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Be Water my Friend: Mesh Assimilation

Dennis R. Bukenberger, Hendrik P. A. Lensch

Department of Computer Graphics, Eberhard Karls University, Tübingen, Germany

Figure 1: Progress of our proposed method: Starting with a low-poly icosphere as initialization mesh, the surface grows within the target
point cloud. The mesh first approximates the rough shape and further progresses by assimilating and refining to reconstruct fine detail.

Abstract
Inspired by the ability of water to assimilate any shape, if being poured into it, regardless if flat, round, sharp, or pointy we
present a novel, high-quality meshing method. Our algorithm creates a triangulated mesh, which automatically refines where
necessary and accurately aligns to any target, given as mesh, point cloud, or volumetric function. Our core optimization iterates
over steps for mesh uniformity, point cloud projection, and mesh topology corrections, always guaranteeing mesh integrity and
ε-close surface reconstructions. In contrast to similar approaches, our simple algorithm operates on an individual vertex basis.
This allows for automated and seamless transitions between the optimization phases for rough shape approximation and fine
detail reconstruction. Therefore, our proposed algorithm equals established techniques in terms of accuracy and robustness but
supersedes them in terms of simplicity and better feature reconstruction, all controlled by a single parameter, the intended edge-
length. Due to the overall increased versatility of input scenarios and robustness of the assimilation, our technique furthermore
generalizes multiple established approaches such as ballooning or shrink wrapping.

CCS Concepts
• Computing methodologies → Mesh models; Point-based models; Mesh geometry models;

1. Introduction

Without the need for mappings, parameterizations, or specifically
trained machine-learning models, our approach presents a simple
yet powerful extension in the field of geometric surface reconstruc-
tion techniques. We demonstrate, how our algorithm can top simi-
lar state-of-the-art approaches; e.g. when reconstructing fine details
and sharp feature edges, in terms of mesh uniformity or versatility
of supported input data. Our method is based on the concept of wa-
ter being quite formless and able to assimilate any shape if being
poured into it. Starting from a small initial triangle mesh, the object
can grow, shrink and locally refine to assimilate a target shape with
controllable precision. Vertices of the initial mesh extend rather au-
tonomously along surface normals until they reach the target hull
space. The expanding surface mesh is supplemented with suitably
interpolated vertices where it is stretched the most. In contrast to
the surface tension of water, the inter-vertex energy optimization

promotes mesh uniformity but without enforcing smoothness pri-
ors, often found in other ballooning concepts. Once the vertices are
close enough to the target hull, they individually transition from
mesh growth mode to a projection scheme. Due to the bilateral
weighting concept of the projection, vertices are effectively pulled
into intersecting tangent planes of the hull, thus allowing for accu-
rate reconstructions of small detail and sharp edges. The optimiza-
tion of vertices is an iteration process, but individual for each ver-
tex and can therefore be executed on the GPU as a massively par-
allelized operation. Per design, the algorithm assimilates to shape
rather than a strict type of input data, which can be given as mesh,
point cloud, signed distance, or other volumetric function. With its
frugal input requirements and a minimal set of parameters to be ad-
justed, our method simplifies the rather complex nature of other es-
tablished techniques; it is situated somewhere between the exhaus-
tively studied fields of shape approximation [CSAD04], surface
remeshing [AUGA08] and point cloud reconstruction [BTS∗17].
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1.1. Contributions

Our approach fulfills all criteria which one would ask of a state-of-
the-art reconstruction technique: Guarantee for closed, watertight
manifold meshes, the ability to cope with varying input density, ro-
bustness to noise and outliers as well as to missing data and control
over higher genus topology. Moreover, we can summarize our main
contributions: •Mesh uniformity is achieved as our mesh unravels
with an inter-vertex energy, striving to equalize distances between
vertices. • Adaptive resolution can be realized by locally adapt-
ing the specified target-edge-length to the provided sample density.
• Sharp features are reconstructed, as the second vertex optimiza-
tion step is designed to minimize projected distances to surface tan-
gents, thus the vertices snap on close-by edges and corners. This is
where most state-of-the-art methods still lack precision. • Arbi-
trary initialization meshes are possible, as demonstrated with var-
ious examples. • Versatile input data is supported, as our method
is not bound to point clouds and can easily handle meshes as well as
volume data and signed distance fields, currently explored in neural
surface representations [MON∗19, PFS∗19].

1.2. Related Work

For decades, shape reconstruction has been, and is still an actively
researched topic. While the ideas of ballooning or shrink-wrapping
are not exactly new [DQ01], we are yet to see its full potential. In
some aspects, our method follows similar principles like the con-
cept of Competing Fronts [SLS∗06], which is also a coarse-to-fine
point cloud reconstruction technique, using growing mesh geom-
etry. But instead of whole mesh fronts, which get frozen at some
point, our method operates on an individual vertex basis so that
the mesh remains flexible during the optimization. This allows for
smoothing out irregularities, without the need for remeshing in ev-
ery other iteration. Our hull projection scheme furthermore resolves
the issue of reconstructing creases and sharp feature edges, an open
problem for Competing Fronts. Unfortunately, a direct comparison
was not possible as there is no reference implementation or re-
sult data available. Nevertheless, the concept gained some recent
attention with the concept of Cooperative Evolutions [LL20], com-
bining two mesh fronts enclosing on the point cloud from the in-
and outside in parallel. A first draft utilizing this idea in a learning
based approach was proposed with Point2Mesh [HMGCO20]. A
thorough analysis of the actual distinctions of our approach to other
ballooning concepts is featured in our discussion in Section 3.2.

