Hydrogeology Research

The hydrogeology workgroups mainly study physical flow and transport processes in the subsurface by means of mathematical modeling and field investigations.

The spatial variability and uncertainty of hydraulic aquifer parameters pose a major challenge to site characterization, assessment of aquifers and design of water-resources management schemes. We tackle this problem by stochastic analysis, uncertainty assessment, inverse modeling, and improved site investigation techniques. We analyze the effects of variability and uncertainty on reactive transport, performance of remediation and assessment schemes, and costs.

We study interactions between aquifers and other compartments of the water cycle (rivers, unsaturated zone, land surface) by integrated modeling and field investigations. At larger scales, we evaluate the complete hydrosystem response (water fluxes, residence times, biogeochemical status) to changes in climatic forcing and land use within a fully coupled modeling framework supported by high-performance computing environments (parallelization).

Major Research Topics

Hydrogeological Field Investigation Techniques

The Center for Applied Geoscience owns a large set of equipment for hydrogeolo­gical site characterization, among which is a Geoprobe 6610DT direct-push device (see Fig. 1) which can be used to take soil samples, install piezometers (see Fig. 2), and perform various geophysical logs without drilling to depth of up to 20-50m. The Geoprobe unit comes with 4×4 truck carrying the machine and the other field equipment.

Vertical profiles of bulk electric conductivity, indicative of fine sediments or saline solutions, can be measured within a few minutes. Other direct-push probes involve laser-induced fluorescence, indicative of NAPL made of aromatic compounds, injection logs, yielding profiles of hydraulic-conductivity surrogates, and membrane-interface probes, allowing the sampling of volatile compounds without water extraction. Based on such profiles, water and soil samples can be taken at selected depth, and permanent observation wells can be installed.

The center also owns geophysical surveying equipment (GPR antenna, multi-channel ERT, geophones) for surface, cross-hole and surface-to-hole surveys. These surveying tools can be used to identify sedimentary units and to monitor hydraulic tests by geophysical methods. Borehole logs help identifying layers of particular granulometry (e.g., gamma) and hydraulic characteristics (e.g., flowmeter). Tools for all standard hydrogeological site investigation techniques (e.g., pumping tests, slug tests) and sampling campaigns are available.

The research on hydrogeological site investigation techniques is coordinated by Carsten Leven. We operate the hydrogeological research site Lauswiesen in the Neckar valley between Tübingen and Kirchentellinsfurt. Carsten Leven also coordinates the field assessment activities of CRC CAMPOS in the Ammer valley, with special emphasis on the hydrological functioning and internal structure of the floodplain betwenn Tübingen and Pfäffingen.

The goal is to develop combined methods of geophysical surveying, hydraulic tests and sampling for hydrogeological characterization of the subsurface. These data will be the measurement basis of joint inversion and data assimilation methods.

Publications in this Field of Research

D.L. Hochstetler, W. Barrash, C. Leven, M. Cardiff, F. Chidichimo, P.K. Kitanidis: Hydraulic tomography: Continuity and discontinuity of high-K and low-K zones, Groundwater, 54(2): 171-185, 2016, doi: 10.1111/gwat.12344.

E. Sanchez-León, C. Leven, C.P. Haslauer, O.A. Cirpka: Combining 3-D hydraulic tomography with tracer tests for improved transport characterization. Groundwater 54(4): 498-507, 2016, doi: 10.1111/gwat.12381.

A. Rein, O. Holm, S. Trapp, S. Popp-Hofmann, M. Bittens, C. Leven, P. Dietrich: Comparison of phytoscreening and direct-push-based site investigation at a rural megasite contaminated with chlorinated ethenes, Ground Water Monit. Remed., 35(4): 45–56, 2015, doi: 10.1111/gwmr.12122.

K.O. Doro, O.A. Cirpka, C. Leven: Tracer tomography: Conceptual design and field experiments using heat as tracer. Groundwater 53(S1): 139-148, 2015, doi: 10.1111/gwat.12299.

V. Wagner, T. Li, P. Bayer, C. Leven, P. Dietrich, P. Blum: Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Germany) and numerical simulation, Hydrogeol. J. 22(1): 175-187, 2014 doi: 10.1007/s10040-013-1059-z.

N.N. Ameen, N. Klüglein, E. Appel, E. Petrovsky, A. Kappler, C. Leven: Effect of hydrocarbon-contaminated fluctuating groundwater on magnetic properties of shallow sediments, Stud. Geophys. Geodaet. 58(3): 442-460, 2014, doi: 10.1007/s11200-014-0407-3.

M. Fleischer, D. van Ree, C. Leven: Where can cone penetrometer technology be applied? development of a map of Europe regarding the soil penetrability, Environ. Sci. Pollut. Res. 21(15): 9016-9027, 2014, doi: 10.1007/s11356-014-2749-3.

U. Sauer, C. Schütze, C. Leven, S. Schlömer, P. Dietrich: An integrative hierarchical monitoring approach applied at a natural analogue site to monitor CO2 degassing areas, Acta Geotech. 9(1): 127-133, 2014, doi: 10.1007/s11440-013-0224-9.

M. Schirmer, J. Luster, N. Linde, P. Perona, E.A.D. Mitchell, D.A. Barry, J. Hollender, O.A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser: Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study. Hydrol. Earth Syst. Sci. 18: 2449–2462, 2014, doi: 10.5194/hess-18-2449-2014.

T. Vienken, E. Reboulet, C. Leven, M. Kreck, L. Zschornack, P. Dietrich: Field comparison of selected methods for vertical soil water content profiling, J. Hydrol. 501: 205-212, 2013, doi: 10.1016/j.jhydrol.2013.08.004.

R. Brauchler, G. Böhm, C. Leven, P. Dietrich, M. Sauter: A laboratory study of tracer tomography, Hydrogeol. J. 21(6): 1265-1274, 2013, doi: 10.1007/s10040-013-1006-z.

K. Osenbrück, T. Wöhling, D. Lemke, N. Rohrbach, M. Schwientek, C. Leven, K.O. Doro, C. Callisto Alvarez, H. Taubald, O.A. Cirpka: Lateral hyporheic exchange fluxes at the Steinlach Test Site, Germany derived from hydraulic, chemical and isotopic monitoring. Environ. Earth Sci., 69(2): 359-372, 2013,doi: 10.1007/s12665-012-2155-4.

K.O. Doro, C. Leven, O.A. Cirpka: Delineating subsurface heterogeneity at a river loop using geophysical and hydrogeological methods. Environ. Earth Sci., 69(2): 335-348, 2013, doi: 10.1007/s12665-013-2316-0.

P. Grathwohl, H. Rügner, T. Wöhling, K. Osenbrück, M. Schwientek, S. Gayler, U. Wollschläger, B. Selle, M. Pause, J.-O. Delfs, M. Grzeschik, U. Weller, M. Ivanov, O.A. Cirpka, U. Maier, B. Kuch, W. Nowak, V. Wulfmeyer, K. Warrach-Sagi, T. Streck, S. Attinger, L. Bilke, P. Dietrich, J.H. Fleckenstein, T. Kalbacher, P. Kolditz, K. Rink, L. Samaniego, H.-J. Vogel, U. Werban, G. Teutsch: Catchments as reactors - A comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci., 69(2): 317-333, 2013, doi:10.1007/s12665-013-2281-7.

C. Schütze, T. Vienken, U. Werban, P. Dietrich, A. Finizola, C. Leven: Joint application of geophysical methods and direct push-soil gas surveys for the improved delineation of buried fault zones, J. Appl. Geophys. 82: 129-136, 2012, doi: 10.1016/j.jappgeo.2012.03.002.

C. Leven, P. Dietrich: Acupuncture for the ground? Direct push - tracking the subsurface with pinholes, Grundwasser, 17(1): 1, 2012, doi: 10.1007/s00767-011-0186-5.

