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1 Introduction
An essential research field in biology and bioinformatics is the understanding of cellular
gene regulation. Through the development of technologies like Microarrays as well as RNA-
seq, researchers are able to gain insight into the transcriptome of cells. The analysis of the
large amount of data that are produced by these techniques is thereby still a challenging
task for bioinformaticians. With Mayday [BSN10], a platform has been published, that
combines the most useful methods with a user-friendly interface to facilitate the analyses
on transcriptomic data.
This tutorial covers the most common analyses for microarray data using Mayday. Fur-
thermore, a detailed explanation of Mayday’s features is given as well as a demonstration
on how to apply these. In this tutorial all descriptions of used methods are condensed
to its essential, which are necessary to understand its meaning for the analysis. For
more detailed information additional references are provided. This tutorial is written for
Mayday version 2.14.

1.1 Steps of analyzing microarray data

In general, microarray data analysis consists of several sequential steps:

- Normalization: after getting measures from a microarray chip, technically induced
variation need to be minimized to make sure that only biological variations are
present in the data.

- Extraction of information: significant information such as genes, which seem to be
di�erentially regulated or are expected to show a response to altered experiment
conditions are to be found and extracted.

- Data visualization: visualization of data and results of di�erent analyses is essential
and helpful.

We will use these steps as guideline for this tutorial.

1.2 About the example data

For a better understanding, the application of all described Mayday features is demon-
strated with example data. We will analyze gene expression data from a microarray
time series experiment of Streptomyces coelicolor [NBH+10]. The Streptomyces bacterium
is used for the industrial production of antibiotics like Streptomycin and Avermyctin
[dLPdSM+12]. Moreover, S. coelicolor genome is i.a. related to Mycobacterium tuberculo-
sis and Corynebacterium diphtheriae genomes [JIC] so it can be used to study bacteria
causing these deceases. Therefore, S. coelicolor is commonly used as an example organism
for genetic studies.
Under optimal environmental conditions, that means especially an abundant supply of
nutrient, bacteria like S. coelicolor proliferate exponentially. When conditions become
worse, proliferation stagnates and the bacterium switches from primary to secondary
metabolism, what results in alteration of gene expression.
The experiment to measure gene expression during growth was conducted as follows:
S. coelicolor bacteria were cultivated in a fermenter for 60 hours under phosphate limiting
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conditions. After 35 hours the nutrient phosphate was depleted, which lead to a stop of
exponential proliferation. The example data has been produced using a custom designed
A�ymetrix GeneChip R• microarray. The experiments had been conducted every hour from
20 up to 44 hours and every two hours afterwards.
In this tutorial we will analyze the e�ects of starvation of nutrition that can be observed
on the gene expression level and try to identify genes which are possibly involved in
this metabolic switch. Our example dataset F199 contains expression values of 22779
S. coelicolor transcripts measured over the time points as described above. All data used
in this tutorial is available on our homepage.

2 Mayday
Mayday is a workbench for analysis, visualization and storage of microarray data. It
combines several steps of microarray data analysis in one single program. Statistical
methods as well as graphical presentation is supported.
Mayday is available on our website http://it.inf.uni-tuebingen.de. Written in
Java programming language Mayday can be used on all platforms supporting the Java
runtime environment 1.7. Developed as modularized open source project, several plugins
are available that can be adapted and extended.
Mayday is an ongoing project of the Integrative Transcriptomics group1 at the Center of
Bioinformatics Tübingen, Germany, led by Dr. Kay Nieselt.

2.1 Getting started

Mayday can be used without any installation which makes it flexible and easy to work
with. We recommend the experimental webstart version, but alternatively a standalone
download version is available as well. For using the webstart version, follow the download
instructions on our website and run Mayday_XG.jnlp in your download folder. For both
versions the amount of available RAM can be specified. Please make sure that the used
hardware supports the selected amount of memory.
For the standalone version, extract the downloaded zip archive, navigate to the contained
folder executables and run Mayday_XG.sh (Linux/Mac) and Mayday_XG.bat (Windows),
respectively. X means how much RAM Mayday can use.
When Mayday starts for the first time, a new window will ask the user to set a plugin
directory. Set the path to the folder plugins inside the extracted archive.

2.2 Data handling in Mayday

Analyzing large amounts of data, e�cient and simple data handling is required. Mayday
provides a clear data organization. Automatically created probe sets are neatly arranged
in probe lists, manually selected subsets are represented in dynamic probe lists and meta
informations can be accessed separately. Probe lists, dynamic probe lists and its associated
meta informations are organized in a dataset. Several datasets can be loaded at the same
time. This design concept with mainly three di�erent types of data handling simplifies
management of large scaled data.

1http://it.inf.uni-tuebingen.de/
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Probe lists

In general, a dataset consists of (gene expression) data (=probes) measured under certain
conditions (=experiments). Mayday represents the data in matrix format where the
probes are mapped to its rows and the experiments to its columns. These matrices are
held in so-called probe lists. When a new dataset is imported, Mayday by default creates
a new probe list group named Complete DataSet including a probe list which contains
all the data.
A probe list may contain the values of the whole dataset or custom subsets which can be
created by the user. This can be used for work with subsets of the whole dataset and to
process these without altering other subsets or the complete dataset. That is very useful
e.g. if one wants to analyze or compare di�erent subsets. For better visual perception,
Mayday probe lists are colored.
The changeable probe list order in probe list window (see Figure 1 (3)) is used as kind of
priority list with descending precedence. In some visualization windows, this probe list
priority is used for ordering data visualization.

Dynamic probe lists

Dynamic probe lists are similar to the previous described probe lists with the di�erence,
that the selection of contained genes can be adapted dynamically. With dynamic probe
lists, Mayday provides intuitive user-defined data selection and handling. Every dynamic
probe list is thereby defined by filtering rules which are applied on other probe lists. All
genes matching these rules will be added to the respective dynamic probe list. To create
a new filter, Mayday provides many data processors to select probes by names, values,
probe lists, MIOs and much more.
In comparison to “normal” probe lists, filtering rules can be edited and changed, and the
probe list will be updated dynamically.