Conceptually different approaches include the popu-
lar Screened Poisson Surface Reconstruction (SPSR)
[KBH06, KH13, KH19, KCRH20], which is probably one of
the most commonly used point cloud reconstruction methods.
In direct comparison, however, SPSR tends to produce rather
smoothed out results, whereas ours generally appear sharper
and capture finer details, even at lower resolution. Due to the
octree-nature of the SPSR approach, the resulting triangulation
is quite inhomogeneous, while ours approaches both a uniform
distribution and Delaunay-like connectivity. Scale Space Meshing
(SSM) [DMSL11] is an approach that really takes advantage
of modern high precision 3D scanners and is able to faithfully
reconstruct even very fine details. However, as our comparison
shows, sharp edges are not captured very well. The marching cubes

algorithm [LC87] is often used in a medical context to reconstruct
surfaces from volumetric data or to remesh existing surfaces. Our
algorithm is able to handle both as it can be used on signed distance
fields (SDF) as well as on existing meshes with the advantage of
producing more evenly distributed vertices and triangle faces. Both
Poisson and Marching Cubes are able to recover surfaces but fall
short in terms of triangle mesh homogeneity, a key contribution
of our approach. Similar deficiencies can be attributed to α-shape-
[EM94], Voronoi-based- [ABK98, AB99, ACK01, BL17] or the
ball-pivoting-algorithm (BPA) [BMR∗99]. For these algorithms,
the achievable mesh geometry-, and sometimes topology-, quality
crucially depends on the density and uniformity of the given input
point set and sometimes requires prior outlier-filtering or noise-
smoothing steps. Our approach is quite invariant to these artifacts,
as it is able to cope with noise and can either ignore or incorporate
varying sample densities. Impressing developments in quad-mesh
reconstructions such as Instant Field Aligned Meshes (IFAM)
[JTPSH15] or Online Surface Reconstruction (OSR) [STJ∗17]
produce nice feature-aligned mesh structures, but often struggle
with low or varying sample density as demonstrated in compar-
isons to our results. Most recently, learning-based approaches
also joined the reconstruction game [MON∗19, PFS∗19] but often
require specifically trained models on an explicit object class. This
is no longer a requirement with P2M, which reconstructs point
clouds via shrink-wrapping and basically learns from the input
itself. But their results also lack precision in corners and sharp
object features.

2. Method

As illustrated in Figure 1, the goal of our algorithm is to assimilate
to a target shape, starting from a simple initialization mesh. There-
fore, the basis mesh first approximates the rough shape of the input,
finer details are recovered as the optimization continues. This
assimilation process follows a simple optimization scheme, iter-
ating over the following five steps, performed in one iteration cycle:

I. Subdivide the mesh where necessary
II. Equalize inter-vertex distances
III. Mesh expansion and hull projection
IV. Fix mesh irregularities
V. Add tunnels to increase genus (optional)

Termination criteria for the optimization can be specified, either as
a target-edge-length lt for the final mesh or an ε-closeness threshold
to the target shape. Each operation is self-contained, meaning the
surface remains a closed manifold and valid mesh at all times. Re-
lated coarse-to-fine approaches [SLS∗06, LL20, HMGCO20] sep-
arate the mesh development and final fitting phase in their procedure
or interleave the assimilation progress with remeshing operations.
However, the strength of our method lies in the mixed design of the
assimilation (III.): Simple mesh growth seamlessly transitions into
a projection scheme on an individual vertex basis.

Terminology Our method is first introduced with the focus on
point cloud reconstruction, the adaptation to other input scenar-
ios is later addressed in Section 2.1. In the following we asso-
ciate vertices vi with the growing mesh structure and samples ṡ



D. Bukenberger and H. Lensch / Mesh Assimilation 3

with the input point cloud. Variables related to samples are de-
noted with an over-set dot. Further, we observe local 1-ring neigh-
borhoods around vertices: For a vertex vi, adjacent mesh neigh-
bors are grouped in Ni where ki = |Ni| gives the number of neigh-
bors. The average edge length around vertex vi is therefore given as
li = 1

ki
∑ j∈Ni

|vi− v j|. Vertex normals ni are derived from the face
normals in this 1-ring neighborhood: The normalized portions of
corner angles in the triangle fan are used to weigh their normals’
contribution, respectively. Further, each vertex vi is associated with
a set Si of 10 closest point cloud samples. This is cheap to initialize
with a brute-forced search as the initial mesh only has very few ver-
tices. When starting from a larger base mesh, a suitable data struc-
ture may speed up the first nearest neighbor associations. However,
once established, this structure can be maintained cheaply using the
mesh as a graph: To update the existing sets or create new ones for
added vertices (I.) we then only query the sample sets in the ver-
tices’ 1-ring neighborhoods for potential new nearest neighbors.
Further, each sample is interpreted as a splat-disc on the implicit
hull, represented by a normal ṅ and a radius ṙ. We compute the
radius of a sample as half the median distance to its 10 closest
point cloud neighbors. While all our results are generated using this
simple approach, more advanced splat methods [WK04, CGAY13]
may be suitable as well.

Figure 2: Mesh refinement: The 1-ring fan of a vertex is
√

3-
subdivided. New vertex positions are interpolated as PN triangle
centers [VPBM01] to maintain local curvature.