D. Radny, C. Leven, J. Flachowsky, T. Scheytt, P. Dietrich: Application of direct push techniques for delineation of vertical variations in hydrochemistry at remediation sites-case study Elsterwerda (Brandenburg), Grundwasser 17(1): 7-17, 2012, doi: 10.1007/s00767-011-0184-7.

T. Vienken, C. Leven, P. Dietrich: Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization - a field study, Can. Geotech. J. 49(2): 197-206, 2012, doi: 10.1139/T11-094.

A.F. Orozco, A. Kemna, C. Oberdörster, L. Zschornack, C. Leven, P. Dietrich, H. Weiss: Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging, J. Contam. Hydrol. 136: 131-144, 2012, doi: 10.1016/j.jconhyd.2012.06.001.

W. Zhang, E. Appel, X. Fang, C. Song, O.A. Cirpka: Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Quaternary Res. 78(1): 139-148, 2012, doi:10.1016/j.yqres.2012.03.011.

C. Leven, H. Weiss, T. Vienken, P. Dietrich: Direct push technologies-an efficient investigation method for subsurface characterization, Grundwasser 16(4): 221-234, 2011, doi: 10.1007/s00767-011-0175-8.

A. Rein, S. Popp, S. Zacharias, C. Leven, M. Bittens, P. Dietrich: Comparison of approaches for the characterization of contamination at rural megasites, Environ. Earth Sci. 63(6): 1239-1249, 2011, doi: 10.1007/s12665-010-0797-7.

P. Schneider, T. Vogt, M. Schirmer, J. A. Doetsch, N. Linde, N. Pasquale, P. Perona, O. A. Cirpka: Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor, Hydrol. Earth Syst. Sci. 15: 2531-2549, 2011, doi:10.5194/hess-15-2531-2011.

J. Dehnert, C. Leven, R. Trabitzsch, H. Weiss: Determination of high-resolution concentration profiles of nitrate in groundwater by means of direct push soundings, Grundwasser 15(4): 221-230, 2010, doi: 10.1007/s00767-010-0150-9.

S.C. Lessoff, U. Schneidewind, C. Leven, P. Blum, P. Dietrich, G. Dagan: Spatial characterization of the hydraulic conductivity using direct-push injection logging, Water Resour. Res. 46(12): W12502, 2010, doi: 10.1029/2009WR008949.

T. Vogt, P. Schneider, L. Hahn-Woernle, O.A. Cirpka: Estimation of seepage rates in a losing stream by fiber-optic high-resolution vertical temperature profiling. J. Hydrol. 380 (1-2): 154-164, 2010, doi:10.1016/j.jhydrol.2009.10.033.

L.C. Roberts, S.J. Hug, J. Dittmar, A. Voegelin, R. Kretzschmar, B. Wehrli, O.A. Cirpka, G.C. Saha, M.A. Ali, A.B.M. Badruzzaman: Arsenic mobilization from paddy soils during monsoon flooding. Nature Geoscience 3(1): 53 - 59, 2010, doi:10.1038/ngeo723.

R. Köber, G. Hornbruch, C. Leven, L. Tischer, J. Grossmann, P. Dietrich, H. Weiss, A. Dahmke: Evaluation of combined direct-push methods used for aquifer model generation, Ground Water 47(4): 536-546, 2009, doi: 10.1111/j.1745-6584.2009.00554.x.

S. Hoffmann, T. Beilecke, U. Werban, C. Leven, B. Engeser, U. Polom: Joint application of shear wave seismics and direct push methods in the site investigation of an urban aquifer, Grundwasser 13(2): 78-90, 2008, doi: 10.1007/s00767-008-0067-8.

W. Li, A. Englert, O.A. Cirpka, H. Vereecken: Three-dimensional geostatistical inversion of flowmeter and pumping-test data. Ground Water 46 (2): 193–201, 2008, doi:10.1111/j.1745-6584.2007.00419.x.

W. Li, A. Englert, O.A. Cirpka, J. Vanderborght, H. Vereecken: 2-D characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour. Res. 43(4): W04433, 2007, doi:10.1029/2006WR005333.

C. Leven, P. Dietrich: What information can we get from pumping tests? - comparing pumping test configurations using sensitivity coefficients, J. Hydrol. 319(1-4): 199-215, 2006, doi: 10.1016/j.jhydrol.2005.06.030.

C. Leven, M. Sauter, G. Teutsch, P. Dietrich: Investigation of the effects of fractured porous media on hydraulic tests - an experimental study at laboratory scale using single well methods, J. Hydrol. 297(1-4): 95-108, 2004, doi: 10.1016/j.jhydrol.2004.04.004.

Tracers in Streams and Riverbanks


Alluvial aquifers are in close interaction with rivers. To ensure drinking-water quality of the extracted groundwater, infiltrating river water must stay sufficiently long in the subsurface. River restoration may alter pathways and travel times of the infiltrating water. We have developed techniques to derive travel-time distributions from time series of easy-to-measure naturally fluctuating physical water properties such as electric conductivity as natural tracers.

We have intensively worked on improving techniques using resazurin as reactive tracer in streams. Metabolically active cells irreversibly transform resazurin to resorufin. Both compounds are fluorescent. From concurrent tracer tests, injecting pulses of resazurin and fluorescein and measuring the concentrations using on-lne fluoremeters, we determine hyporheic travel-time distributions, parameters of in-stream transport, and the metabolic activity of the streambed.

To relate reactive-tracer tests to oxygen cycling in streams, we monitor dissolved oxygen and perform gas-tracer tests. For the latter, we develop on-site mass spectrometers to avoid tracer loss by sampling.

Publications in this Field of Research

G. Guillet, J.L.A. Knapp, S. Merel, O.A. Cirpka, P. Grathwohl, C. Zwiener, M. Schwientek: Fate of wastewater contaminants in rivers: using conservative-tracer based transfer functions to assess reactive transport. Sci. Total Environ. 656: 1250-1260, 2019, doi: 10.1016/j.scitotenv.2018.11.379.

J.L.A. Knapp, K. Osenbrück, M. Brennwald, O.A. Cirpka: In-situ mass spectrometry improves the estimation of stream reaeration from gas-tracer tests. Sci. Total Environ. 655: 1062-1070, 2019, doi: 10.1016/j.scitotenv.2018.11.300 .

J.L.A. Knapp, O.A. Cirpka: A critical assessment of relating resazurin-resorufin experiments to reach-scale metabolism in lowland streams. J. Geophys. Res. Biogeosci. 123(12): 3538-3555, 2018, doi: 10.1029/2018JG004797.

J.L.A. Knapp, O.A. Cirpka: Determination of hyporheic travel-time distributions and other parameters from concurrent conservative and reactive tracer tests by local-in-global optimization. Water Resour. Res., 53(6): 4984:5001, 2017, doi: 10.1002/2017WR020734.

J.L.A. Knapp, R. González-Pinzón, J.D. Drummond, L.G. Larsen, O.A. Cirpka, J.W. Harvey: Tracer-based characterization of hyporheic exchange and benthic biolayers in streams. Water Resour. Res. 53(2): 1575.1594, 2017, doi: 10.1002/2016WR019393.

J.L.A. Knapp, K. Osenbrück, O.A. Cirpka: Impact of non-idealities in gas-tracer tests on the estimation of reaeration, respiration, and photosynthesis rates in streams. Water Res. 83: 205-216, 2015, doi: 10.1016/j.watres.2015.06.032.

R. González-Pinzón, A.S. Ward, C.E. Hatch, A.N. Wlostowski, K. Singha, M.N. Gooseff, R. Haggerty, J.W. Harvey, O.A. Cirpka, J.T. Brock: A field comparison of multiple techniques to quantify surface water – groundwater interactions. Freshwater Sci. 34(1): 139-160, 2015, doi: 10.1086/679738.

