesthetically pleasing ones.

Thus, we now aim to explore those multi-user agreements

and turn them into a new useful measurement towards aes-

thetic appeal. We extract time-independent statistics, the

“faves” and “views” (Fig. 2), which contain information

traits about the underlying image quality.

4.1. Model Definition

Previous attempts tried to directly regress some score or

trained a simple binary model [36, 6] to decide whether an

image is visually pleasing or ordinary. To overcome the

classification approaches Kong et al. [21] employ a mod-

ification of the Siamese loss-function [2] to re-rank im-

ages according their predicted aesthetic score. In contrast

to [21, 36, 6], we will leverage traits from freely available

information in social networks to score the image quality.

These statistics are only used as hints to guide the training

process rather than as a direct label or score.

To judge the pleasingness of an image we examine the

relation between the “views” (number of visits) and the

“faves” (number of clicks that favor image) as a proxy for

visual aesthetics. Both these landmarks are highly depen-

dent of visual aesthetics and encode the visual quality in

all its facets. In addition, the low hurdle of creating a feed-

back (“like” or “favor”) allows to average information being

orders of magnitude larger compared to data sets obtained

via AMT. This is especially necessary, when treating im-

ages which are highly debatable. As common in popula-

tion dynamics we assume exponential increase of the views
dV (i)
dt = rV (i) ·V (i) and the faves

dF (i)
dt = rF (i) ·F (i) over

time t ∈ N for any arbitrary image i ∈ I with growth rate

r(·) > 0. This allows us to approximate the score S(i) of

the image quality –independent of time t– by

S(i) ∼
logF (i)

log V (i)
. (1)

This time-independence of any image i is necessary when

using images with different online life-spans. In addition,

the model in Eq. (1) accounts for the effect of getting more

faves per image being a popular user at Flickr due to the

mechanism of followers. Note, the action not to add an

image to ones “faves” contains valuable information, too!

Considering the score S(i) gives a criteria to rank images

i ∈ I, which values can be imitated by neural networks (see

Fig. 3). A histogram of the distribution of S(i) (Eq. (1)) is

illustrated in Fig. 4. The uniform distribution of the data

shows that the data has high entropy which allows us to

even judge borderline images.

S=0.69 (182|1869) S=0.67 (2905|57K) S=0.67 (2264|40K) S=0.67 (3205|64K)

S=0.07 (1|6687) S=0.08 (1|1774) S=0.09 (1|1122) S=0.08 (1|1386)

Figure 3. Images from our data set with score S approximated

from attached meta (#faves|#views). Examples with large values

(top row) and rather low scores (bottom row) in S(i) are shown.

score ∼ log(faves)/ log(views)
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Figure 4. Distribution of the collected score S(i). The uniform

distribution allows us to even judge images with borderline ratings.

4.2. Human Evaluation

As we introduce our aesthetic model as a score based on

online behavior from uncontrolled user clicks, we validate

the usefulness of our derived metric in a controlled experi-

ment. We formulate our hypotheses H as follows:

H1: Our derived “aesthetic model” based on freely avail-

able ratings from an uncontrolled human online behav-

ior is reasonable.

H2: Higher scored images are also rated better in a con-

trolled user study and worse ones are also rated worse.

Rating the aesthetic quality of an image is highly subjec-

tive and differs between persons. Performing a user study

over a diversified crowd is inevitable to validate trends. As

stated by Buhrmester et al. [3], Amazon Mechanical Turk

(AMT) yields reliable data on a demographically diverse

level. Thus, we use AMT to evaluate our aesthetic model.