I. Refinement The triangle mesh is constantly refined with tar-
geted

√
3-subdivision operations [Kob00]. A vertex qualifies for

refinement when its average length li of incident edges is larger
than the specified target-edge-length lt . Or, if ε-closeness is speci-
fied as the optimization criteria, simply the vertices with the largest
li get subsequently refined. Therefore, faces around a vertex are re-
placed as shown in Figure 2: For each triangle in this 1-ring fan,
a new vertex is created along with three new triangles. The new
vertices are the interpolated center points of the fan triangles, in-
terpreted as curved PN triangles [VPBM01] using vertex normals.
This allows us to maintain local curvature and the subdivided ge-
ometry smoothly integrates with the surrounding mesh as the outer
1-ring loop edges are not split. This operation increases the valence
of the 1-ring neighbor vertices by 1 and may create very obtuse or
pointy triangles. Nevertheless, both issues are fixed within the same
cycle by upcoming steps II. and IV.

II. Equalization In order to obtain the most regular mesh struc-
tures with evenly distributed vertices, we employ a simple geomet-
ric optimization: Every vertex vi strives to individually equalize the
distances to its direct 1-ring neighbors v j ∈ Ni, eventually resem-
bling a Delaunay-like triangulation. Equation 1 formulates the up-
date vectors, where~vi j = v j−vi and li is the average length of edges
incident on vi.

~ei =

(
1
ki

∑
v j∈Ni

v j− li
~vi j

|~vi j|

)
− vi (1)

These geometric increments mainly smooth out dense clusters cre-
ated by step I. and can be applied with a weighted update on vertex
positions as vi := vi +λe~ei. Thus, λe allows adjusting the progres-
sion speed for mesh homogenization. We achieved the best results
with a soft update, using λe = 0.1.

III. Assimilation The goal of this step is to pull vertices to the
surface and snap vertices on edges and corners. Once our mesh is
close enough to the point cloud hull, a suitable projection technique
is applied. However, when starting from a generic base mesh, e.g.
a simple sphere inside of, or enclosing, the point cloud, it first has
to grow or shrink into a rough approximation of the target shape,
so that the projection may take over later. Whereas this is how it is
usually done, we propose a mixed procedure, adaptive to each in-
dividual vertex. This step modifies the mesh’s geometry by moving
vertices with individual update vectors. These vectors ~ai may em-
body surface projection (III.A) or mesh growth (III.B). Equation 2
anticipates which one is to choose, dependent on an individual ver-
tex vi and its weights ẇi j, summed up in ωi = ∑ j∈Si

ẇi j. Other
variables are elaborated in the following.

~ai =

{
1
ωi

∑ j∈Si
ẇi j~̇vi j III.A) if ωi > ε

ni · oili
4 III.B) else

(2)

III.A) Projection For valid weights ẇi j, gathered from the point
cloud samples associated with vertex vi, the update vector ~ai is the
weighted sum of vi’s projection vectors ~̇vi j into the samples’ tan-
gent planes (Figure 3, green). Projected points compute as v̇i j =
vi +~̇vi j with vectors ~̇vi j = ṅ j · (ṡ j− vi)ṅ j where ṅ j is the normal of
point cloud sample ṡ j. The bilateral weights ẇi j combine a distance
and an angular component. This gives us the advantage of only
pulling qualified vertices into edges and corners, while their di-
rect neighbors reside in flat regions nearby. As meaningful distance
measures we use the closest points (Figure 3, blue) on the individ-
ual splat-discs respectively, as formulated in Equation 3, where ṙ j
is the radius of sample ṡ j. Further, the actual distance weight is
the result of a Gaussian, centered on µ = 0 with σ = li

3 . The angu-
lar component computes as the dot-product of vertex and sample
normal, clipped to values ≥ 0. As formulated in Equation 4, ẇi j is
simply the product of both components.

ḋi j =

{∣∣∣vi− ṡ j +
v̇i j−ṡ j
|v̇i j−ṡ j| · ṙ j

∣∣∣ if |v̇i j− ṡ j|> ṙ j∣∣~̇vi j
∣∣ else

(3)

ẇi j = exp

(
−

9ḋ2
i j

2l2
i

)
·max

(
0,ni · ṅ j

)
(4)

Figure 3 visualizes the strength of our proposed concept. The
contribution of a force, that pulls vertices into tangent planes is
scaled down with increasing distance from its originator. However,
the multiplication with the angular component is, what really
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makes the difference when it comes to recovering more surface
detail: Vertex v0 lies on a flat part of the mesh, the contribution of
samples just around the corner (ṡD, ṡE ) is decreased significantly
or even canceled out completely. For a vertex residing in a curved
neighborhood or on an edge like v1, the attraction of samples from
both sides of the implicit edge (ṡB, ṡC & ṡD, ṡE ) effectively pull
it evenly into the intersection of their tangent planes. Even if the
splat-discs themselves do not intersect, this is guaranteed because
only the projection directions contribute to the update vectors.

ṅAṡA ṅBṡB ṅCṡC

ṅD

ṡD

ṅE

ṡE

n0 n1

n2

v0 v1
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Figure 3: Point cloud samples ṡi are shown with their splat discs
and normals ṅi. The example shows projections for vertices v0 (left)
and v1 (right) as well as closest points on splat discs, respectively.
Vertices move along the projection direction, weighted by distance
and the angle between vertex normal and sample normal, and are
pulled into the intersection of tangent planes, thus allow for better
edge preservation.