Z. Liao, K. Osenbrück, O.A. Cirpka: Non-stationary nonparametric inference of river-to-groundwater travel-time distributions. J. Hydrol. 519(D): 3386-3399, 2014, doi: 10.1016/j.jhydrol.2014.09.084.

D. Lemke, R. González-Pinzón, Z. Liao, T. Wöhling, K. Osenbrück, R. Haggerty, O.A. Cirpka: Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments. Hydrol. Earth Syst. Sci. 18:3151–3163, 2014, doi:10.5194/hess-18-3151-2014.

M. Schirmer, J. Luster, N. Linde, P. Perona, E.A.D. Mitchell, D.A. Barry, J. Hollender, O.A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser: Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study. Hydrol. Earth Syst. Sci. 18: 2449–2462, 2014, doi: 10.5194/hess-18-2449-2014.

S. Diem, O.A. Cirpka, M. Schirmer: Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach. J. Hydrol. 505: 352-363, 2013, doi:10.1016/j.hydrol.2013.10.015.

Z. Liao, D. Lemke, K. Osenbrück, O.A. Cirpka: Modeling and inverting reactive stream tracers undergoing two-site sorption and decay in the hyporheic zone. Water Resour. Res. 49(6): 3406–3422, 2013, doi: 10.1002/wrcr.20276.

D. Lemke, Z. Liao, T. Wöhling, K. Osenbrück, O.A. Cirpka: Concurrent conservative and reactive tracer tests in a stream undergoing hyporheic exchange. Water Resour. Res. 49(5): 3024-3037, 2013, doi: 10.1002/wrcr.20277.

K. Osenbrück, T. Wöhling, D. Lemke, N. Rohrbach, M. Schwientek, C. Leven, K.O. Doro, C. Callisto Alvarez, H. Taubald, O.A. Cirpka: Lateral hyporheic exchange fluxes at the Steinlach Test Site, Germany derived from hydraulic, chemical and isotopic monitoring. Environ. Earth Sci., 69(2): 359-372, 2013,doi: 10.1007/s12665-012-2155-4.

D. Lemke, P.-A. Schnegg, M. Schwientek, K. Osenbrück, O.A. Cirpka: On-line fluorometry of multiple reactive and conservative tracers in streams. Environ. Earth Sci., 69(2): 349-358, 2013, doi: 10.1007/s12665-013-2305-3.

T. Vogt, M. Schirmer, O.A. Cirpka: Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution, Hydrol. Earth Syst. Sci. 16, 473–487, 2012, doi: 10.5194/hess-16-473-2012.

P. Schneider, T. Vogt, M. Schirmer, J. A. Doetsch, N. Linde, N. Pasquale, P. Perona & O. A. Cirpka: Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor, Hydrol. Earth Syst. Sci. 15: 2531-2549, 2011, doi:10.5194/hess-15-2531-2011.

Z. Liao & O.A. Cirpka: Shape-free inference of hyporheic travel-time distributions from conservative and reactive tracer tests in streams, Water Resour. Res. 47(7): W07510, 2011, doi:10.1029/2010WR009927.

N. Molina-Giraldo, P. Bayer, P. Blum & O. A. Cirpka: Propagation of seasonal temperature signals into an aquifer upon bank filtration, Ground Water 49(4): 491-502, 2011, doi:10.1111/j.1745-6584.2010.00745.x.

T. Vogt, E. Hoehn, P. Schneider, A. Freund, M. Schirmer & O.A. Cirpka: Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Advances Water Resour. 33(11): 1296-1308, 2010, doi:10.1016/j.advwatres.2010.02.007.

T. Vogt, P. Schneider, L. Hahn-Woernle, O.A. Cirpka: Estimation of seepage rates in a losing stream by fiber-optic high-resolution vertical temperature profiling. J. Hydrol. 380 (1-2): 154-164, 2010, doi:10.1016/j.jhydrol.2009.10.033.

T. Vogt, E. Hoehn, P. Schneider, O.A. Cirpka: Untersuchung der Flusswasserinfiltration in voralpinen Schottern mittels Zeitreihenanalyse, Grundwasser 14(3): 179-194, 2009, doi:10.1007/s00767-009-0108-y.

R.A. Payn, M.N. Gooseff, D.A. Benson, O.A. Cirpka, J.P. Zarnetske, W.B. Bowden, J.P. McNamara, J.H. Bradford: Comparison of instantaneous and constant-rate stream tracer experiments through non-parametric analysis of residence time distributions. Water Resour. Res. 44(6): W06404, 2008, doi:10.1029/2007WR006274.

O.A. Cirpka, M.N. Fienen, M. Hofer, E. Hoehn, A. Tessarini, R. Kipfer & P.K. Kitanidis: Analyzing bank filtration by deconvoluting times series of electric conductivity, Ground Water 45(3): 318-328, 2007, doi:10.1111/j.1745-6584.2006.00293.x.

E. Hoehn & O.A. Cirpka: Assessing hyporheic zone dynamics in two alluvial flood plains of the Southern Alps using water temperature and tracers. Hydrol. Earth Syst. Sci. 10: 553-563, 2006, doi:10.5194/hess-10-553-2006.

O. Cirpka, P. Reichert, O. Wanner, S.R. Müller & R.P. Schwarzenbach: Gas exchange at river cascades: Field experiments and model calculations. Environ. Sci. Tech. 27(10):2086-2097, 1993, doi:10.1021/es00047a014.

Integrated Modeling of Hydrosystems

 

A catchment-scale hydrosystem consists of the surface-water domain (rivers, overland flow) and the subsurface compartments of the vadose zone and ground­water. The various compartments are in hydraulic contact to each other and exchange water, solute mass, and heat. Understanding the interactions between the compartments in a hydrosystem is vital in predicting the effects of changes in climatic forcing or land use on the water resource. A second objective is the optimal design of technical measures e.g. for water allocation within such systems.

Hydrosystems are forced by meteorological boundary conditions, like precipitation and evapotranspiration, as well as by human action, e.g. irrigation or changes in cropping patterns. Both forcings also govern the input of environmentally relevant compounds such as agrochemicals, nutrients, and dissolved organic carbon.

By the use of distributed integrated numerical simulation models we quantify transient water flow throughout the hydrosystem and try to predict the evolution of large-scale conditions relevant to substance transport, like the redox zonation. The latter govern the transformation and mobility of chemicals.

We have intensively studied the Lerma catchment on Northern Spain, where the transition from rain-fed to irrigation agriculture has been intensively monitored. Within the Reserach Unit FOR 2131, we study land-surface-groundwater interactions in the entire Neckar catchment.

Publications in this Field of Research

D. Erdal, G. Baroni, E. Sanchez-Léon, O.A. Cirpka: The value of simplified models for spin up of complex models with an application to subsurface hydrology. Computers and Geosciences 126: 62-72, 2019, doi: 10.1016/j.cageo.2019.01.014 .

Y. Liu, C. Zarfl, N. Basu, M. Schwientek, O.A. Cirpka: Contributions of catchment and in-stream processes to suspended sediment transport in a dominantly groundwater-fed catchment. Hydrol. Earth Sys. Sci. 22: 3903-3921, 2018, doi: 10.5194/hess-22-3903-2018.

D. von Gunten, T. Wöhling, C.P. Haslauer, D. Merchán, J. Causapé, O.A. Cirpka: Using an integrated hydrological model to estimate the usefulness of meteorological drought indices in a changing climate. Hydrol. Earth Sys. Sci. 20: 4159-4175, 2016, doi: 10.5194/hess-20-4159-2016.

D. von Gunten, T. Wöhling, C. Haslauer, D. Merchán, J. Causapé, O.A. Cirpka: Estimating climate-change effects on a Mediterranean catchment under various irrigation conditions. J. Hydrol. Reg. Stud. 4: 550-570, 2015, doi: 10.1016/j.ejrh.2015.08.001.