Meta information objects

Mayday can add auxiliary information to the probes which are represented as so-called
meta information objects (MIOs) organized into meta information groups. For example,
in combination with probe lists they can be used for filtering the data using criteria
provided in a meta information object. MIOs can either be created within Mayday (e.g.
application of statistical methods, compare Sections 2.5 and 4.6) or imported from a file
(compare Section 3.1). An example for a MIO is a list of p-values calculated on a probe
list using a statistical test.
The meta information window (see Figure 1 (2)) features the selection, ordering and
grouping of MIOs. Furthermore, the context menu provides several methods to edit,
transform and visualize them. Of course, these MIOs can be exported into a separate file
as well as together with the expression matrix.

2.3 Mayday graphical user interface

When Mayday is started, the main window of its GUI appears which is described in
Figure 1. Mainly, it is separated into three areas:
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Figure 1: Mayday’s graphical user interface main window. 1: DataSet-management
shows the loaded datasets as well as information about its size. 2: Meta Information
window displays MIOs and provides functionality for managing and ordering them. 3:
Main area displays all probe lists, additional information and preview profile plots. 4:
Buttons at the bottom rearrange and group probe lists. 5: The menu bar provides access
to further actions. 6: Status bar shows free RAM.

1. The DataSets window shows the loaded datasets and its size (that means the number
of probes and experiments).

2. The meta information group window contains a list of all MIOs which belong to the
selected dataset.

3. In the main window probe lists are displayed.

4. The buttons below are for rearranging and ordering them in groups.

5. The menu bar provides access to almost the whole functionality of Mayday, which
is described later.

6. The status bar indicates, how much RAM is currently available.

2.4 Plugins

Advanced users can expand Mayday’s functionality by adding further plugins. The
advantage is, that one can extend the functionality of Mayday individually by writing
own plugins. Most of them are only available in the experimental version. Plugins are
only usable when path to plugins folder is set (compare Section 2.1).
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Figure 2: The class label inspector splits groups of experiments in definded classes.

2.5 Demonstration of the basics based on random data

We will briefly demonstrate the main functionality of probe lists and MIOs by an example.
Data Set æ Further import options æ Random Probes creates random probes of
an arbitrary size. In Mayday’s main window the created probe list with some additional
information and a preview of the data appears. Double-click to enlarge the preview. A
double-click on the probe list itself enables renaming the probe list and changing its color.
Biological researchers are often interested in the fold-change. To demonstrate how to add
a meta information object, we will calculate the fold-change as follows:

- Right-click at the newly created probe list and navigate to Statistics æ Derived
Statistics æ Fold-change.

- A new window will appear were two classes can be defined, from which the fold-
change should be calculated. Figure 2 shows the Class label inspector window
where experiments can be grouped into classes.

- After confirming with OK, at the meta information window (see Figure 1 (2)), a new
folder (Probe Statistic) containing the fold-changes as MIO will appear.

This MIO can be used to create a new dynamic probe list containing the probes with the
highest fold-change.

- Again, right-click on the probe list and select Create æ Dynamic ProbeList.

- One can rename the new dynamic probe list, for example to Highest fold-change
and select a color.

- Click on Add Rule and select Meta information value as data processor.
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- A new window will open. There, select previously created MIO FC between Class
0 and Class 1 with the fold-change and proceed.

- The second data processor should be Compare a number (class java.lang.
Double). To set a threshold, select Value should be >= in the drop-down menus
and set a threshold, for example 1.0.

- Press OK and a new dynamic probe list containing all probes with an fold-change
Ø 1 will be created.

3 Data import
Various file formats are supported in Mayday. Many files can simply be imported for
further processing, for others, that are more complex, an import plugin called Mayday
SeaSight [BN11] is available. Furthermore, the whole workspace can be saved and loaded
again. The following sections describe the appropriate import options for the respective
data formats.

3.1 Import from file

Many files, especially simple text files or .csv tables are directly importable into Mayday.
Such files can be loaded via Data Set æ Import from file in menu bar (see Figure
1 (5)). Mayday is able to import snapshots, whole datasets, probe lists and meta
informations from various file formats. To import a dataset or a probe list, select Import
from file in Data Sets menu and Probe List menu, respectively.
Meta information from a .csv file, that are associated with datasets, experiments or
probes, can be imported as well. Right-click on the Meta Information window (see Figure
1 (2) to open the context menu where the import of several kinds of meta information
such as Data, Experiment or Probe Information and Locus Data is provided.

3.2 Mayday SeaSight

Microarrays as well as RNA-seq are the two important technologies, when dealing with
transcriptomics data. Generally, data from di�erent technologies are di�cult to combine.
This also applies for microarray and RNA-seq data. To overcome this problem, the plugin
Mayday SeaSight o�ers a common framework for transcriptomics data pre-processing.
It features importers for many file formats as well as several pre-processing methods, such
as taking the logarithm, background-correction or normalization using di�erent calculation
methods and many more. The great advantage is that raw data from di�erent sources can
be individually pre-processed before combining them into a common dataset.
The concept of data analysis using Mayday is based on the assumption, that all data
represent true biological information instead of being contaminated by technically induced
variations. In order to fulfill this assumption, SeaSight provides a pre-processing pipeline
for normalizing the raw data. Figure 3 shows the graphical user interface of SeaSight
with an example for such a transformation pipeline.
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Figure 3: Graphical user interface of Mayday SeaSight. The experiments that have been
loaded are labeled with the respective identifiers as well as the selected transformations
during the pre-processing pipeline. On the right side, there are the buttons for editing
experiments and transformations.

