Department of Computer Science

Open Bachelor/Master Theses

Here you can find the Bachelor and Master theses that are currently available throughout the Department of Computer Science.

Please note:

  • The number of open Bachelor and Master theses in each research group may vary from semester to semester. Please check directly with the lecturers/research groups.  
  • It is recommended to contact only those lecturers with whom you have already attended at least one course.

  • Arbeitsbereich: Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology (Manfred Claassen)
    Themenbereich(e): Biomedical Informatics; Machine Learning; Single-Cell Biology; Personalized Medicine
    Voraussetzungen:  Background in Computer Science, Machine Learning, Bioinformatics, Biology/Medicine (optional)
    Kontaktdaten/Links: manfred.claassenspam sowie und
  • Arbeitsbereich: Integrative Transkriptomik (Kay Nieselt)
    Themenbereich(e): (1) Ancient DNA: Algorithmen und Anwendungen; (2) Transkriptomik: Algorithmen und Anwendungen; (3) Visualisierung biologischer Daten: Algorithmen und Anwendungen
    Voraussetzungen:  Grundlagen der Bioinformatik; Java oder Python
    Kontaktdaten/Links: Kay Nieselt
  • Arbeitsbereich: Algorithms in Bioinformatics (Daniel Huson)
    Themenbereich(e): Algorithms, software and applications. In phylogenetics, long-read sequencing and microbiome analysis
    Voraussetzungen:  Grundlagen der Bioinformatik; Java oder Python
    Kontaktdaten/Links: Algorithms in Bioinformatics/theses
  • Arbeitsbereich: Kommunikationsnetze (Michael Menth)
    Themenbereich(e): Kommunikationsnetze, Energienetze, Protokolldesign, mathematische und simulative Leistungsanalyse, System-Optimierung, Bau von Prototypen
    Kontaktdaten/Links: Michael Menth
  • Arbeitsbereich: Machine Learning in Science (Jakob Macke)
    Themenbereich(e): Probabilistic inference tools for scientific applications, Computational neuroscience and neural data analysis'
    Voraussetzungen: Experience in Python Programming, ML (e.g. Probabilistic Machine Learning), for neuroscience-topics ideally prior experience/lectures in neuroscience and/or analysis of biological data
    Kontaktdaten/Links: Machine Learning in Science/Positions/Student Projects
  • Arbeitsbereich: Sensory and sensorimotor systems (Li Zhaoping)
    Themenbereich(e): (1) Computationally motivated visual psychophysics experiments, on e.g., visual illusions, stereo vision; (2) Computational modeling/data analysis of neuroscience topics; (3) Behavioral experiments with data analysis on zebrafish
    Voraussetzungen: Skills in matlab/Python
  • Arbeitsbereich: Medieninformatik/Human-Computer Interaction (Enkelejda Kasneci)
    Themenbereich(e): Human-Computer Interaction and Machine Learning, Multimodal Interaction, Learning Analytics, Eye Tracking, HCI in AR/VR , Privacy in HCI
    Voraussetzungen: Gute Programmierkenntnisse
    Kontaktdaten/Links: Enkelejda Kasneci / Human-Computer Interaction/Open Thesis Topics
  • Arbeitsbereich: Data Science and Analytics (Gjergji Kasneci)
    Themenbereich(e): Fairness, explainability, bias analysis in ML applications
    Voraussetzungen: Statistik-, Mathematik- und Programmierkentnisse
    Kontaktdaten/Links: Gjergji Kasneci
  • Arbeitsbereich: Big Data Visual Analytics (Michael Krone)
    Themenbereich(e): Visualisierung, Bioinformatik
    Voraussetzungen: Grundkenntnisse C/C++
    Kontaktdaten/Links: Michael Krone
  • Arbeitsbereich: Database Systems (Torsten Grust)
    Themenbereich(e): Database Systems, Query Languages, Query Compilation and Optimization, Functional Programming
    Voraussetzungen: mindestens eine der Vorlesungen "Datenbanksysteme 1", "Datenbanksysteme 2", "Advanced SQL", "Functional Programming"
  • Arbeitsbereich: Autonomous Vision (Andreas Geiger)
    Themenbereich(e): Computer Vision, Self-Driving, 3D Vision, Material Estimation, Meta-Learning, Self-Supervised Learning, Generative Models
    Voraussetzungen: ML, CV, Math, Python, PyTorch
    Kontaktdaten/Links: Autonomous Vision/BSc_MSc Theses
  • Arbeitsbereich: Computer Graphics (Hendrik Lensch)
    Themenbereich(e): Computer Graphics, Computer Vision, Appearance Acquisition, Computational Photography, Parallel Computing (GPU), Machine Learning'
    Voraussetzungen: Computer Graphics or Computer Vision, eventually ML
    Kontaktdaten/Links: Hendrik Lensch
  • Arbeitsbereich: Methoden des Maschinellen Lernens (Philipp Hennig)
    Themenbereich(e): Development and Benchmarking of Machine Learning Algorithms and Toolkits, including low-level routines. Applications of ML in the Sciences