D. von Gunten, T. Wöhling, C. Haslauer, D. Merchán, J. Causapé, O.A. Cirpka: Efficient calibration of a distributed pde-based hydrological model using grid coarsening. J. Hydrol. 519(D): 3290-3304, 2014, doi: 10.1016/j.jhydrol.2014.10.025.

A. Singh, C.M. Bürger, O.A. Cirpka: Optimized sustainable groundwater extraction management: general approach and application to the city of Lucknow, India. Water Resour. Manag. 27(12): 4349-4368, 2013, doi:10.1007/s11269-013-0415-z.

P. Grathwohl, H. Rügner, T. Wöhling, K. Osenbrück, M. Schwientek, S. Gayler, U. Wollschläger, B. Selle, M. Pause, J.-O. Delfs, M. Grzeschik, U. Weller, M. Ivanov, O.A. Cirpka, U. Maier, B. Kuch, W. Nowak, V. Wulfmeyer, K. Warrach-Sagi, T. Streck, S. Attinger, L. Bilke, P. Dietrich, J.H. Fleckenstein, T. Kalbacher, P. Kolditz, K. Rink, L. Samaniego, H.-J. Vogel, U. Werban, G. Teutsch: Catchments as reactors - A comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci., 69(2): 317-333, 2013, doi:10.1007/s12665-013-2281-7.

A. J. Pérez, R. Abrahão, J. Causapé, O.A. Cirpka, C. M. Bürger: Simulating the transition of a semi-arid catchment towards irrigation agriculture, J. Hydrol. 409(3-4): 663-681, 2011, doi:10.1016/j.jhydrol.2011.08.061.

Simulation of Reactive Transport

The chemical transformation of reactants and the microbial activity within an aquifer depends on the delivery of the compounds, and thus solute transport and groundwater flow. We have simulated multi-component (bio)reactive transport, including compound-specific isotope effects, using targeted numerical modeling and analytical techniques.

Special emphasis is laid on:

Publications in this Field of Research

Y. Liu, C. Zarfl, N.B. Basu, O.A. Cirpka: Turnover and legacy of sediment-associated PAH in a baseflow-dominated river. Sci. Total Environ. 671: 754-764, 2019. doi: 10.1016/j.scitotenv.2019.03.236

M.G. Gharasoo, B. Ehrl, O.A. Cirpka, M. Elsner: Modeling of contaminant biodegradation and compound-specific isotope fractionation in chemostats at extremely low dilution rates. Environ. Sci. Technol. 53(3): 1186-1196, 2019, doi: 10.1021/acs.est.8b02498.

F. Fischer, O.A. Cirpka, K.-U. Goss, L. Henneberger, B.I. Escher: Application of experimental polystyrene partition constants and diffusion coefficients to predict the sorption of neutral organic chemicals to multi-well plates in in vivo and in vitro bioassays. Environ. Sci. Technol.  52 (22): 13511–13522, 2018, doi: 10.1021/acs.est.8b04246.

M. Grösbacher, D. Eckert, O.A. Cirpka, C. Griebler: Contaminant concentration versus flow velocity - drivers of biodegradation and microbial growth in groundwater model systems. Biodegr. 29(3): 211-232, 2018, doi: 10.1007/s10532-018-9824-2.

M. Loschko, T. Wöhling, D.L. Rudolph, O.A. Cirpka: Accounting for the decreasing reaction potential of heterogeneous aquifers in a stochastic framework of aquifer-scale reactive transport. Water Resour. Res. 54(1): 442-463, 2018, doi: 10.1002/2017WR021645.

S. Seidensticker, C. Zarfl, O.A. Cirpka, G. Fellenberg, P. Grathwohl: Shift in mass transfer of wastewater contaminants from microplastics in presence of dissolved substances. Environ. Sci. Technol. 51(21): 12254-12263, 2017, 2017, doi: 10.1021/acs.est.7b02664.

D. Werner, K.M. Bushnaf, G. Mangse, P. Meynet, R.J. Davenport, O.A. Cirpka: Mechanisms of distinct activated carbon and biochar amendment effects on petroleum vapour bio-filtration in soil. Environ. Sci.: Processes Impacts 19: 1260-1269, 2017, doi: 10.1039/C7EM00309A.

M. Finkel, P. Grathwohl: Impact of pre-equilibration and diffusion limited release kinetics on effluent concentration in column leaching tests: Insights from numerical simulations. Waste Manag., 63: 58–73, 2017, doi: 10.1016/j.wasman.2016.11.031.

M. Finkel, P. Grathwohl, O.A. Cirpka: A travel-time based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies. Water Resour. Res. 52(12): 9390-9411, 2016, doi: 10.1002/2016WR019147.

M. Loschko, T. Wöhling, D.L. Rudolph, O.A. Cirpka: Cumulative relative reactivity: a concept for modeling aquifer-scale reactive transport. Water Resour. Res. 52(10): 8117-8137, 2016, doi: 10.1002/2016WR019080.

A. Sanz-Prat, C. Lu, R.T. Amos, M. Finkel, D.W. Blowes, O.A. Cirpka: Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity. J. Contam. Hydrol. 192: 35-49, 2016, doi: 10.1016/j.jconhyd.2016.06.002.

H. Schürner, M. Maier, D. Eckert, R. Brejcha, C.-C. Neumann, C. Stumpp, O.A. Cirpka, M. Elsner: Compound-specific stable isotope fractionation of pesticides and pharmaceuticals in a mesoscale aquifer model. Environ. Sci. Technol. 50(11): 5729–5739, 2016, doi: 10.1021/acs.est.5b03828.

A. Sanz-Prat, C. Lu, M. Finkel, O.A. Cirpka: Using travel times to simulate multi-dimensional bi-oreactive transport in time-periodic flows. J. Contam. Hydrol. 187: 1-17, 2016, doi: 10.1016/j.jconhyd.2016.01.005.

A. Mellage, D. Eckert, M. Grösbacher, A.Z. Inan, O.A. Cirpka, C. Griebler: Dynamics of suspended and attached aerobic toluene degraders in small-scale flow-through sediment systems under growth and starvation conditions. Environ. Sci. Technol. 49(12): 7161-7169, 2015, doi: 10.1021/es5058538.

A. Sanz-Prat, C. Lu, M. Finkel, O.A. Cirpka: On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow. J. Contam. Hydrol. 175-176: 26-43, 2015, doi: 10.1016/j.jconhyd.2015.02.003.

D. Eckert, P. Kürzinger, R. Bauer, C. Griebler, O.A. Cirpka: Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling. J. Contam. Hydrol. 172: 100-111, 2015, doi: 10.1016/j.jconhyd.2014.11.003.

S.K. Ngueleu, P. Grathwohl, O.A. Cirpka: Particle-facilitated transport of lindane in water-saturated tropical lateritic porous media. J. Environ. Qual. 43(4): 1392-1403, 2014, doi: 10.2134/jeq2013.11.0454.

B.M. Bajracharya, C. Lu, O.A. Cirpka: Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater. Water Resour. Res. 50(5): 4149–4162, 2014, doi: 10.1002/2013WR015173.

S.K. Ngueleu, P. Grathwohl, O.A. Cirpka: Altered transport of lindane caused by the retention of natural particles in saturated porous media. J. Contam. Hydrol. 162-163: 47-63, 2014, doi: 10.1016/j.jconhyd.2014.05.002.

S. Diem, O.A. Cirpka, M. Schirmer: Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach. J. Hydrol. 505: 352-363, 2013, doi:10.1016/j.hydrol.2013.10.015.

D. Eckert, S. Qiu, M. Elsner, O.A. Cirpka: Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment. Environ. Sci. Technol. 47(13): 6900-6907, 2013, doi: 10.1021/es304879d.

S. Qiu, D. Eckert, O.A. Cirpka, M. Huenniger, P. Knappett, P. Maloszewski, R. Meckenstock, C. Griebler, M. Elsner: Direct experimental evidence of non-first-order degradation kinetics and sorption-induced isotopic fractionation in a mesoscale aquifer: 13C/12C analysis of a transient toluene pulse. Environ. Sci. Technol. 47(13): 6892-6899, 2013, doi: 10.1021/es304877h.