Import and pre-processing raw data

Mayday SeaSight provides an automated data import which spares the users having to
load the data manually and reduces the number of possible user-made errors. The user
only needs to specify the file format for every type of experiment and Mayday loads the
format specific importer. If necessary, the user will be asked to input further information.
After importing raw data, experiment (and file format) specific pre-processing can be
selected. In SeaSight, the calculations and steps in order to pre-process raw data
and to create a Mayday dataset are called transformations. As part of pre-processing
raw data, several transformations can be sequentially combined. The application of the
same transformations for experiments of same origin and file format is desirable, due to
consistency.
For commonly used data formats, SeaSight sets recommended transformations by default.
Of course, additional transformations are selectable. However, not every transformation can
sometimes be adapted due to prior set transformations or used data format, but SeaSight
provides a help menu which shows why some transformations cannot be applied.
The transformation Create dataset from common features combines data from di�er-
ent file formats using the probe IDs as identifier which is necessary to create a Mayday
dataset. All probes with IDs that occur in all experiments are combined to a new dataset
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3.3 Practical example

In the following, a step-by-step instruction shows, how to apply the previously described
SeaSight’s functionality to a set of CEL files from A�ymetrix runs. For using SeaSight
make sure that the correct plugin path is set (compare Section 2.1 and 2.4). For demon-
stration purpose data import and pre-processing will be conducted on the F199 data.

Import example data

- In Mayday menu bar (see Figure 1 (5)), Data Set æ Further import options
æ Import raw data (SeaSight) will open the SeaSight plugin which is shown
in Figure 3.

- New experiment raw data can be added with Add Experiments. This will open the
Import Experiments window in which the data format can be specified.

- F199 has been produced using A�ymetrix GeneChips R•, so we select Affymetrix
CEL files as Import Plugin.

- Clicking on Add opens a file manager to select the files which contain the desired
data provided in exampleData.zip. For this example we select all files and proceed.

Apply data transformation

SeaSight will automatically select suitable transformations for the dataset. Here, RMA-
transformation will be applied (RMA = Robust Multi-array Average, [HKY99]). RMA
will perform the following transformations:

- Background correction and quantile normalization which make sure, that variations
in gene expression are only caused by biological instead of technical reasons.

- RMA-polish, which reduces unwanted interferences as well.

- log2-transformation. Taking the logarithm scales the enormous range of values to a
smaller range between 0 and 16.

If you don’t want to run RMA, remove the check mark Perform RMA in the Import
Experiments window.
To process the CEL files, SeaSight needs further information provided by a CDF file
(=Chip Definition File). A CDF file contains information about how to summarize and
interpret the experimental data. If SeaSight cannot find a suitable CDF file, a new
window shows the message

CDF file not found. Please select a CDF file
for Chip Type “ScoeA32a520627F”.

Click OK to load the file ScoeA32a520627F.CDF which is provided in exampleData.zip as
well.
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Add further transformation

In addition to transformations applied by default, further transformations can be selected.
For this, select all rows and click on Add Transformation to open a new window in
which transformations can be selected from a list. There is a button Show me, why
some transformations cannot be applied to list the requirements that are necessary
to apply some further transformations. (This window misses an exit-button and can be
closed by right-clicking at the top bar and selecting close).
As shown in Figure 3, colored labels show the selected transformations. They can be
removed by right-clicking on the respective label.

Saving pre-processed data

To avoid repeating this procedure every time before working with a dataset, SeaSight
can export the loaded experiments as a so-called snapshot which saves the applied pre-
processing pipeline as well. This enables an eventual altering of the pre-processing without
conducting all import and pre-processing steps again. Select Save Matrix in SeaSight
to export a snapshot of the data as SeaSight matrix file (.maydayz.SeaSight). A
SeaSight matrix file can be loaded via Load matrix. For more information compare
Section 6.1.

Create Mayday DataSet

To transfer the data from SeaSight into Mayday, the transformation Create DataSet
from common features needs to be applied to all experiments. (CTRL + A to mark all
experiments, select Add Transformation). This transformation combines all experiments,
especially when they are from di�erent file formats. All information will be merged and
translated to a Mayday-readable data format. Optionally one can set a custom name for
the dataset.
Clicking on Run Transformation Now in the bottom corner of the SeaSight window
applies the selected transformations and builds a new Mayday DataSet from the CEL files.
This may take some time depending on the numbers of experiments. In Mayday, a new
window Dataset Properties will open. If you want to add some more information, go
on with Section 4, else click OK. The SeaSight window remains in the background and
can be closed now.

4 Data analysis
Additional information can be added to experiment names in Mayday manually in order
to improve clearness and comprehensibility. The following two sections show, how this can
be done for the example of the F199 dataset.

4.1 Change experiment names

Often, one wants to add further information about the experiment’s conditions for improved
visualizations and eased interpretations. Especially for analyzing time series experiments it
is important to add information about the time points when experiments were conducted.
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Figure 4: The Change experiment names window provides editing the names of the
experiments. Select an experiment and click on Edit to change its name.

To change experiment names, right-click on the dataset (see Figure 1 (1)) and select
Properties to open the Dataset Properties window. The tab Experiments lists all
experiments. The name of a selected experiment can be changed with edit. Confirm
changes with OK.

4.2 Change experiment order

Sometimes, the user wishes to change the order of the experiments. In particular this is
essential for time series experiments. It can be done as follows:

- Data Set æ Transform æ Change Experiment Order opens a new window
Change Experiment Order for data set.

- Use drag-and-drop to bring the experiments in the correct order.

- Confirm with OK.

13



4.3 Overview of dataset

Before starting with a deeper analysis, we want to get a first visual impression of the
data after normalization. Mayday provides many kinds of data visualization which are
presented in Section 5 but for now we will only use boxplots, profile plots and scatter
plots.