III.B) Growth If the weights summed up in ωi are too small,
the vertex vi is not yet sufficiently close to the point cloud hull.
Therefore, the displacement vector ~vi is derived from its normal
ni, scaled by li

4 , This very robustly ties the geometric increment of
a vertex to the scale of its local mesh neighborhood. Further, the
normal is oriented with a value oi = ±1, which computes as the
combined majority sign of all dot-products between normal ni and
projection vectors ~̇vi j . This allows for mesh expansion as shown
in Figure 1, when the mesh is within the target shape, but also for
shrinkage as in Figure 6 (top), with the base mesh enclosing the
target shape. Further robustness is exemplified in Figure 23 (top)
with an out-of-target initialization mesh, which first gets drawn
into the target and then starts to grow.

Again, vertices are displaced using a differential update vi :=
vi +λa~ai, where λa allows to adjust the mesh’s assimilation speed.
However, as the differential increment is by design also linked to
dimensions of the local mesh neighborhood, a large λa could pro-
voke single vertices to grow out too fast. A moderate growth rate
of λa = 0.1, allows step II. to level out length discrepancies be-
fore the next assimilation update, thus promotes a more even and
homogeneous mesh expansion.

Figure 4: Mesh improvement operations: The concave (blue) and
convex (green) edges (standing out in contrast to their neighbors)
are fixed by rotation. A short (red) edge is collapsed to one vertex.

IV. Improvements To retain a high mesh quality, unfavorable
edge constellations are detected and fixed [DQ01] on-the-fly: Con-
cave or convex edges, which stand out in contrast to their direct tri-
angle opposites are fixed with a simple rotation. Figure 4 shows ex-
amples of these cases and how they are resolved. Edges shorter than
a certain length (e.g., lt

10 ) are collapsed, merging two vertices into
one. This might occur after the edge was rotated or if two neighbor-
ing vertices are drawn onto the same implicit edge and get too close
to each other. As this step proactively prevents local foldovers, our
results do not feature manifold violation artifacts.

m

m
Figure 5: Adapting the topology. Tunnels are invariant of the sur-
face orientation and automatically apply for ballooning (top) as
well as shrink-wrapping (bottom).

V. Object Topology Adaptation In the most basic scenario, the
mesh assimilation is initialized on a simple spherical mesh with a
target of the same genus 0. However, to support reconstructions of
objects with higher genus, our algorithm supports a common bal-
looning technique: Tunnels are inserted between opposing mesh
fronts to automatically adapt the mesh’s topology. The approach of
Cooperative Evolutions [LL20] is to detect self-intersections after
they have occurred, delete the affected regions, stitch them together,
refine the topology and smooth the geometry. Our solution is more
similar to the pro-active approach of Competing Fronts [SLS∗06],
using proximity tests on moving vertices to trigger the insertion of
tunnels before the mesh self-intersects. Therefore, the 1-ring neigh-
borhoods around close vertices or triangles are removed and re-
placed by tunnels, connecting the opposing edge rings. Tunnels are
triangulated analogously to Freestyle [SCC11] using the Bresen-
ham algorithm [Bre65] and can therefore be ensured to be water-
tight. Dedicated topology refinement or geometry smoothing is not
required as both are automatically taken care of within the next it-
erations cycles.



D. Bukenberger and H. Lensch / Mesh Assimilation 5

However, as the initial mesh may be quite arbitrary, tunnels can also
resolve inter-mesh situations as shown in Figure 19 (center) and
Figure 23 (bottom), when initialized with separated geometry. As
shown in Figure 5, the operation is not bound to surface orientation
and may also form inverted tunnels, resulting in the correct genus
nevertheless. This step is optional and may be omitted if the target
genus is known to be 0 or the initialization mesh already has the
correct genus.

2.1. Generalized Input

To be able to mesh more than just point clouds by assimilation, we
actually only have to adapt step III. of the optimization. This is
demonstrated with meshed input, signed distance fields, and volu-
metric data.

Figure 6: Top: Our algorithm assimilates the coarse icosphere to
the target shape; given as quad mesh [Cra20]. Bottom: Swapped in-
put and target lead to a coarsening; with a larger target-edge-length,
short edges are incrementally collapsed. Progress is left to right.

Remeshing of existing meshes, e.g. to ensure hole-free recon-
struction or uniform mesh quality is quite trivial to handle, as we
can simply use actual surface triangles instead of splat discs. Dis-
tances, directions, and weighting follow straightforward. Two ex-
amples using a meshed input as the target are shown in Figure 6.
On top, the sphere shrink-wraps around the target shape and refines
for a smooth and curved surface. For the bottom case, the target-
edge-length is increased, which leads to an incremental collapse of
short edges and the mesh assimilates the coarse icosphere again.

Figure 7: Mesh construction from a signed distance field, visual-
ized as a color coded cross-section slice: outside, close to 0, inside.
As there are no splat discs (point cloud tangents), the hull projec-
tion step is omitted.

Signed distance fields are supported by our mesh construction
method as well. Therefore, one only has to replace the orientation
oi in Equation 2 with a signed-distance. It is sufficient to sample the
field once for each vertex position, acquiring single scalar values re-
spectively, as the vertex normal is used as movement direction. The
update vectors ~ai are always in mesh-growth mode (III.B), since

there is no trivial tangent space given, as with splat discs. This ba-
sically comes down to an analogous concept as Cooperative Evo-
lutions [LL20] and, therefore, has the same limitations: As there is
no surface projection, vertices are not automatically drawn towards
edges or corners, thus sharp features are not recovered very well.
Nevertheless, smooth and curved surfaces are still reconstructed ac-
curately: Update vectors (Eq. 2) are automatically scaled down to
0 length as the (absolute) signed-distance decreases and, therefore,
the mesh closely approaches the implicit target hull. Figure 7 illus-
trates surface reconstructions of a target shape, given as a signed
distance field.