S. K. Ngueleu, P. Grathwohl, O.A. Cirpka: Effect of natural particles on the transport of lindane in saturated porous media: laboratory experiments and model-based analysis. J. Contam. Hydrol. 149: 13-26, 2013, doi: 10.1016/j.jconhyd.2013.02.009.

D. Eckert, M. Rolle, O.A. Cirpka: Numerical simulation of isotope fractionation in bioreactive transport controlled by transverse mixing. J. Contam. Hydrol. 140-141: 95-106, 2012, doi:10.1016/j.jconhyd.2012.08.010.

O.A. Cirpka, M. Rolle, G. Chiogna, F.P.J. de Barros, W. Nowak: Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains. J. Contam. Hydrol. 138-139: 22-39, 2012, doi:10.1016/j.jconhyd.2012.05.007.

F. M. D’Affonseca, H. Prommer, M. Finkel, P. Blum, P. Grathwohl: Modeling of the long-term and transient evolution of biogeochemical and isotopic signatures in coal tar contaminated aquifers. Water Resources Research 47, W05518, 2011, doi:10.1029/2010WR009108.

J. Luo, O.A. Cirpka: How well do mean breakthrough curves predict mixing-controlled reactive transport? Water Resour. Res. 47(2): W02520, 2011, doi:10.1029/2010WR009461.

O.A. Cirpka: Simplified simulation of steady-state bioreactive transport with kinetic solute uptake by the biomass, Water Resour. Res. 46(7): W07534, 2010, doi:10.1029/2009WR008977.

L.C. Roberts, S.J. Hug, J. Dittmar, A. Voegelin, R. Kretzschmar, B. Wehrli, O.A. Cirpka, G.C. Saha, M.A. Ali, A.B.M. Badruzzaman: Arsenic mobilization from paddy soils during monsoon flooding. Nature Geoscience 3(1): 53 - 59, 2010, doi:10.1038/ngeo723.

C. Aeppli, M. Berg, O.A. Cirpka, C. Holliger, R.P. Schwarzenbach, T.B. Hofstetter: Influence of Mass-Transfer Limitations on Carbon Isotope Fractionation During Microbial Dechlorination of Trichloroethene. Environ. Sci. Technol. 43(23): 8813–8820, 2009, doi:10.1021/es901481b.

O.A. Cirpka, A.J. Valocchi: Reply to Comments on "Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state" by H. Shao et al. Advances Water Resour. 32(2): 298-301, 2009, doi:10.1016/j.advwatres.2008.10.018.

C. Mikutta, J.G. Wiederhold, O.A. Cirpka, T.B. Hofstetter, B. Bourdon, U. von Gunten: Iron isotope fractionation and atom exchange during sorption of ferrous iron to mineral surfaces. Geochim. Cosmochim. Acta 73(7): 1795-1812, 2009, doi:10.1016/j.gca.2009.01.014.

F. D'Affonseca, P. Blum, M. Finkel, R. Melzer, P. Grathwohl: Field scale characterization and modeling of contaminant release from a coal tar source zone. Journal of Contaminant Hydrology, 102, 120-139, 2008, doi:10.1016/j.jconhyd.2008.03.011.

A. Neumann, T.B. Hofstetter, M. Lüssi, O.A. Cirpka, S. Petit, R.P. Schwarzenbach: Assessing the redox reactivity of structural Fe(II) in smectites from the reduction kinetics of nitroaromatic contaminants. Environ. Sci. Technol. 42(22): 8381-8387, 2008, doi:10.1021/es801840x.

O.A. Cirpka, R.L. Schwede, J. Luo, M. Dentz: Concentration statistics for mixing-controlled reactive transport in random heterogeneous media. J. Contam. Hydrol. 98(1-2): 61-74, 2008, doi:10.1016/j.jconhyd.2008.03.005.

S. Klump, O.A. Cirpka, H. Surbeck, R. Kipfer: Experimental and numerical studies on excess-air formation in quasi-saturated porous media. Water Resour. Res. 44(5): W05402, 2008, doi:10.1029/2007WR006280.

C. M. Bürger, P. Bayer, M. Finkel: Algorithmic funnel-and-gate system design optimization. Water Resour. Res., 43(8): W08426, 2007, doi:10.1029/2006WR005058.

I. Kouznetsova, P. Bayer, M. Ebert, M. Finkel: Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging. Journal of Contaminant Hydrology, 90 (1-2), 58-80, 2007, doi:10.1016/j.jconhyd.2006.09.014.

J. Luo, F.-A. Weber, O.A. Cirpka, W.-M. Wu, J. Carley, J. Nyman, P. Jardine, C.S. Criddle, P.K. Kitanidis: Modeling in-situ U(VI) bioreduction by sulfate-reducing bacteria in the presence of nitrate. J. Contam. Hydrol. 92(1-2): 129-148, 2007, doi:10.1016/j.jconhyd.2007.01.004.

O.A. Cirpka, A.J. Valocchi: Two-dimensional concentration distribution for mixing-controlled bio-reactive transport in steady state. Advances Water Resour. 30(6-7): 1668-1679, 2007, doi:10.1016/j.advwatres.2006.05.022.

M. Kübert, M. Finkel: Contaminant mass discharge estimation in groundwater based on multilevel point measurements: A numerical evaluation of expected errors. J. Contam. Hydrol., 84, 55-80, 2006, doi:10.1016/j.jconhyd.2005.12.003.

W.-M. Wu, J. Carley, M. Fienen, T. Melhorn, K. Lowe, J. Nyman, J. Luo, M.E. Gentile, R. Rajan, D. Wagner, R.F. Hickey, B. Gu, D. Watson, O.A. Cirpka, P.K. Kitanidis, P.M. Jardine, C.S. Criddle: Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ. Sci. Technol. 40(12): 3978-3985, 2006, doi:10.1021/es051954y.

W.-M. Wu, J. Carley, T. Gentry, M.A. Ginder-Vogel, M. Fienen, T. Melhorn, H. Yan, S. Caroll, M.N. Pace, J. Nyman, J. Luo, M.E. Gentile, M.W. Fields, R.F. Hickey, B. Gu, D. Watson, O.A. Cirpka, J. Zhou, S. Fendorf, P.K. Kitanidis, P.M. Jardine, C.S. Criddle: Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ. Sci. Technol. 40(12): 3986 - 3995, 2006, doi:10.1021/es051960u.

O.A. Cirpka, Å. Olsson, Q. Ju, M.A. Rahman, P. Grathwohl: Determination of transverse dispersion coefficients from reactive plume lengths. Ground Water 44(2): 212-221, 2006, doi:10.1111/j.1745-6584.2005.00124.x.

J. Luo, W-M. Wu, M.N. Fienen, P.M. Jardine, T.L. Mehlhorn, D.B. Watson, O.A. Cirpka, C.S. Criddle, P.K. Kitanidis: A nested-cell approach for in situ remediation. Ground Water 44(2): 266-274, 2006, doi:10.1111/j.1745-6584.2005.00106.x.

G. Janssen, O.A. Cirpka, S.E.A.T.M. van der Zee: Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour. Res. 42(1): W01417, 2006, doi:10.1029/2005WR004042.

S. Klump, R. Kipfer, O.A. Cirpka, C.F. Harvey, M.S. Brennwald, K.N. Ashfaque, A.B.M. Badruzzaman, S.J. Hug, D. Imboden: Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ. Sci. Technol. 40(1): 243-250, 2006, doi:10.1021/es051284w.

P. Bayer, M. Finkel: Modeling of sequential groundwater treatment with zero valent iron and granular activated carbon. J. Contam. Hydrol., 78, 129-146, 2005, doi:10.1016/j.jconhyd.2005.03.005.