    Voraussetzungen: Linear Algebra, Python, MSc: Lecture “Probabilistic Machine Learning”
    Kontaktdaten/Links: Methoden des Maschinellen Lernens/Available Thesis Topics
  • Arbeitsbereich: Embedded Systems (Oliver Bringmann)
    Themenbereich(e): RISC-V processor architectures, machine learning hardware accelerators, timing and power analysis of embedded software, robustness verification in autonomous driving, embedded security
    Voraussetzungen: Topic-specific prerequisites (cf. open thesis descriptions)
  • Arbeitsbereich: Programming Languages (Klaus Ostermann)
    Themenbereich(e): Programming Languages, Functional Programming, Type Theory and Logic, Programming Tools, Programming Education
    Voraussetzungen: "Programming Languages 1" lecture, Scala/Haskell skills
  • Arbeitsbereich: Applied Bioinformatics (Oliver Kohlbacher)
    Themenbereich(e): please contact e-mail addresses below
    Voraussetzungen: Knowledge of bioinformatics and of TensorFlow; some R or Python; some knowledge of machine learning and sequence bioinformatics would be beneficial
    Kontaktdaten/Links: Timo Sachsenberg, Tjeerd Dijkstra, Thomas Hamm
  • Arbeitsbereich: Selbstorganisation und Optimalität in Neuronalen Netzwerken (Anna Levina)
    Themenbereich(e): Complex networks analysis of neuronal data
    Voraussetzungen: Programming skills, interest in neuroscience, no fear of simple math
    Kontaktdaten/Links: Anna Levina
  • Arbeitsbereich: Kognitive Systeme (Zell)
    Themenbereich(e): Machine Learning, Neural Networks, Robotics, Robot vision
    Voraussetzungen: Mind. 1 Vorlesung bei Prof. Zell bestanden
    Kontaktdaten/Links: Kognitive Systeme/Theses
  • Arbeitsbereich: Neuronale Informationsverarbeitung (Felix Wichmann)
    Themenbereich(e): Spatial vision, lightness & brightness, human vision and deep neural networks, statistics and machine learning in cognitive science
    Voraussetzungen: Python or MATLAB, statistics, perception
    Kontaktdaten/Links: Bachelor and Master Theses Wichmann lab
  • Arbeitsbereich: Neural Interfaces and Brain Signal Decoding (Sebastian Nagel)
    Themenbereich(e): see link below
    Voraussetzungen: Experience in Matlab / Python
    Kontaktdaten/Links: Neural Interfaces and Brain Signal Decoding/Thesis Topics
  • Arbeitsbereich: Theoretische Sensomotorik/Klinische Bewegungsanalyse (WInfried Ilg)
    Themenbereich(e): Anwendung von Verfahren des Maschinellen Lernens in der klinischen Bewegungsanalyse
    Voraussetzungen: ML-Kenntnisse, Programmiererfahrung
    Kontaktdaten/Links: Winfried Ilg; weitere Informationen
  • Arbeitsbereich: Explainable Machine Learning (Zeynep Akata )
    Themenbereich(e): Low-Shot Learning, Explainable Machine Learning, Multimodal Learning
    Voraussetzungen: Machine Learning, Computer Vision, Natural Language Processing
    Kontaktdaten/Links: MSc Projects Explainable Machine Learning
  • Arbeitsbereich:  Computational Systems Biology of Infection (Andreas Dräger)
    Kontaktdaten/Links: Rechnerbasierte Systembiologie/Thesen
  • Arbeitsbereich: Methoden der Medizininformatik (Nico Pfeifer)
    Kontaktdaten/Links: Methoden der Medizininformatik/Thesis Topics
  • Arbeitsbereich: Theory of Machine Learning (Ulrike von Luxburg)
    Kontaktdaten/Links: Theory of Machine Learning/Teaching
  • Arbeitsbereich: Kognitive Modellierung (Martin Butz)
    Kontaktdaten/Links: Kognitive Modellierung/Teaching/Themen
  • Arbeitsbereich: Decision Making (Setareh Maghsudi)
    Kontaktdaten/Links: Decision Making/Teaching/Bachelor and Master Theses
  • Arbeitsbereich: Maschinelles Lernen (Matthias Hein)
    Kontaktdaten/Links: Maschinelles Lernen/Theses/Vacant Positions
  • Arbeitsbereich: Informationsdienste (Thomas Walter)
    Kontaktdaten/Links: Informationsdienste/Angebote
  • Arbeitsbereich: Algorithmik (Michael Kaufmann)
  • Arbeitsbereich: Experimentelle Kognitionswissenschaft (Volker Franz)
  • Arbeitsbereich: Mathematical and Computational Population Genetics (Franz Baumdicker)
  • Arbeitsbereich: Maschinelles Lernen in den Klimawissenschaften (Bedartha Goswami)
  • Arbeitsbereich: Theorie und Geschichte der Wissenschaften (Reinhard Kahle)
    Kontaktdaten/Links: Theorie und Geschichte der Wissenschaften/Abschlussarbeiten
  • Arbeitsbereich: Mathematical Optimization Group (Peter Ochs)
    Kontaktdaten/Links: Mathematical Optimization Group/Teaching
  • Arbeitsbereich: Evolutionary Cognition (Bettina Rolke)
    Kontaktdaten/Links: Evolutionary Cognition/Abschlussarbeiten/Praktika
  • Arbeitsbereich: Protein Evolution (Andrei Lupas)
    Kontaktdaten/Links: Protein Evolution