Experiment Setup. To overcome differences in internal

ratings between persons, we aim for relative ratings instead

of an absolute scale. Further, to ensure that images ob-

taining a higher score are really more pleasant than lower

scored ones, we design the study as pairwise preference

tests. The AMT workers are presented two images with

different scores as shown in Fig. 5. In each binary forced-



“Select the image that you think is aesthetically more pleasing:”

Figure 5. Example as seen by AMT workers. The task (top) is to

select one image of the presented pair (bottom).

choice task, the Turker is asked to select the image that

is “aesthetically more pleasing”. We directly ask for aes-

thetic selection to ensure that our score derived from online

“faves” is a suitable measure to rate aesthetics. From our

downloaded data set, we evaluate 700 randomly selected

image pairs. Each pair is presented to 5 Turkers. To negate

click biases, ordering as well as positioning are randomized.

User Study Results. In our user study, we randomly test

image pairs with varying distances between the scores de-

rived by our model. Thereby, the lowest scored images ob-

tained at least one fave. All evaluated distances are listed in

Table 2. Thereby, a small distance means that our derived

Table 2. User study results. More similar rating decisions of Turk-

ers are obtained for larger distances ∆ = |S(i)− S(j)| between

our derived scores S(·) of the images within a pair.

dist ∆ > 0.1 > 0.2 > 0.3 > 0.4 > 0.5 > 0.6

mean µ 0.78 0.85 0.88 0.89 0.89 0.89
var σ2 0.07 0.05 0.04 0.04 0.04 0.04

sign. level α 10% (p < 0.10) 5% (p < 0.05)

scores are very similar and that the images are almost iden-

tically pleasing towards aesthetics. However, setting the

minimal distance between the scores of the 2 images in a

pair to 0.1 is rated towards the similar direction by already

78% of the Turkers. Further, for score distances bigger than

0.4, even 89% of the test persons agreed with the selec-

tion of the better image. Overall, we obtain ratings with

surprisingly small variance. Besides, the already relatively

small variance even further decreases with increasing dis-

tance. This indicates a high agreement between the different

Turkers. As verified with a Kolmogorov-Smirnov test [33],

the underlying data does not come from a normal distribu-

tion. Thus, we verified statistical relevance performing the

Mann-Whitney U-test [31] which rejected the null hypothe-

sis for all distances at least at the 10% level (p < 0.10) and

for ∆ > 0.3 at the 5% level (p < 0.05) revealing statisti-

cal significant dependency between the scores of our model

and the user study ratings (H2). As we explicitly ask the

Turkers to rate due to the term “aesthetically pleasing”, our

presented score S(i) can really be seen as an aesthetic mea-

sure validating our first hypothesis H1.
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Figure 6. Previous approaches treat aesthetic learning as a low-

dimensional problem [21] which projects encodings on a 1-

dimensional or into discrete bins [35]. Rather than learning a bin-

mapping for each image i ∈ {a, b, c} into bins Bi or directly φi,

we propose to learn pair-wise distances δij to resolve the highly

complex matter of aesthetics in a high-dimensional space.

5. Learning Aesthetics

As the visual quality of images is naturally hard to en-

code in a single scalar and it is hard to match images to dis-

crete bins of aesthetic levels, we aim for directly learning

an encoding of a given image in a high-dimensional fea-

ture space resembling visual aesthetics in contrast to 1-dim

ranking as in [21] (Fig. 6). We will refer to the feature space

as the aesthetic space. Ranking approaches like [21] predict

scalars and inherently assume that image orders are possible

on a 1-dim discrete or continuous rating scale. Hence, while

a latent group of images might be globally miss-placed in

the aesthetic space, our formulation allows to still order the

images within the specific group correctly.

5.1. Encoding Aesthetics

Inspired by metric learning [5, 13], our approach is to

directly optimize relative distances

δ : I × I → R, (i, j) 7→ ‖Φi − Φj‖2

between encodings Φi,Φj from image pairs (i, j). We use a

CNN to learn these encodings, which will be described later

in detail. Importantly, this training procedure can be done

without associating images to any specifically requested rat-

ings or score from human annotators . Instead, it solely uses

the information if two images are similarly aesthetic or not

on an almost arbitrary scale. We minimize the triplet loss

function [13]

Le(a, p, n) =
[

m+ ‖Φa − Φp‖
2
2 − ‖Φa − Φn‖

2
2

]

+
(2)

for images a, p, n and some margin m. Here, [x]+ denotes

the non-negative part of x like the ReLU activation function.