Boxplot

A boxplot [MTL78] shows the distribution of values as plots of quantiles. A quantile
contains all values that are less or equal its respective value. Boxplots show the 25%, 50%
(mean) and 75% quantile as well as the inter-quartile-range, that means the middle 50%
of the values, and the minimum/maximum. Boxplots can be used to visualize the data
distribution to prove whether Seasight’s quantile normalization had worked successful.
Furthermore, experiment outliers can be detected. Figure 5 shows boxplots of the gene
expression level of all experiments before (above) and after quantile normalizaton (below):
when quantile normalization has been applied successfully, all quantiles are approximately
on the same level.
A boxplot can be created with a right-click on a probe list (here: probe list global) and
navigating to Visualization æ Boxplot.

Figure 5: Boxplots are used to visualize and compare the quantiles of the probes during all
experiments. At the top, a boxplot shows the quantiles of the F199 data without quantile
normalization. Below are the same data but they are quantile normalized successfully; all
experiments have approximately the same quartiles.
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Figure 6: A profile plot shows the expression profiles of all 22779 transcripts contained
in F199 (in black). In green and red some genes are highlighted, which show a common
expression pattern (genes seems to be co-regulated). This plot illustrates the necessity to
find and isolate co-regulated genes.

Profile Plot

The gene expression levels, summarized in Figure 5 can be visualized as more intuitive plot
of gene expression profiles as well. A profile plot visualizes the (logarithmic) gene expression
values during all experiments. For better visual perception, these points are connected
by lines. Figure 6 shows profiles of all genes (black). Additionally, profiles of some
di�erentially regulated genes are highlighted (green and red). This picture illustrates the
importance of the following analysis steps, especially the extraction of similarly regulated
genes. Double-click on the preview window of probe list global shows a plot of all gene
profiles during all experiments.

Scatter plot

To determine the dependency of two data variables visually and to detect potential
clusters, a scatter plot is appropriate. For example, expression values of two experiments
can be plotted against each other. To create such a scatter plot, right-click on a probe
list and select Visualization æ Scatter Plot. Via View æ X axis (Y axis) æ
Configure experiment, user can select, which experiments should be plotted. Meta
informations can be visualized as well. To visualize a MIO, select View æ X axis (Y
axis) æ meta information. At Configure meta information in the same menu, the
desired MIO can be selected and manipulations such as taking the logarithm can be
applied using Meta information manipulator. Figure 7 (left side) shows a scatter plot
of expression values from the first two experiments contained in F199 dataset.
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Figure 7: Left side: A scatter plot of the gene expression from the 20th hour vs. the 21st
hour. Right side: An Ma-Plot of the same data, which is actually a rotated and scaled
scatter plot of log ratio against the average of the respective values.

MA-Plot

A special kind of scatter plots is the so-called MA-Plot. MA-Plots are used to study
dependences between the log ratio of two variables and the mean values of the same two
variables. In context of microarray analysis, gene expression level of two experiments/arrays
can be compared. An MA-Plot is a 45¶ rotated and scaled scatter plot, where the log ratio
is plotted against the average of the respective logarithmized values.
Right-click on a probe list and select Visualization æ MA Plot to produce an MA-Plot.
Figure 7 (right side) shows an MA-Plot of the same data as the scatter plot on the left
side.

4.4 Dataset properties

All information associated with a dataset such as its size, names and number of experiments
as well as information about the contained probes, probe lists and MIOs are summarized in
the dataset properties. The Dataset Properties window can be accessed via right-click
on a dataset in the dataset management at Properties. Figure 8 shows the Dataset
Properties window. Use the tabs at the top to navigate through the properties. Most
fields can be edited or deleted using the respective buttons on the right side.
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Figure 8: In the Dataset Properties window, all information associated with a dataset
are accessible. The tabs at the top are for navigating through the properties. The buttons
on the right side are for editing the respective information.

4.5 The dynamic probe list, a powerful feature in Mayday

During analysis, we will use the previous described dynamic probe list. A new dynamic
probe list can be created as follows: right-click and select Create æ Dynamic ProbeList
to open Dynamic ProbeList Properties window (see Figure 10). Select Add Rule to
set the criteria for the new probe list by combining suitable data processors. For example,
a MIO can be used to define new filtering rules. Section 4.6 provides an example for how
to use dynamic probe lists in combination with MIOs for analysis and data visualization.
To open Probelist Properties again, double-click on a probe list.
Double-clicking on probe list preview opens a profile plot window which shows the gene
expression during the experiments as profiles which are actually points connected by lines
for better visual perception. Other visualizations can be selected with a right-click on the
respective probe list under Visualization.

4.6 Statistics

In general, a gene expression experiment produces a lot of data. Thus an important part
of analysis is data reduction and extraction of important information. There are many
ways to find genes, which show a response to altered experiment conditions, or in case of a
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time series experiment, genes that are di�erentially regulated over time. Gene activity is
represented in the measured gene expression, so altered gene expression can be taken as
indicator, which genes are active or change their activity. That results in filtering gene
expressions with mathematical methods to detect such genes. Mayday provides several
methods such as statistical tests or analysis of variance to find such genes.
Looking at our example data we want to analyze, which genes are involved in metabolic
switch when phosphate is depleted and exponential growth ends. F199 contains 22779
transcripts from S. coelicolor whose expression profiles are shown in Figure 6. Obviously
it is necessary to extract genes which seem to be di�erentially regulated. To reduce the
amount of data, the other genes can be ignored here. These can be objects of deeper
analysis.
This Tutorial shows several ways how to find di�erentially expressed genes using Mayday.
In particular, we will use gene expression variance and statistical tests to identify significant
genes.