J. Luo, O.A. Cirpka, W. Wu, M.N. Fienen, P.M. Jardine, T.L. Mehlhorn, D.B. Watson, C.S. Criddle, P.K. Kitanidis: Mass-transfer limitation for nitrate removal in a uranium-contaminated aquifer at Oak Ridge, TN. Environ. Sci. Technol. 39(21): 8453-8459, 2005, doi:10.1021/es050195g.

N. Teutsch, U. von Gunten, D. Porcelli, O.A. Cirpka, A.N. Halliday: Adsorption as a cause for iron isotope fractionation in reduced groundwater, Geochim. Cosmochim. Acta 69(17): 4175-4185, 2005, doi:10.1016/j.gca.2005.04.007.

O.A. Cirpka: Effects of sorption on transverse mixing in transient flows. J. Contam. Hydrol. 78(3): 207-229, 2005, doi:10.1016/j.jconhyd.2005.05.008.

S.C. Jose, O.A. Cirpka: Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data. Environ. Sci. Technol. 38(7):2089-2096, 2004, doi:10.1021/es034586b.

O.A. Cirpka: Choice of dispersion coefficients in reactive transport calculations on smoothed fields. J. Contam. Hydrol. 58(3-4):261-282, 2002, doi:10.1016/S0169-7722(02)00039-6.

O.A. Cirpka, P.K. Kitanidis: Travel-time based model of bioremediation using circulation wells. Ground Water 39(3):422-432, 2001, doi:10.1111/j.1745-6584.2001.tb02326.x.

O.A. Cirpka, P.K. Kitanidis: Transport of volatile compounds in porous media in the presence of a trapped gas phase. J. Contam. Hydrol. 49(3-4):263-285, 2001, doi:10.1016/S0169-7722(00)00196-0.

O.A. Cirpka, P.K. Kitanidis: An advective-dispersive streamtube approach for the transfer of conservative tracer data to reactive transport. Water Resour. Res. 36(5): 1209-1220, 2000, doi:10.1029/1999WR900355.

O.A. Cirpka, P.K. Kitanidis: Impact of biomass-decay terms on the simulation of pulsed bioremediation. Ground Water 38(2): 254-263, 2000, doi:10.1111/j.1745-6584.2000.tb00337.x.

O.A. Cirpka, C. Windfuhr, G. Bisch, S. Granzow, H. Scholz-Muramatsu, H. Kobus: Microbial reductive dechlorination in large-scale sandbox model. J. Environ. Eng. ASCE 125(9): 861-870, 1999, doi:10.1061/(ASCE)0733-9372(1999)125:9(861).

O.A. Cirpka, E.O. Frind & R. Helmig: Numerical simulation of biodegradation controlled by transverse mixing. J. Contam. Hydrol. 40(2): 159-182, 1999, doi:10.1016/S0169-7722(99)00044-3.

O.A. Cirpka, R. Helmig & E.O. Frind: Numerical methods for reactive transport on rectangular and streamline-oriented grids. Advances Water Resour. 22(7): 711-728, 1999, doi:10.1016/S0309-1708(98)00051-7.

M. Finkel, R. Liedl, G. Teutsch: Modelling surfactant-enhanced remediation of Polycyclic Aromatic Hydrocarbons. Environ. Mod. Software, 14: 203-211, 1999, doi:10.1016/S1364-8152(98)00071-1.

M. Finkel, R. Liedl, G. Teutsch: Modelling Surfactant Influenced PAH Migration. Phys. Chem. Earth, 23 (2): 245-250, 1998: doi:10.1016/S0079-1946(98)00020-2.

W. Schäfer, M. Finkel, W. Kinzelbach: Modeling of an In-Situ Remediation Using Denitrifying Bacteria. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 60, 407-412, 1990.

Mixing of Solutes in Groundwater

 

Reactants can only interact with each other when they are present at the same location space and time, that is, solutes must mix. Classical theories of dispersion in hetergeneous porous media, however, relate to the spreading of plumes, which is the increasing irregularity of the plume shape. While spreading enhances mixing, the latter typically lags behind.

We have developed concepts of longitudinal mixing in heterogeneous media anaylzing the width of conservative-tracer breakthrough curves observed at individual points. More importantly, we have intensively studied effective transverse mixing in heterogeneous aquifers, deriving closed-form expressions for simplified cases. As major mechanism of enhacing transverse mixing, we have identified flow focussing in high-conductivity lenses and twisting of streamlines in nonstationary anisotropic media.

Lately, we analyze how realistic geological features, such as anisotropic stacked scour-pool features, influence the flow topology, stretching and folding, and solute mixing.

Publications in this Field of Research

C. Lu, Z. Wang, Y. Zhao, S. Singh Rathore, J. Huo, Y. Tang, M. Liu, R. Gong, O.A. Cirpka, J. Luo: A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields. J. Hydrol. 560: 97-108, 2018, doi: 10.1016/j.jhydrol.2018.02.073.

S.K. Hansen, C.P. Haslauer, O.A. Cirpka, V.V. Vesselinov: Direct breakthrough curve prediction from statistics of heterogeneous conductivity fields. Water Resour. Res. 54(1): 271-285, 2018, doi: 10.1002/2017WR020450.

J.P. Bennett, C.P. Haslauer, O.A. Cirpka: The impact of sedimentary anisotropy on solute mixing in realistic stacked scour-pool structures. Water Resour. Res. 53(4): 2813–2832, 2017, doi: 10.1002/2016WR019665.

O.A. Cirpka, A.J. Valocchi: Debates - stochastic subsurface hydrology from theory to practice: Does stochastic subsurface hydrology help solving practical problems of contaminant hydrogeology? Water Resour. Res. 52(12): 9218-9227, 2016, doi: 10.1002/2016WR019087.

Y. Ye, G. Chiogna, O.A. Cirpka, P. Grathwohl, M. Rolle: Experimental investigation of transverse mixing in porous media under helical flow conditions. Phys. Rev. E 94(1): 013113, 2016, doi: 10.1103/PhysRevE.94.013113.

G. Chiogna, O.A. Cirpka, P. Herrera: Helical flow and transient solute dilution in porous media. Transport Porous Media 111(3): 591-603, 2016, doi: 10.1007/s11242-015-0613-7.

Y. Ye, G. Chiogna, O.A. Cirpka, P. Grathwohl, M. Rolle: Experimental evidence of helical flow in porous media. Phys. Rev. Let. 115(19): 194502, 2015, doi: 10.1103/PhysRevLett.115.194502.

Y. Ye, G. Chiogna, O.A. Cirpka, P. Grathwohl, M. Rolle: Enhancement of plume dilution in two- and three-dimensional porous media by flow focusing in high-permeability inclusions. Water Resour. Res. 51(7): 5582–5602, 2015, doi: 10.1002/2015WR016962.

O.A. Cirpka, G. Chiogna, M. Rolle, A. Bellin: Transverse mixing in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. 51(1): 241-260, 2015, doi: 10.1002/2014WR015331.

G. Chiogna, O.A. Cirpka, M. Rolle, A. Bellin: Helical flow in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. 51(1): 261-280, 2015, doi: 10.1002/2014WR015330.

D. Eckert, P. Kürzinger, R. Bauer, C. Griebler, O.A. Cirpka: Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling. J. Contam. Hydrol. 172: 100-111, 2015, doi: 10.1016/j.jconhyd.2014.11.003.

Y. Ye, G. Chiogna, O.A. Cirpka, P. Grathwohl, M. Rolle: Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D versus 3-D flow-through systems. J. Contam. Hydrol. 172: 33-47, 2015, doi: 10.1016/j.jconhyd.2014.11.002.

G. Chiogna, M. Rolle, A. Bellin, O.A. Cirpka: Helicity and flow topology in three-dimensional anisotropic porous media. Advances Water Resour. 73: 134-143, 2014, doi:10.1016/j.advwatres.2014.06.017.