This loss resembles a visual comparison, i.e., the distance

between two mediocre images a, p should be smaller than

the distance to a well-crafted image n and vice versa. Note,



S=0.67 (3072|55K) S=0.66 (2146|41K) S=0.09 (1|1122)

Figure 7. Image triplet example for training with scores S(i). Each

triplet consists of either 2 good and 1 bad image concerning its

approximated quality (row) or 1 good and 2 bad ones (Fig. 8).

our objective function is not directly built on predicting S(·)
for a particular image on a specific scale and range. To de-

cide whether two images are aesthetically similar or not we

use our score S(i) to guide the sampling of the training data

consisting of image triplets

D=

{

(a, p, n)

∣

∣

∣

∣

α<
|S(a)− S(p)|

|S(x)− S(n)|
<β, x ∈ {a, b}

}

, (3)

with α, β ∈ R. Thus, any pair (a, p) with a rather small

difference in the score allows for adaptively sampling of

much harder negatives n by rejecting triplets with too large

differences. An example of such image triplets is shown

in Fig. 7. We allow (a, p) to contain images with higher

or lower score than n for generating balance training data.

This approach has the following advantages:

1. Every single image can be considered during the train-

ing relatively to other images, which also allows to

train on highly debatable images.

2. There is no need to either learn a scalar or solve a

binary classification problem in the fashion of rank-

ing [21] or aesthetic-label prediction [35]. Instead, we

learn the encoding itself.

5.2. Rating Aesthetics

As the encodings space ⊆ R
d is only a partially ordered

set, for any two images x, y knowing the aesthetic distance

‖Φx − Φy‖ has no information if x should be considered

as more visually pleasing than y. Thus, ordering multiple

images is not possible. If an “universally accepted” worst

image ω would exist, then one might simply use the learned

distance δ(x, ω). But as we are allowed to rotate the entire

space, a more practical solution is to force the encoding into

a particular direction. We therefore add

Ld(a, n) = sgn [s(n)− s(a)] · [‖Φa‖ − ‖Φn‖+ m̃]+ (4)

as a directional term to the loss function. This leads the

triplet loss by reducing the norms of encodings belonging

to less visual pleasing images and increases the norms of

well crafted images. Note, that we again do not directly use

any absolute score values from our data model. Altogether,

we minimize the “directional triplet loss”:

L(a, p, n) = Le(a, p, n) + Ld(a, n) (5)
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Figure 8. Triplet-Loss. For each triplet (a, p, n) with anchor point,

we aim at encoding aesthetically similar images a, p nearby and

force a larger distance to aesthetic dissimilar images n. Adding Ld

to Le alters the update directions wrt. the aesthetic space origin ω.

to get a natural ordering by the Euclidean norm and relative

distances. The effect of Ld is depictured in Fig. 8.

5.3. Learning the Aesthetic Space

Network Architecture. We use the standard ResNet-50

architecture [12] fθ with trainable parameters θ to learn

the encodings Φi = fθ(i). We add a projection from the

pool5 layer creating a 1000-dimensional descriptor Φ for

each frame. Please refer to [12] for more details. Train-

ing was done on two Nvidia Titan X GPUs using stochastic

gradient descent with initial learning rate 10−3 which is di-

vided by 10 when the error plateaus.

Sampling Training Data. We randomly sample images

from our entire collection on-the-fly according to D in (3).

We estimate the cardinality of D as |D| = 7 · 1012 from

tracking the reject-rate during training. Hence, no data-

augmentation is required, which would further influence

aesthetics. As ResNet expects the input to have the size

224 × 224 × 3, we resize the original image to match the

input dimensions. Although, this down-sampling might re-

move small details, it keeps the relations of the image con-

tent. Further, we are interested in the aesthetics quality,

rather than the photo quality from a computational photog-

raphy viewpoint.