Find most variant genes

As described before, the amount of data needs to be reduced in order to find the important,
di�erentially regulated genes. One way to evaluate that mathematically is to calculate the
variance in gene expression because di�erentially regulated genes leads to altered expression
values during the time series experiments what causes an increased expression variance
during the experiments. This only makes sense, if there are genes that are di�erentially
regulated and others that are not. In such a large dataset like F199, it is very likely to
find these conditions, so that we can use the expression variance to create a new probe list
containing the subset of the most variant and therefore di�erentially regulated genes:

- To calculate the gene variance, right-click on probe list global and select Statistics
æ Derived Statistics æ Probe Variance (see Figure 9). In the meta informa-
tion window a new meta information group (Probe Statistics) containing the
MIO Expression variance will appear.

- We will use the expression variance to create a new dynamic probe list. Right-click
on the probe list window and select Create æ Dynamic ProbeList.

- Make sure, All of these rules is marked and click Add Rule to add a new rule.

- As data processor select Meta-information values. In new window MIO Group
Selection select Expression variance in group (Probe Statistic) to calculate
the variances and click OK.

- As second data processor select Compare a number. Because we want to filter for
the most variant genes, we have to filter for genes that have a variance at least equal
or above a certain threshold.

- The number of matching probes is displayed on the left side. Raise or lower the
chosen threshold to see how the size of the matching probes change.

- It is recommended to rename the new probe list, for example to “most variant genes”
and optionally choose a di�erent color. Mayday will display the filtering rules
such as data processors or used threshold as additional information at the probe
list. Confirm with OK. Now we’ve created a dynamic probe list containing the most
variant genes.
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Figure 9: In the contex menu Statistics, the expression variance can be calculated. On
the right side, a new MIO containing the calculated variances will appear

Figure 10: In the Dynamic Probelist Properties window, dynamic probe lists can be
created by combining filtering rules. Such a rule is defined by sequential data processors. On
the left side is shown, how many probes match the current rules. The shown combination
of data processors match the 1000 most variant genes.
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Find di�erentially expressed genes using statistical tests

A fundamental aspect of expression analysis is to reveal di�erences in expression levels of
the same gene between di�erent conditions. In Mayday statistical methods can be used
to find genes, that show such di�erences. Two-sided Student’s t-test [Hay13] which tests
whether two selected groups of values have the same mean is one of them. Testing equality
of mean produces the best results, if there are enough di�erences in gene expression
between the tested groups.
However, be careful with the results of any statistical test. Every test makes certain
assumptions about the underlying data but the test itself does not verify, whether these
assumptions match to the current data. When in doubt, inform yourself about the
respective statistical test.
Testing a large number of objects, also known as multiple testing, using for example
Student’s t-test even with a low error rate of 0.01 e.g, might still cause many false
positives. Mayday provides more or less conservative p-value correction methods to address
this phenomenon, such as Bonferroni, FDR, Holm’s and no correction (decreasing
conservative) which adapt the error rate in order to reduce the number of falsely positive
tested values. In this context, conservative means, that false positive matches are reduced
as much as possible. Especially when dealing with biological data, sometimes it is better
to falsely declare some genes as di�erentially regulated than missing truly di�erentially
regulated genes due to a too conservative correction method.
We will now create a new dynamic probe list using p-values of Student’s t-test:

- Right-click on probe list global and navigate to Statistics æ Statistical Test
(two-sample) will open Statistical Testing window (see Figure 11).

- Group the data in two classes that Student’s t-test should compare, by Define
exactly 2 classes. Because we expect to see the metabolic switch, we can divide
the experiments in two groups before and after hour 35. Compare Section 2.5 and
Figure 2 for details.

- As Test method select Student’s t test and make sure, that Equal variance is
activated because we assume, that the data have equal variances.

- Choose an p-value correction method. Here, we will use Bonferroni correction.

- Activate Create ProbeList of significant probes and select a suitable signifi-
cance level to create a new probe list of significant probes with a specified threshold.

As alternative to Student’s t-test, ANOVA (=analysis of variance) can be used. ANOVA tests
equality of means of more than two groups. Similar to Student’s t-test, ANOVA produces a
MIO containing the respective p-values and optionally creates a new probe list according
to threshold-filtered p-values which can be error-corrected as well.

- Right-click on a probe list and select Statistics æ ANOVA.

- Define two or more groups to be compared.

- Choose a correction method.

- Activate Create ProbeList of significant probes, set threshold and confirm
with OK.

20



Figure 11: Statistical Testing window provides several statistical test methods which
can be selected in drop-down menu Test. Furthermore, a p-value correction can be
conducted in Correction menu. Optionally, Mayday creates a new probe list containing
significant probes according to a given threshold.

Under Statistics æ Derived Statistics, many more statistical values can be calcu-
lated. For example fold change, Pearson correlation coe�cient, expression range, minimum,
maximum, mean, standard deviation or corrected variances.

4.7 Data mining via clustering

Clustering is an approach to group objects in a way, that similar objects are grouped
together based on a chosen similarity (or distance) measure. We assume that more than one
gene is involved in a cellular process such as metabolic switch of S. coelicolor. Additionally,
one assumes, that a similar expression profile corresponds to co-regulated genes. Hence,
there must be patterns in gene expression which can be used to find and group such
co-regulated genes. This is exactly what clustering does.
There are basically two di�erent clustering approaches: hierarchical and partitioning
clustering which are both implemented in Mayday.
Both approaches can be combined with replaceable distance measures. Mayday provides
Canberra, Chebychev, Euclidean, Manhattan, Minkowsky, Pearson Correlation, Spearman
Rank Correlation, Supremum and Vector Angle distance. Euclidean distance and Pearson
Correlation distance are common used distance measures, but of course the others can be
chosen as well. Often, several distance measures needs to be tested to produce the best
result.