Figure 8: Tomography data [HBT∗13]: A neuron, given as 1325 bi-
nary slices (not all shown) with 661×595 pixels each, reconstructed
as surface mesh.

General volumetric 3D data, e.g. as acquired from computa-
tional tomography, require a bit more effort but can be recon-
structed as well. Figure 8 shows the reconstruction of a CT scanned
neuron, given as sliced binary volume. Analogous to the signed dis-
tance field, there is again no trivial tangent space for hull projection.
Orientations are not so easily determined as with the SDF, but nev-
ertheless, can be easily sampled and trilinearly interpolated from
the volume at mesh vertex positions, with binary values giving the
sign. Update vectors are scaled down to zero length, once the mesh
vertex is situated between both in- and outside labeled voxels, indi-
cating that the mesh reached a surface. By construction, the result-
ing mesh is watertight. Segments of dendrites separated by noise in
the scan data are however not connected by our approach.

3. Experiments and Discussion

In this section, we experiment with the achievable mesh quality
of our method, challenged with the five most common point cloud
artifacts, as described by Berger et al. [BTS∗17]. A numerical com-
parison follows in Section 3.1 as well as a qualitative discussion in
Section 3.3.

Noise and outliers are prominent artifacts in 3D scan data and
can be robustly dealt with by our algorithm. Figure 9 shows results
of the challenge designed for robust moving least-squares fitting
[FCOS05]. A point cloud, sampled reasonably dense but randomly,
is perturbed with increasing magnitudes of random spherical jit-
ter noise, scaled by the fandisk’s bounding box diagonal. Without
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0% 0.2% 1%

Figure 9: Mesh construction on noisy input. Besides some kinks,
strong edges remain sharp even with increasing noise of randomly
jittered samples. The noise magnitude is given in percent of the
bounding box diagonal.

head ear snout tail
Figure 10: Reconstruction on 3D scan data [TL14]. When aligned,
the 10 individual partial scans (colored) create noisy overlap re-
gions. Since every mesh vertex is attracted by multiple sample tan-
gents, the noise is leveled out and the reconstruction is smooth.

noise, ground-truth-like results are achieved. At 0.2% noise scale
[FCOS05], flat areas are still flat, curves smooth, edges sharp and
only a few kinks become noticeable on very obtuse edges. With
noise even further increased by factor 5, our reconstruction still ro-
bustly captures all major features of the object. Figure 10 shows
details of the noisy overlap regions in a real 3D scan, along with
the smoothly reconstructed surface. When not extracted in a pre-
filtering step, outliers do not cause any difficulties in our approach
either: Mesh vertices are associated with a fixed number of nearest
point cloud neighbors. Therefore, far-out outliers are usually not
part of any neighborhood, but if so anyway, their influence is still
minimal as their contribution is weighted inverse to their distance.

Missing data in the input geometry is recovered by the recon-
struction. The first example in Figure 11 shows the twistcube with
cutout geometry on a curved side area, an edge, and on a corner.
The reconstructed mesh smoothly interpolates the missing regions,
stays within the implicit hull, and does not grow through the holes.
The second example shows Igea, where 75% of the source mesh
was cut out and removed in randomly shaped patches. Our algo-
rithm still reconstructs a closed mesh and recovers fine details.

Sample density is not a decisive factor for successful reconstruc-
tions. While modern 3D scanners usually provide quite dense point
clouds and more information always allows for more precise re-
sults, our algorithms splat discs also automatically adapt to fewer
and sparser samples. Figure 12 shows the same object with dif-
ferent sampling but accurate results with smooth curves and sharp
edges in both cases.

Defective Source Splat Discs Reconstruction
Figure 11: Filling up holes: Results on defected, than sampled in-
put. The twistcube is missing portions on a curved side region, an
edge and a corner. 75% of Igea’s surface was removed by cutting
out random patches.

Source 200 Samples 5000 Samples

Figure 12: Sample density has little influence on the reconstruction
as the disc radii automatically adapt.

Figure 13: Adaptive meshing results: The bust was importance-
sampled based on local surface curvature. The reconstructed mesh
adapts accordingly. The sphere features a very steep density gra-
dient with 10k samples located on the upper hemisphere and 1k
samples on the lower hemisphere.

One might argue that equidistantly distributed vertices - the de-
fault outcome of our algorithm - are not always a favorable choice
for meshed objects. Therefore, we can easily switch to a sample-
density adaptive mode, as exemplified in Figure 13. To simulate
varying density, the ground-truth mesh was importance-sampled,
based on surface curvature. This leads to a higher sample den-
sity on the facial features and fewer, sparsely distributed samples
on the head or neck region. Now we can locally scale the target-
edge-length for each vertex individually, based on the radius of the
closest splat discs. Figure 13 (right) shows a more challenging ex-
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ample with a very steep density gradient: 10 times more samples
are placed on the upper than on the lower hemisphere. The result
adopts this change in density with coarser geometry on the bottom
and fine geometry on the top.