D. Eckert, M. Rolle, O.A. Cirpka: Numerical simulation of isotope fractionation in bioreactive transport controlled by transverse mixing. J. Contam. Hydrol. 140-141: 95-106, 2012, doi:10.1016/j.jconhyd.2012.08.010.

O.A. Cirpka, M. Rolle, G. Chiogna, F.P.J. de Barros, W. Nowak: Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains. J. Contam. Hydrol. 138-139: 22-39, 2012, doi:10.1016/j.jconhyd.2012.05.007.

O.A. Cirpka, F.P.J. de Barros, G. Chiogna & W. Nowak: Probability density function of steady-state concentration in two-dimensional heterogeneous porous media, Water Resour. Res. 47(11): W11523, 2011, doi:10.1029/2011WR010750.

G. Chiogna, O.A. Cirpka, P. Grathwohl & M. Rolle: Relevance of local compound-specific transverse dispersion for conservative and reactive mixing in heterogeneous porous media, Water Resour. Res. 47(7): W07540, 2011, doi:10.1029/2010WR010270.

O.A. Cirpka, F.P.J. de Barros, G. Chiogna, M. Rolle & W. Nowak: Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media, Water Resour. Res. 47(6): W06515, 2011, doi:10.1029/2010WR010279.

J. Luo & O.A. Cirpka: How well do mean breakthrough curves predict mixing-controlled reactive transport? Water Resour. Res. 47(2): W02520, 2011, doi:10.1029/2010WR009461.

G. Chiogna, O.A. Cirpka, P. Grathwohl, M. Rolle: Transverse mixing of conservative and reactive tracers in porous media: quantification through the concepts of flux-related and critical dilution indices, Water Resour. Res. 47(2): W02505, 2011, doi:10.1029/2010WR009608.

G. Chiogna, C. Eberhardt, P. Grathwohl, O.A. Cirpka & M. Rolle: Evidence of compound dependent hydrodynamic and (hydro)mechanical transverse dispersion by multi-tracer laboratory experiments. Environ. Sci. Technol. 44(2): 688-693, 2010, doi:10.1021/es9023964.

M. Rolle, C. Eberhardt, G. Chiogna, O.A. Cirpka & P. Grathwohl: Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation. J. Contam. Hydrol. 110(3-4): 130-142, 2009, doi:10.1016/j.jconhyd.2009.10.003.

O.A. Cirpka & A.J. Valocchi: Reply to Comments on "Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state" by H. Shao et al. Advances Water Resour. 32(2): 298-301, 2009, doi:10.1016/j.advwatres.2008.10.018.

J. Luo & O.A. Cirpka: Travel-time based descriptions of transport and mixing in heterogeneous domains. Water Resour. Res. 44(9): W09407, 2008, doi:10.1029/2007WR006035.

O.A. Cirpka, R.L. Schwede, J. Luo, M. Dentz: Concentration statistics for mixing-controlled reactive transport in random heterogeneous media. J. Contam. Hydrol. 98(1-2): 61-74, 2008, doi:10.1016/j.jconhyd.2008.03.005.

R.A. Payn, M.N. Gooseff, D.A. Benson, O.A. Cirpka, J.P. Zarnetske, W.B. Bowden, J.P. McNamara & J.H. Bradford: Comparison of instantaneous and constant-rate stream tracer experiments through non-parametric analysis of residence time distributions. Water Resour. Res. 44(6): W06404, 2008, doi:10.1029/2007WR006274.

O.A. Cirpka & A.J. Valocchi: Two-dimensional concentration distribution for mixing-controlled bio-reactive transport in steady state. Advances Water Resour. 30(6-7): 1668-1679, 2007, doi:10.1016/j.advwatres.2006.05.022.

C.J. Werth, O.A. Cirpka & P. Grathwohl: Enhanced mixing and reaction through flow focusing in heterogeneous porous media. Water Resour. Res. 42(12): W12414, 2006, doi:10.1029/2005WR004511.

I. Benekos, O.A. Cirpka & P.K. Kitanidis: Experimental determination of transverse dispersivity in a helix and a cochlea. Water Resour. Res. 42 (7): W07406, 2006, doi:10.1029/2005WR004712.

O.A. Cirpka, Å. Olsson, Q. Ju, M.A. Rahman & P. Grathwohl: Determination of transverse dispersion coefficients from reactive plume lengths. Ground Water 44(2): 212-221, 2006, doi:10.1111/j.1745-6584.2005.00124.x.

G. Janssen, O.A. Cirpka & S.E.A.T.M. van der Zee: Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour. Res. 42(1): W01417, 2006, doi:10.1029/2005WR004042.

M.A. Rahman, S.C. Jose, W. Nowak & O.A. Cirpka: Experiments on Vertical Transverse Mixing in a Large-Scale Heterogeneous Model Aquifer. J. Contam. Hydrol. 80(3-4): 130-148, 2005, doi:10.1016/j.jconhyd.2005.06.010.

O.A. Cirpka: Effects of sorption on transverse mixing in transient flows. J. Contam. Hydrol. 78(3): 207-229, 2005, doi:10.1016/j.jconhyd.2005.05.008.

S.C. Jose, M.A. Rahman & O.A. Cirpka: Large-scale sandbox experiment on longitudinal effective dispersion in heterogeneous porous media. Water Resour. Res. 40(12): W12415, 2004, doi:10.1029/2004WR003363.

S.C. Jose & O.A. Cirpka: Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data. Environ. Sci. Technol. 38(7):2089-2096, 2004, doi:10.1021/es034586b.

O.A. Cirpka & W. Nowak: First-order variance of travel time in non-stationary formations. Water Resour. Res. 40(3):W03507, 2004, doi:10.1029/2003WR002851.

O.A. Cirpka & S. Attinger: Effective dispersion in heterogeneous media under random transient flow conditions. Water Resour. Res. 39(9):1257, 2003, doi:10.1029/2002WR001931.

O.A. Cirpka & W. Nowak: Dispersion on kriged hydraulic conductivity fields. Water Resour. Res. 39(2):1027, 2003, doi:10.1029/2001WR000598.

O.A. Cirpka: Choice of dispersion coefficients in reactive transport calculations on smoothed fields. J. Contam. Hydrol. 58(3-4):261-282, 2002, doi:10.1016/S0169-7722(02)00039-6.

O.A. Cirpka & P.K. Kitanidis: Numerical evaluation of solute dispersion and dilution in unsaturated heterogeneous media. Water Resour. Res. 38(11):1220, 2002, doi:10.1029/2001WR001262.

O.A. Cirpka & P.K. Kitanidis: Travel-time based model of bioremediation using circulation wells. Ground Water 39(3):422-432, 2001, doi:10.1111/j.1745-6584.2001.tb02326.x.

O.A. Cirpka & P.K. Kitanidis: Theoretical basis for the measurement of local transverse dispersion in isotropic porous media. Water Resour. Res. 37(2):243-252, 2001, doi:10.1029/2000WR900314.

O.A. Cirpka & P.K. Kitanidis: Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments. Water Resour. Res. 36(5): 1221-1236, 2000, doi:10.1029/1999WR900354.

O.A. Cirpka & P.K. Kitanidis: An advective-dispersive streamtube approach for the transfer of conservative tracer data to reactive transport. Water Resour. Res. 36(5): 1209-1220, 2000, doi:10.1029/1999WR900355.

O.A. Cirpka, E.O. Frind & R. Helmig: Numerical simulation of biodegradation controlled by transverse mixing. J. Contam. Hydrol. 40(2): 159-182, 1999, doi:10.1016/S0169-7722(99)00044-3.

Geostatistical Inversion and Data-Assimilation Methods


The estimation of hydraulic aquifer parameters is a key problem for management of groundwater resources and design of hydraulic schemes. Classical approaches are based on subdividing the domain into zones with constant properties. However, variation within these zones might be larger than between them, and outlining the zones might be erroneous. We try to estimate hydraulic parameters as spatial fields with minimum prior knowledge about the aquifer structure. For regularization, we use geostatistical method.