Hierarchical clustering

Hierarchical clustering [Joh67] produces a hierarchy of nested clusters which are represented
as a distance based tree, a so-called dendrogram. The cluster hierarchy is built by recursively
dividing a set of objects based on their distance or recursively joining every single object
with the most similar object in the set, respectively. Optimally, genes or experiments
are clustered in a way that the distances in the dendrogram represent the similarity
(or dissimilarity) of the respective gene expression profiles. Hierarchical clustering is
recommended for a small number of objects, either genes or experiments. A hierarchical
clustering of many objects will produce a confusing tree with many edges. Mayday provides
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several hierarchical clustering algorithms such as UPGMA, WPGMA and Rapid Neighbor
Joining. Note that hierarchical clusterings can be conducted according to patterns of genes
as well as experiments.
For the example of F199 a hierarchical clustering analysis using Mayday is conducted as
follows:

- Right-click on the probe list which contains the 1000 most variant genes created
before (or an arbitrary other probe list) and select Clustering æ Hierarchical
to open Hierarchical Clustering window.

- Several clustering algorithms and distance measures can be chosen.

- To cluster the genes, for example select Rapid Neighbor Joining algorithm
[SMP08] and as distance measure Euclidean.

- To cluster the experiments, activate Transpose Matrix, select WPGMA algorithm
[Car] and Euclidean distance for example.

- Confirm with OK respectively.

This will create a new probe list named Hierarchical Clustering followed by information
about the used clustering algorithm. Simultaneously, a new window will open, where the
result of the hierarchical clustering is shown as unrooted dendrogram. Figure 12 shows
such an unrooted dendrogram, in Figure 13 a rooted dendrogram can be found on the left
side of the heatmap.

Tree visualizer

The results of a hierarchical clustering are visualized by a tree structure, a so-called
dendrogram. To produce such a dendrogram manually, right-click on a probe list contain-
ing hierarchically clustered genes and select Visualization æ Tree Visualizer. The
appearance of the dendrogram can be adjusted via View æ Layout Algorithm.
Figure 12 shows an unrooted dendrogram produced by hierarchically cluster the experiments
in F199 (transposed matrix) with the 1000 most variant genes using WPGMA algorithm
(euclidean distance). The experiments are well separated into two groups before (blue)
and after (red) metabolic switch after 35 hours in fermenter.
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Figure 12: The result of clustering the experiments (transposed probe list of the 1000 most
variant genes) hierarchically using WPGMA algorithm with euclidean distance visualized
as dendrogram. The clustering nicely separates experiments into two groups before (blue)
and after (red) metabolic switch.

Heatmap

Recognizing patterns and correlations in expression level of genes under di�erent conditions
as seen in Section 4.7 is important when dealing with gene expression data. A suitable
visualization is the so-called heatmap that is a matrix visualization of gene expression
[GDN05]. The expression level of a gene is visualized with a color gradient, usually from
green (low) to red (high).
A heatmap can be produced by right-clicking on a probe list and selecting Visualization
æ HeatMap. The legend at the top resolves the color gradient encoding the gene expression
level. The appearance of a heatmap can be adjusted in the menu View æ Detach menu.
This will open a new window in which a caption and labels can be added. In tab Heatmap
colors of the Column tab, several predefined or user-defined color gradients can be applied
and the way, how the gene expression is mapped to a color gradient can be adapted. The
tab Color enhancement provides adding meta information values to the heatmap and
experiment order can be changed in tab Sort Experiments.
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Advanced heatmap

Normally, a heatmap of unclustered genes is very hard to interpret. To make best use of
heatmaps, a hierarchical clustering is recommended. Hierarchical clustering improves the
order in which the genes are visualized, in a way that (in best case) all co-regulated genes
are ordered consecutively. It is possible to visualize the data with hierarchical clustering
of genes and/or experiments as well.
To produce such a heatmap together with the dendrogram of the genes or/and experiments,
visualize the probe lists of the hierarchical clustered genes or/and experiments as heatmap.
This will add a dendrogram to the heatmap that shows the hierarchical relationship. A
combined heatmap including hierarchical clustering of genes and experiments (transposed
matrix) can be produced by visualizing the two corresponding probe lists as a heatmap (use
CTRL + click to mark both probe lists). On the left side of the heatmap, a dendrogram
with the hierarchically clustered genes will be drawn, at the top one containing the
experiments.
Figure 13 shows a heatmap of 54 out of the 100 most variant genes of F199 (see Section 4.6).
They are clustered hierarchically using Rapid Neighbor Joining algorithm and Pearson
correlation distance) to produce the dendrogram and with Qt-Clustering algorithm
(partitioning, Distance Measure = Pearson Correlation, Diameter threshold = 0.25,
Minimal cluster size = 10) to add the colored labels at the left side which indicate the
genes that are clustered together. The metabolic switch at hour 35 is well recognizable:
some genes (blue) are highly expressed before metabolic switch and down-regulated
afterwards. Other genes (red) are up-regulated during metabolic switch and some genes
(yellow) show a up-regulation hours later. Through the hierarchical clustering of the genes,
these coherences are visible.
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Figure 13: This heatmap was produced using 54 out of the 100 most variant genes. They
were clustered using Qt-Clustering. Qt-Clustering has found 3 clusters and 46 genes
which did not match a cluster. The remaining 54 genes were clustered hierarchically using
Rapid Neighbor Joining algorithm.