5.4. From Space to Scale

To allow for multiple applications, e.g., ranking a set of

images, it can be necessary to map our derived encodings

within our high-dimensional space to a relative scale. As

described earlier, while a latent group of images might be

globally miss-placed in the aesthetic space, our formulation

allows to still order the images within the specific group

correctly. Thus, we simply consider the norm of the encod-

ing ‖Φi‖2 as the projection score. Thereby, independently

of the positions of the encodings in space, the relations be-

tween them stay maintained on the scale.



Table 3. Performance comparison on AVA data set. Different models (top row) with according accuracy (bottom row). Our approach

outperforms all models that do not use additional information and even most methods that include additional information during training.
Additional information during training No additional information

RDCNN Reg-Rank+Att Reg-Rank+Att+Cont Alexnet-FTune Murray Reg-Rank Reg SPP DCNN DMA Ours

[28] [21] [21] [29] [35] [21] [21] [28] [28] [29]

74.46 % 75.48 % 77.33 % 59.09 % 68.00 % 71.50 % 72.04 % 72.85 % 73.25 % 74.46 % 75.83 %

6. Experimental Results

We pursue two ways of evaluation in quantitative evalu-

ation on the common benchmark set and qualitative evalu-

ation to analyze the internal network mechanism. Further

results in combination with applications are presented in

Sec. 7 and the supplemental material.

Quantitative Evaluation. For a fair comparison to pre-

vious approaches, we fine-tune our model network to the

distributions of the ratings in the AVA dataset [35]. This

is done using a subset of the AVA training data to pre-

dict discrete labels instead of relative embeddings. Table 3

shows such a quantitative comparison in accuracy to previ-

ous methods. Obviously, using an indirect approach such as

ranking (Reg+Rank [21]), which resemble the nature of aes-

thetic judgments much better than standard approaches like

classification [28, 29, 35] yields also better performance on

this benchmark set. Ours further boosts this accuracy sig-

nificantly, which we attribute to the more natural choice of

our loss formulation. In contrast to previous work [21, 28],

we do not rely on a dedicated neural network architecture

using a rather common model design. Results on the left

use additional information such as attribute data or content-

description. Hence, although we trained on a data set which

was constructed with literally no extensive explicit labeling,

we outperform all previous methods relying solely on rat-

ings they obtained in an expensive process. Further, learn-

ing from the consensus of many Flickr users is sufficient

to gain higher accuracy (our network) on the AVA bench-

mark set than recent approaches with additional attributes

(Reg+Rank+Attr, RDCNN). Note, these attribute categories

are acting essentially as a prior and were selected after con-

sulting professional photographers [21].

We expect to further improve our results when adding

more explicit information about the content like in the con-

struction of “Reg+Rank+Att+Cont”. As our main focus is

to exploit freely available information solely, this explicit

meta-information can be image-related comments and tags.

What is the network looking for? Judging the visual

quality of an image is totally different from plain object

recognition tasks. When extracting relevant information,

which is used by the neural network to perform aesthetics

prediction, it is possible to visualize prominent traits in the

input. To extract these saliency maps, we use guided-ReLU
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Figure 9. Different photographs (top) and related saliency maps

for vanilla ResNet (middle) and our model (bottom) produced by

guided-ReLU [39]. Darker region indicates higher influence on

the actual network prediction.

Figure 10. Aesthetically resorted photo set with decreasing score

from our provided tool starting with the most pleasing one (left).

[39]. It is based on the idea, that large gradients of the out-

put wrt the input have a high impact on the actual network

prediction. Fig. 9 highlights those pixels in the input with

large impact. Hence, this information is strongly coupled

with the encoding in our aesthetic space. It clearly shows

how our network considers larger regions in the image space

compared to sparse saliency along gradients in the untrained

network. More precisely, the network model reveals high

synergy effects between surrounding regions of the objects

in Fig. 9. At same time the vanilla ResNet (trained on object

recognition) rather focuses on the objects.