3.1. Comparisons

Besides validation against common point cloud challenges or
the qualitative discussion in the upcoming section, we provide a
numerical comparison to a variety of state-of-the-art reconstruction
techniques, evaluated on over 2000 randomly selected objects from
the Thingi10K data set [ZJ16]. A comparison to the most closely
related technique, Competing Fronts [SLS∗06], is not included,
since there is no implementation available and the authors could
not provide reference results. Ground truth objects are scaled-down
and centered to fit in a [−1:1] cube. Oriented point clouds are
sampled uniformly from the source objects, where the number of
samples computes as object surface area ×1000. Where possible,
we specified lt ≈ 0.025, except for IFAM where we set the target
vertex count to half the amount of the input point cloud samples,
to actually produce a decent result. Other parameters were left on
auto- or the default settings respectively. Total failure cases (<5%),
where the applications crashed and produced no output, could not
be taken into account.

Results of our numerical comparison are listed in Table 1 with
means and medians of different error measures, respectively. In
the average HD, our method is only outranked by two other ap-
proaches but supersedes (or is close to) the competition in all other
measures. This small drawback can be attributed to a limitation of
our method, namely very, very thin geometry. Such a case is in-
cluded in Figure 20 with object 1489590: With geometry, becom-
ing thinner than the target-edge-length, the mesh growth comes to a
halt, as there are no further refinements. Portions of the point cloud
remain unexplored, thus result in rather high HD errors. A heuris-
tic, indicating how many point cloud samples are actually in use
for hull projections, could potentially improve on this matter. The
other models in Figure 20 and 21 exemplify, why some procedures
fall behind in our numerical comparison: While flat or curved sur-
faces are often reconstructed quite well, edges on feature lines or
sharp geometry are smoothed out. This especially shows on CAD-
like models with sharp edges, e.g. for object 200080, our result is
the only one that accurately reconstructed the threads on the screw.

3.2. Other Ballooning Methods

Whereas the numerical comparisons are mostly focused on
established state-of-the-art meshing procedures, we also want to
point out clear conceptional distinctions between our and related
ballooning approaches.

• Competing Fronts (CF) [SLS∗06] also uses a deformable mesh
complex, iteratively approaching the target shape. However, CF
strictly grows from within the target as vertices only move along
positive normal directions and get frozen once close enough to the
point cloud. Our mesh remains flexible throughout the optimization

as vertices move and align individually. Further, our method gener-
alizes ballooning and shrink-wrapping, as the mesh may grow from
within the target, but also enclose on it from the outside. As shown
in Figure 23, our mesh’s growth direction is robust enough to even
overcome a misaligned initialization. In order to maintain high-
quality mesh structures, CF employs remeshing operations [BK04]
every 6-18 iteration cycles. In our iteration, corrective operations
are performed in every cycle but targeted at the affected mesh re-
gions. The increase of an object’s genus is approached in a similar
defensive manner, as both methods replace opposing geometry with
a triangulated tunnel before the mesh self-intersects. See step V. of
Section 2 for more details. CF finalizes the optimization with a ded-
icated projection step to guarantee ε-close reconstruction results,
which, however, is invariant of the point cloud tangent space, thus
does not recover any sharp features. Our optimization is designed to
automatically transition from mesh growth to a projection scheme
on an individual vertex basis. Further, in our projection, the ver-
tices are explicitly drawn towards intersections of tangent planes,
thus faithfully reconstruct sharp corners and edges.

• Cooperative Evolutions (CE) [LL20] is based on two mesh
structures, approaching the target shape from the interior and ex-
terior simultaneously. Once both hulls are close enough, individual
vertices from both hulls have to be matched to each other and the fi-
nal geometry is extracted from the space between both meshes. Ob-
jects of a higher genus are also possible: Self-intersections are iden-
tified, the affected geometry is removed, again stitched together,
smoothed, and refined. The mesh evolution in CE is based on a
signed distance field, recomputed every iteration cycle, and mixed
with a normal-distance field. In contrast, our mesh vertices are
linked to the individual, fixed-size sets of nearest samples, easily
updated with sets from their 1-ring neighbor vertices, respectively.
Mesh integrity in CE is, as in CF, maintained with dedicated global
remeshing [BK04]. Further, CE is invariant of the point cloud ori-
entations, thus solely relies on the distance fields. As shown in our
SDF experiments (Section 2.1), our method can also easily operate
on distance fields. However, this also comes with the same draw-
backs and limitations of CE, as our method is then also no longer
able to recover sharp edges.

P2M

Ours

Figure 14: Comparing results of the learning based approach
Point2Mesh (P2M) [HMGCO20] to ours.
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HD RMSE SAD TVD NAD WT
[BMR∗99, Dig14] BPA 0.057 155 0.052 247 0.002 710 0.002 693 −0.093 504 −0.050 309 0.065 322 −0.014 808 0.151 215 0.000 000
[DMSL11, Dig15] SSM 0.089 543 0.090 939 0.004 422 0.004 029 −0.470 502 −0.425 178 0.028 261 −0.447 994 0.220 108 0.001 329

[JTPSH15] IFAM 0.139 415 0.129 359 0.004 021 0.004 036 −0.413 034 −0.371 409 0.127 780 −0.379 604 0.197 236 0.000 000
[STJ∗17] OSR 0.124 078 0.101 473 0.007 759 0.006 079 −0.133 871 −0.016 991 0.025 842 −0.001 302 0.287 676 0.517 084

[CT12] SSDR 0.029 466 0.025 658 0.001 922 0.001 747 −0.031 290 −0.022 540 0.115 445 −0.003 310 0.092 074 0.931 677
[KBH06, KH13] SPSR 0.034 983 0.033 962 0.002 623 0.002 557 −0.043 226 −0.031 528 0.010 974 0.000 109 0.128 020 0.998 227

Ours 0.040 563 0.019 009 0.001 269 0.000 773 −0.015 890 0.000 910 0.003 979 0.000 570 0.040 147 1.000 000
Table 1: Results of multiple reconstruction techniques, compared to the ground truth of over 2000 objects from the Thingi10K data set [ZJ16],
as mean and median. The errors (best close to 0, except WT best close to 1) include the symmetric Hausdorff-Distance (HD) measured with
200k samples, the root-mean-squared-error (RMSE) measuring the closest-point distance of result faces to the ground truth, the surface-
area-deviation (SAD) and total-volume-deviation (TVD) between reconstruction and ground truth, as well as the amount of watertight (WT)
results, all given in percent, except for the normal-angle-deviation (NAD) which is given in radians. See Figures 20 and 21 for examples.