Partitioning clustering

In contrast to hierarchical clustering algorithms which produce nested clusters, partitioning
clustering tries to group similar genes into disjoint clusters. Mayday provides several
partitioning clustering algorithms such as k-means, self-organizing maps (SOM) [Koh90],
QT-clustering or density based DBSCAN [EKSX96].
The most popular partitioning clustering algorithm is k-means [M+67]. It is a very simple
and fast algorithm which clusters the genes. The disadvantage is, that one needs to set the
number of clusters k without knowing how many clusters are correct. Mayday provides
a plugin to find the optimal k heuristically. Because there are di�erent possibilities how
to select cluster centroids and most of them are random, it is hard to get identically
reproducible results. Several k and di�erent methods to choose cluster centroids can be
tried in order to get a good clustering. Compare “clustering assessment using silhouette
plot” in Section 16 to get information about identifying a good clustering.
Originally, k-means uses the euclidean distance for clustering, but in Mayday, several
other distance measures can be used as well.
To create a partitioning clustering of genes using k-means, right-click on the 1000 most
variant genes probe list and select Clustering æ Partitioning (k-Means, find
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Figure 14: Search k for k-Means Setting window provides a heuristic to find an op-
timal k for k-means. Maximum number of clusters and iterations, error threshold and
distance measure as well as cluster centroid initialization and calculation can be selected.

optimal k). In the window Search k for k-Means Setting (see Figure 14) just click
OK. Set Maximum number of clusters to 24 and Distance Measure to Euclidean.
Now, Mayday heuristically calculates a score for every number of clusters up to the
chosen maximum and produces a scree plot (see Figure 15). Experienced researchers can
interpret this plot in order to find a suitable k. An “elbow-like” kink in the plot can be an
indicator, which k will produce a good clustering. Alternatively select a k that corresponds
to the respected number of gene expression patterns. Click Run k-Means to run k-means
clustering. Figure 18 shows the result of a k-means clustering using k = 21 and Pearson
correlation distance. Later, this tutorial will show how to assess the quality of computed
clusters.
Note, that partitioning clustering can only be conducted on genes trivially. To create a
partitioning clustering on experiments, the respective probe list needs to transposed and
transfered in a new dataset via Data Set æ Transform æ Transpose Matrix. Then,
the former experiments will be represented as probes and former probes as experiments.
Performing a partitioning clustering will now cluster the actual experiments.

Figure 15: Mayday uses heuristics to assess cluster quality. Such a scree plot can be used
to estimate a suitable number of clusters k. Click on the chart to choose a suitable k.
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QT-Clustering

Another partitioning clustering algorithm implemented in Mayday is the quality-threshold
clustering algorithm QT-Clustering [HKY99]. QT-Clustering allows a much more detailed
adjustment of clustering criteria, cluster size and error rate. In opposite to k-means, no
predefined number of clusters needs to be set.
We will now perform a quality-threshold clustering on the F199 dataset.

- Right-click on the probe list 1000 most variant genes and select Clustering æ
Quality-based (QT-Clustering).

- In the QT Clustering window (see Figure 16) select a distance measure, e.g. Pearson
Correlation.

- Set Diameter threshold to 0.25 and Minimal cluster size to 4. If required, try
di�erent parameters.

Performing QT-Clustering will take some time dependent on the amount of data and
selected distance measure. Mayday creates a new probe list for every cluster found by
QT-Clustering algorithm and collect genes, which could not be associated to any cluster,
in a separate probe list. The resulting probe lists are shown in Figure 17.

Figure 16: In the QT Clustering window, the parameters for QT-Clustering algorithm
such as distance measure, diameter threshold and minimal cluster size can be set.
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Figure 17: QT-Clustering produces a set of colored probe list corresponding to the result
of clustering analyis. All genes of a cluster are grouped in a separate probe list.

Multi profile plot

The results of a clustering algorithm like k-means and QT-Clustering can be nicely
presented as a multi profile plot which combines profiles of several probe lists in a single
window. In contrast to the profile plot shown in Figure 6, gene expression profiles of every
selected probe list are plotted in separate coordinate systems.
k-means produces k new probe lists which contain the clustered genes. To create a multi
profile plot, select all of them, right-click and select Visualization æ Multi Profile
Plot. The result is presented in Figure 18 which shows a multi profile plot of selected
probe lists produced by k-means clustering using Pearson correlation distance.
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Figure 18: A Multi Profile Plot of selected clusters calculated by k-means with k = 21
and Pearson correlation distance.

Clustering assessment using the silhouette plot

The clustering algorithms presented above, especially k-means, calculate clusters which
respect the selected preferences like distance measure and number of clusters but do
not give any guarantee to produce always a good or correct cluster. Hence, quality of
created clusters needs to be reviewed. Assessing the quality of clustering results can
be done visually using Profile Plot (double-click on preview), Multi Profile Plot
(right-click, Visualization æ Multi Profile Plot, only makes sense if more than one
cluster is selected) and Scatter Plot (right-click, Visualization æ Scatter Plot),
but Mayday provides algorithmic ways as well.
So-called silhouette values represent the distance to all cluster centroids for every single
gene. If a gene is relatively close to the centroid of its associated cluster, its silhouette
value will be positive. If the distance between a gene and an adjacent cluster centroid is
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Figure 19: A silhouette plot can be used for visually assessing clustering quality. In general,
positive silhouette values represent good cluster a�nity, negative silhouette values are an
indication, that the respective gene could be clustered better. Here, a k-means clustering
with k = 9 and euclidean distance was evaluated.

smaller than to its own, the silhouette value will be negative. In optimal case, none of the
silhouette values is below zero thus all genes are correctly clustered. A so-called silhouette
plot visualizes the silhouette values for all selected clusters.
To produce a silhouette plot like the one in Figure 19, again select all probe lists created by a
partitioning clustering algorithm (in case of QT-Clustering except probe list Unclustered),
right-click and select Visualization æ Silhouette Plot which visualizes silhouette
values for every object in all selected clusters. If distance measure used for clustering is not
euclidean, the correct distance measure needs to be set via View æ Distance Measure.
Figure 19 shows a quite good clustering where only few genes have negative silhouette
values. In case of many negative silhouette values, a di�erent distance measure and, using
k-means, a di�erent k should be selected to produce a better clustering.

5 Data visualization
An important way to understand and present the results of data analysis is a graphical
visualization. Besides the already presented plots, many di�erent kinds of visualization
such as histograms, profile plots, scatter plots, Venn diagrams, and a number of statistical
plots can be produced. They can be adapted individually, combined and exported. In the
following sections some essential visualizations using the results of the F199 analysis are
described.