7. Applications

In order to demonstrate the usability of our approach, we

apply our derived aesthetics prediction score to images as

well as videos allowing for several applications. Thereby,

we map the encodings from space to a relative scale as de-

scribed in Sec. 5.4 maintaining fine-granular relations.

Aesthetic Photo Collection. First of all, we support re-

sorting an arbitrary photo collection due to our predicted

relative aesthetic scores between the images. An example

of a small set of aesthetically sorted images is shown in

Fig. 10. This tool can facilitate to quickly resort one’s holi-



Figure 11. Best video spots. Each frame is extracted at the peaks in the score signal.

Figure 12. Best handy shot. Based on slight movements in any

direction, the application automatically captures the best shot.

Figure 13. Best predicted image (blue frame) during capturing.

The movements were recorded with a mobile device.

day collection and directly share the best moments without

time-consuming manually browsing of the usually rather

large set of pictures.

Best Handy Shot. A commonly known situation is that

people want to take a picture but are not completely sure

what the best shot of the view could be. They tend to take

mulitple pictures and just postpone the decision process.

This can even lead to missing the one best shot completely.

We provide a simple application that allows slightly mov-

ing the phone around and temporarily captures a video. The

idea is illustrated in Fig. 12. All the single images are then

analyzed and rated by our system and the image of the best

view is saved. The application supports the user to directly

obtain the best aesthetically pleasing image and prevents the

time-consuming decision process afterwards. Fig. 13 shows

several frames from movements we recorded with a Sam-

sung Galaxy SII phone and the predicted best shots. Sky

proportions, saturation and the tension of the overall image

layout play an important role within the decision. Due to

its small memory footprint of only 102MB containing the

network weights, running this application directly on mo-

bile devices is easily possible. Please see the supplemental

video for a short demo. This application could further be

extended to lead the user to the best shot during the move-

ment while indicating better directions.

Video Spots. Similarly, our system is able to find great

shots in a video. Those shots can be selected as aesthetic

key frames or, e.g., in documentary films, to identify the

most wonderful places or spots. Therefore, we calculate a

complete prediction curve along the video displaying the

aesthetic relation between the frames. Fig. 11 displays an

example of a video and the according aesthetic prediction

curve. Kalman filtering is applied to smooth the final pre-

dictions over time. Extracting the frame scores is done at

a speed of 140fps on a NVidia GTX960. Embedding com-

mon videos requires only 25% of the actual playback time

demonstrating high efficiency and enabling real-time appli-

cations. Please see the supplemental material for examples.

8. Conclusion

We propose a new data-driven approach which learns

to map aesthetics with all its complexity into a high-

dimensional feature space. Additionally, we make use of

online behavior to incorporate a broad diversity of user re-

actions as rating aesthetics is a highly subjective task. In

detail, we assemble a novel large-scale data set of images

from social media content. Hereby, aesthetics ground-truth

scores for training are obtained without explicitly request-

ing user ratings in a time-consuming and costly process.

Hence, our dataset can be easily extended, as our approach

requires effectively no labeling-efforts using freely avail-

able information from social media content. The assump-

tion of our underlying model is validated in a user study. To

automatically judge aesthetics, we formulate the aesthetic

prediction directly as an encoding problem. Consequently,

we propose a more naturally loss objective for dealing with

the complex task of learning a feature representation of vi-

sual aesthetics. Our focus lies on the abstract representation

of aesthetics using online media. Thus, we solely rely on a

commonly used model architecture and use a much weaker

training signal which leads to state-of-the-art results on pre-

vious benchmarks. Finally, we confirm the success of our

model in several real-world applications, namely, resorting

photo collections, capturing the best shot and a smooth aes-

thetics prediction along a video stream.
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