• Point2Mesh (P2M) [HMGCO20] is a state-of-the-art learning-
based approach, iteratively shrink-wrapping a convex hull mesh
around a target point cloud. The individual vertex displacements
are the results of a learning self-prior network, which does not pe-
nalize manifold violations. Therefore, P2M requires heavy mani-
fold reconstructions [HSG18] every few iteration cycles to actually
maintain a valid surface. Adapting the genus within the optimiza-
tion is not possible. However, P2M may also start on a given mesh
with the correct genus, i.e., a coarse alpha shape [EM94] or Pois-
son [KH13] mesh. This is also natively supported by our method,
moreover, our algorithm may even start on separated geometry as
shown in Figure 19 and 23. Comparisons featured in Figure 14
again exemplify the strengths of our approach, i.e., generating a
uniform mesh structure and reconstructing sharp features and fine
details. This can be seen, especially on the edges of the G as well
as on the toes and epoccipitals on the triceratops’ frill. The target-
edge-lengths for our results were set to the average edge length of
the P2M meshes, respectively. On the same hardware (GTX 1080
Ti) and starting from the same convex hull mesh, P2M finished the
given 6000 iterations for the triceratops within 70 minutes, whereas
ours performed 1500 iterations and terminated after 108 seconds.

CF
#f:144k

CE
#f:165k

P2M
#f:65.5k

Ours
#f:134k

Figure 15: Error comparisons with related ballooning approaches,
visualizing distance errors (top), normal deviations (bottom) and
listing the number of faces (#f).

Ballooning Results Figure 15 provides a qualitative comparison
against results of CF, CE, and P2M. The visualization shows dis-
tance errors and normal angle deviations between reconstruction
and input point cloud. Although the CF and CE results have a
higher mesh resolution than ours, they still struggle to capture the
rounded ridges and valleys of the bunny. With the original point
cloud (362k samples) and a memory-limited size of 65.5k faces,
the official P2M code totally maxed out the 24 GB of memory on
a Titan RTX card, performed 30k iterations, ran for 237 h but the
result is still riddled with artifacts. This is the best result we were
able to generate. Even without special attention to sharp features,
our method still provides the most accurate reconstruction of round
and organic shapes.

3.3. Discussion

With our method, we achieve the same ε-closeness to the target
shape as Competing Fronts [SLS∗06], which is a guaranteed result
of our projection scheme. Figure 17 and 20 visualize magnified de-
viation errors form the sampled ground truth meshes. An effect that
becomes visible here is the mesh’s tendency to exaggerate curved
regions. This is caused by the tangent projection, which, on concave
regions intersect inside and for convex regions intersect outside of
the mesh. By design, mesh vertices are drawn towards intersections
of tangent planes, thus resulting in vertices slightly in or outside of
the actual hull. However, this is a small trade-off in our bilateral
sample-weighting scheme, which generally allows for a robust and
accurate reconstruction of smooth regions and sharp edge features
respectively, even under the presence of noise. The listed numer-
ical values in Figure 17 and Table 1 for HD and RMSE play in
the same order of magnitude as compared state-of-the-art methods.
Figure 18 compares reconstructions of the Tanagra high precision
3D scan [DAL∗11]. While the PSR [KBH06] result is again quite
smoothed out, the MLS [FCOS05] filtered BPA [BMR∗99] result
features better details. Nevertheless, our mesh equals or even super-
sedes the sharpness and fine-detail quality of the SSM [DMSL11]
result. The zoom-ins shown in Figure 16 demonstrate the achiev-
able mesh quality. Whereas other methods’ mesh structure either
directly depends on the input points (BPA, SSM), smooth out de-
tails for the sake of regularity (IFAM, OSR), or triangulate octree-
cells (SSDR, SPSR), our results natively approximate Delaunay-
like triangulations.

Section 2.1 introduced the ability to adapt our method with little
effort to various other input scenarios, giving examples for high-
quality point cloud reconstruction, remeshing, volume- and CT-
scan meshing, or surface reconstruction from signed distance fields
which are currently popular in neural surface representations. Fur-
ther examples for the versatility of our algorithm are shown in Fig-
ure 6, where Spot is given as a quad-meshed target, enclosed by
a coarse initial mesh, which automatically assimilates its shape by
shrink wrapping. Swapping target and init mesh leads to the inverse
operation: The only parameter to be adapted is a larger target-edge-
length, automatically coarsening the mesh as small edges incre-
mentally collapse.

Examples in Figure 19 show reconstructions of the Bunny given
as point cloud but starting from different initialization meshes. The
initial mesh on the left is a coarse voxelization of the point cloud
volume. As this initial hull already fills out most parts of the target



D. Bukenberger and H. Lensch / Mesh Assimilation 9

BPA SSM IFAM OSR SSDR SPSR Ours

Figure 16: Comparison on mesh uniformity with a zoom-in on one of the nobs of object 101634 from Figure 20.