5.1 Histogram

The frequency distribution of values can be visualized using a histogram, where the
frequency of values within certain intervals is plotted. In Mayday, histograms from
probe lists and MIOs can be created. To produce a histogram, right-click on a probe
list and select Visualization æ Histogram. The values for visualization (experiment
data or meta information) can be selected via View æ Values. The resolution, that
means the number of intervals, can be adjusted via View æ Resolution. Figure 20 shows
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Figure 20: A histogram shows the relative frequency of values. Here, the frequency of
expression values of the first experiment in F199 is plotted with a resolution of 50 intervals.

Figure 21: Expression profiles can be visualized as 3D multi profile plot. Here, a k-
means clustering (k = 7, distance measure = euclidean) of the 1000 most variant genes is
visualized.

the relative frequency of the logarithmized gene expression measured by the first F199
experiment divided into 50 intervals (resolution = 50).

5.2 Three dimensional plots

All of the plots described yet, do enable a two-dimensional data visualization only. A visual
representation of higher dimensional data is hard to create. To overcome this problem,
some 3D visualizations such as 3D multi profile plots and 3D scatter plots are available.
Zooming in and out as well as a free rotation of the 3D plots is enabled. Right-click on a
probe list and select Visualization to find a series of three dimensional visualizations.
Figure 21 shows a 3D multi profile plot and a multi scatter plot of the gene expression
from all experiments in F199 is shown in Figure 22.
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Figure 22: A 3D scatter plot visualizes the 1000 most variant genes of the first 3 experiments
clustered with k-means using k = 7 and euclidean distance.

5.3 Tables

Besides the statistical and visual data representation, Mayday provides direct access to
the values in a probe list. For that, right-click on a probe list and select Visualization
æ Expression Matrix or Distance Matrix to display the respective values as a table.
Moreover, a meta information table, percentile table and a sample information table can
be visualized.

5.4 Dealing with plots

Mayday tries to find the optimal presentation for every plot. Nevertheless, one might
want to adapt them individually. For that, Mayday provides various settings. Click
on View æ Detach menu to add a legend and captions, change chart settings or add
individual colors. To improve visualizations e.g. for use in publications, the Visualizer
menu provides features to add and combine several plots in a single window.
The scaling of plots can be adjusted using CTRL + mouse wheel to zoom and CTRL +
Shift + mouse wheel to adjust only vertical zoom. With ALT + mouse wheel, horizontal
zoom only can be adjusted.

6 Further Mayday features
The following sections describe further features of Mayday which can be helpful for data
analysis.

6.1 Saving results of analysis

Mayday can export the whole workspace (project) as snapshot, which saves all loaded
datasets and its containing probe lists as well as MIOs. It is recommended to save a
snapshot after data import using SeaSight to avoid repeating the pre-processing steps.
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Figure 23: To save a Mayday project, select a file path on your disc and a name and
confirm with Save. The project will be saved as .maydayz file.

To create a new snapshot of the whole workspace, navigate to File æ Save as, and
enter a file name. Clicking on Save will export the workspace as .maydayz file (see Figure
23).
To save a single datasets, DataSet æ Export to file will open a new window where
the selected dataset can be exported as .maydayz file. Mayday provides the direct export
to a .csv table file format that can be read by many other programs. For that, select the
file format Tabular Text file [csv] in the Export DataSet window. Analogously, a
probe list can be exported as hierarchical probe list (.pl) and other formats via Probe
List æ Export to file. Section 3.1 describes, how the exported data can be loaded.

6.2 Export graphics

Mayday does not store open plot windows when the workspace is closed or saved as a
snapshot. To keep visualized results, most plots can be exported as di�erent file formats
with Plot æ Export. In Graphics Export Settings window, file format, ratio and
anti-aliasing settings can be adjusted. For low quality plots, the file formats JPEG and PNG
will work, better results can be created using the PDF format or the vector graphic format
SVG.

6.3 Export tables

Mayday can create new files containing subsets of the whole dataset. Selections, probe
lists and MIOs can be exported as separate .csv files. This might be useful to extract
subsets of informations for further processing with Mayday or other platforms. In many
views, subsets of probes can be selected and exported by navigating to Selection æ Run
ProbeList plugin æ Export to file.
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6.4 Selection menu

For an easy and intuitive interaction with large datasets, Mayday provides the Selection
menu in the menu bar of visualization windows holding many options to work with selected
probes. Di�erent visualizer can be synchronized so that selecting genes in one visualizer will
also highlight these genes in the other visualizer (Selection æ Synchronize selection
with Visualizer). Furthermore, the Selection menu provides to invert the selection
(Selection æ Invert), to create a new probe list containing the selected probes or to
sent them to another probe list (Selection æ Send selection to ProbeList).
For demonstration purpose, we will sent some selected probes from a heatmap to a profile
plot:

- Open a heatmap visualization as described in Section 4.7.

- Make a selection of some probes, for example all genes that are down-regulated at
hour 35.

- Click on Selection æ Plot in separate visualizer to create a profile plot of
the selected probes.

The result is presented in Figure 24. This is very useful to compare behavior of genes in
di�erent views.

Figure 24: Here, some selected genes from the heatmap are visualized as profile plot. The
red label and the white grid in the heatmap mark the selected genes, whose expression
profiles are plotted on the left side.
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6.5 Move data between datasets

Mayday holds the loaded data in separated datasets. Data can be sent to other opened
or new datasets. For that, right-click on a probe list and select Further export options
æ Sent to DataSet or Create new DataSet. Alternatively, use the menu bar item
ProbeList. A new window will open where the target dataset or the name of the new
dataset can be selected.

Figure 25: When moving data to a new dataset, in the window, the name of the new
dataset can be selected.
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