+1%
0%
−1%

4.5017 4.9807 4.7738 10.9946 3.4003 2.7820 HD
0.1928 0.2498 0.2202 0.3515 0.2449 0.3660 RMSE
0.0561 0.1815 −0.4322 −7.8373 −1.4329 −0.8017 SAD
0.2853 −1.2988 −0.2010 −3.2690 −0.2009 0.0260 TVD

Figure 17: Errors analogous to Table 1 but multiplied by 100 for
better readability. Hull projections on tangent planes cause vertices
to exaggerate on concave (vertex inside) and convex (vertex out-
side) curved regions. This effect is not as prominent on the horse as
it is reconstructed from an SDF without hull projections.

3D Scan
[DAL∗11]

SSM
[DMSL11]

Ours

2MLS + BPA
[FCOS05]
[BMR∗99]

PSR
[KBH06]

Figure 18: Reconstructions of the Tanagra 3D scan with PSR, MSL
& BPA, SSM and ours. The reconstructed mesh is significantly
smoother in appearance along the folds of the toga while the in-
scription (on the back of the statue) is much better readable.
Image Source [DMSL11]

shape, it is quite easy for our algorithm to project vertices into the
point cloud while equalizing their distances. In the second case, the
algorithm starts from separate objects which individually grow and
connect via inter-mesh tunnels as they approach each other. The
rightmost example is the default mesh, which automatically grows
into the desired shape from within the target point cloud. How-

ever, while the same initialization meshes lead to identical results,
the algorithm will not produce canonical results from different init
meshes. As shown with the Igea example in Figure 23 (top), the
init. mesh does not necessarily have to be placed fully within the
target shape. The normal-based orientation for mesh growth direc-
tion is robust enough, to cope with miss-aligned starting conditions
so that the initial mesh will get sucked in and then starts to grow.

Figure 19: Reconstructions of the Bunny [TL14] from three
different initialization meshes: Starting from a coarse octree-
voxelization, separate geometric objects and the default icosphere.

Performance comparisons to other related work might yet not be
very meaningful, as they are often single-core CPU implementa-
tions and ours a mixture of Python and Cuda code. All vertex-based
operations in our pipeline are easily parallelized, thus executed on
the GPU. Single-threaded operations on the mesh data structure
only interleave the fast optimization steps. Therefore, our algorithm
is able to successfully finish hundreds of iterations within seconds.
Full reconstructions of larger results, however, play in the same or-
der of magnitude as competing techniques, ranging from seconds
to a few minutes. A speedup can be gained, e.g., from tailored in-
put like coarse voxelizations, as shown in Figure 19 (left), or well
placed initial geometry, as shown in Figure 23 (bottom), where sep-
arate initial meshes grow in parallel until fused to one data structure
via inter-mesh tunnels.

4. Conclusion

In this work we present a mesh construction/remeshing algorithm
that is easy to implement but still checks all the important boxes of
the state-of-the-art in this well-researched field: ε-close surface re-
constructions of point clouds and other (re)meshing tasks, e.g., vol-
umetric functions or CT-scans, robustness to noise or outliers, and
support for higher genus object topology with a guaranteed closed,
watertight manifold surface. Moreover, we can note several im-
provements over similar approaches: Instead of global subdivisions
our targeted mesh refinements avoid unnecessary increases of mesh
resolution or repeated remeshing steps. The mesh resolution may
adapt to the given sample density or distribute vertices uniformly.
With a minimal parameter space (target-edge-length or closeness-
threshold) to be specified, the process robustly completes fully au-
tomated, without the need for different reconstruction modes, final-
izing projection, or smoothing passes. This can be attributed to our
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concept of a seamless transition between mesh growth and surface
assimilation on an individual vertex basis. Our bilateral weighing
scheme for surface projections allows for perfectly captured sharp
object features as well as smooth areas. This is substantiated with a
bulk error-benchmark on a large dataset comparing state-of-the-art
reconstruction methods as well as various qualitative comparisons,
including other ballooning concepts. Furthermore, we demonstrate
the flexibility of our approach to cope with arbitrary input and ini-
tialization situations. As our method is still able to adapt to any
given target shape, it exemplifies a powerful advancement and gen-
eralization of related ballooning and shrink wrapping approaches.
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Figure 20: Randomly selected objects (IDs on the right) from the Thingi10K [ZJ16] data set serve as ground truth. All objects are scaled
down to fit in a [−1:1] cube and are uniformly sampled. The number of samples computes as surface area × 1000. 89914 is a thin hollow
shell and therefore not as simple as it may appear. 1489590 is a failure case, discussed in Section 3.1, of our approach where the geometry is
too thin for the mesh to grow.
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Figure 21: The same results as from Figure 20 with visualized surface normal errors. Many methods perform well on curved and flat regions,
but sharp edges as on the CAD-like objects are often not recovered very well.
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Figure 22: Objects of higher genus are reconstructed, using intra-mesh tunnels. Black arrows indicate normal growth process. Proximity
checks trigger tunneling operations on close (but not directly adjacent) geometry, shown in blue. The iteration continues normally afterwards.

Figure 23: Top: The mesh growth orientation is robust enough to overcome miss-aligned initialization meshes. The Hilbert curve: Assimilated
from one (mid row) starting position and from eight (bottom) individual positions, connected via inter-mesh tunnels.
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