For many years, we have contributed to the development of the quasi-linear geostatistical approach of inversion, which is a Gauß-Newton method, requiring the assessment of the sensitivities of all measurements with respect to all parameters. Lately, we have switched to the Ensemble Kalman Filter as inversion kernel, which does not require the explicit calculation of sensitivities.

We use measurements of

or temporal moments of such measurements to onfer the spatial distributions of

Publications in this Field of Research

O. Klein, O.A. Cirpka, P. Bastian, O. Ippisch: Efficient geostatistical inversion of transient groundwater flow using preconditioned nonlinear conjugate gradients. Advances Water Resour. 102: 161-177, 2017., doi: 10.1016/j.advwatres.2016.12.006.

D. Erdal, O.A. Cirpka: Preconditioning an Ensemble Kalman filter for groundwater flow using environmental-tracer observations. J. Hydrol. 545: 42-54, 2017, doi:10.1016/j.jhydrol.2016.11.064.

D. Erdal, O.A. Cirpka: Joint inference of groundwater-recharge and hydraulic-conductivity fields from head data using the Ensemble-Kalman Filter. Hydrol. Earth Sys. Sci. 20(1): 555-569, 2016, doi: 10.5194/hess-20-555-2016.

R.L. Schwede, W. Li, C. Leven, and O.A. Cirpka: Three-dimensional geostatistical inversion of synthetic tomographic pumping and heat-tracer tests in a nested-cell setup. Advances Water Resour. 63(C): 77-90, 2014, doi:10.1016/j.advwatres.2013.11.004.

R.L. Schwede, A. Ngo, P. Bastian, O. Ippisch, W. Li, O.A. Cirpka: Efficient parallelization of geostatistical inversion using the quasi-linear approach. Computers & Geosciences 44: 78-85, 2012, doi:10.1016/j.cageo.2012.03.014.

D. Pollock & O.A. Cirpka: Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by Electrical Resistivity Tomography. Water Resour. Res. 48(1): W01505, 2012, doi:10.1029/2011WR010779.

R.L. Schwede & O.A. Cirpka: Interpolation of steady-state concentration data by inverse modeling. Ground Water 48(4): 569-579, 2010, doi: 10.1111/j.1745-6584.2009.00668.x.

D. Pollock & O.A. Cirpka: Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments. Water Resour. Res. 46(7): W07501, 2010, doi:10.1029/2009WR008575.

R.L. Schwede & O.A. Cirpka: Stochastic evaluation of mass fluxes from pointlike concentration measurements. J. Contam. Hydrol. 111(1-4): 36-47, 2010, doi:10.106/j.jconhyd.2009.10.011.

R.L. Schwede & O.A. Cirpka: Use of steady-state concentration measurements in geostatistical inversion. Advances Water Resour. 32(4): 607-619, 2009, doi:10.1016/j.advwatres.2009.01.010.

W. Li, A. Englert, O.A. Cirpka & H. Vereecken: Three-dimensional geostatistical inversion of flowmeter and pumping-test data. Ground Water 46 (2): 193–201, 2008, doi:10.1111/j.1745-6584.2007.00419.x.

W. Li, A. Englert, O.A. Cirpka, J. Vanderborght & H. Vereecken: 2-D characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour. Res. 43(4): W04433, 2007, doi:10.1029/2006WR005333.

W. Nowak & O.A. Cirpka: Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data. Water Resour. Res. 42(8): W08416, 2006, doi:10.1029/2005WR004832.

W. Li & O.A. Cirpka: Efficient geostatistical inverse methods for structured and unstructured grids. Water Resour. Res. 42(6): W06402, 2006, doi:10.1029/2005WR004668.

W. Li, W. Nowak & O.A. Cirpka: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown. Water Resour. Res. 41(8): W08403, 2005, doi:10.1029/2004WR003874.

O.A. Cirpka, C.M. Bürger, W. Nowak & M. Finkel: Uncertainty and data worth analysis for the hydraulic design of funnel-and-gate systems in heterogeneous aquifers. Water Resour. Res. 40(11): W11502, 2004, doi:10.1029/2004WR003352.

W. Nowak & O.A. Cirpka: A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing. Advances Water Resour. 27(7): 737-750, 2004, doi:10.1016/j.advwatres.2004.03.004.

O.A. Cirpka & P.K. Kitanidis: Sensitivities of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data. Advances Water Resour. 24(1):89-103, 2000, doi:10.1016/S0309-1708(00)00007-5.

Integrated Assessment and Optimization of Groundwater Remediation and Brownfield Revitalization

The combined use of models, together with optimisation algorithms (OAs), has evolved as a crucial element in the decision making process for groundwater management. Our research focuses on methods for optimizing the design of groundwater management strategies and treatment technologies (Fig. 1).

We are using system dynamics (SD) with analytical approaches for contaminant transport modelling and risk assessment to develop quick and effective screening of remediation options (Fig. 2).

For the evaluation and optimization of brownfields redevelopment options we have developed integrated assessment methods (Fig.3) accounting for (i) clean-up cost, (ii) market value of re-usable land, and (iii) sustainability indicators.

Publications in this Field of Research

Morio, M., Finkel, M. Schädler, S.: Applying a multi-criteria genetic algorithm framework for brownfield reuse optimization: Improving redevelopment options based on stakeholder preferences. J. Environ. Manag., 130, 331–346, 2013, doi:10.1016/j.jenvman.2013.09.002.

Schädler, S., Finkel, M., Bleicher, A., Morio, M., Gross, M.: Spatially explicit computation of sustainability indicator values for the automated assessment of land-use options. Landscape and Urban Planning, 111:34-45, 2013, doi:10.1016/j.landurbplan.2012.12.002.

Schädler, S., Morio, M., Bartke, S., Finkel, M.: Integrated planning and spatial evaluation of megasite remediation and reuse options. J. Contam. Hydrol. 127, 88–100, 2012, doi:10.1016/j.jconhyd.2011.03.003.

D’Affonseca, F. M., Prommer, H., Finkel, M., Blum, Grathwohl, P.: Modeling of the long-term and transient evolution of biogeochemical and isotopic signatures in coal tar contaminated aquifers. Water Resour. Res. 47, W05518, 2011, doi:10.1029/2010WR009108.

Schädler, S., Morio, M., Bartke, S., Rohr-Zänker, R., Finkel, M.: Designing sustainable and economically attractive brownfield revitalization options using an integrated assessment model. J. Environ. Manag., 92(3), 827-837, 2011, doi:10.1016/j.jenvman.2010.10.026.

McKnight, U.S., Funder, S.G. Rasmussen, J.J., Finkel, M., Binning, P.J., Bjerg, P.L.: An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems. Ecol. Eng., 36(9), 1126-1137, 2010, doi:10.1016/j.ecoleng.2010.01.004.

Morio, M., Finkel, M., Martac, E.: Flow guided interpolation: A GIS-based method to represent contaminant concentration distributions in groundwater, Environ. Mod. Software, 2010, doi:10.1016/j.envsoft.2010.05.018.

Bayer, P., Finkel, M., Duran, E., Baumann, R.: Optimized groundwater drawdown in a subsiding urban mining area. Journal of Hydrology, 1-2, 95-104, 2009, doi:10.1016/j.jhydrol.2008.11.028.

D'Affonseca, F., Blum, P. Finkel, M., Melzer, R., Grathwohl, P. Field scale characterization and modeling of contaminant release from a coal tar source zone. J. Contam. Hydrol., 102, 120-139, 2008, doi:10.1016/j.jconhyd.2008.03.011.

Bayer, P., Bürger, C. M., Finkel, M.: Computationally efficient stochastic optimization using multiple realizations. Advances Water Resour., 31/2, 399-417, 2008, doi:10.1016/j.advwatres.2007.09.004.

Kouznetsova, I., Bayer, P., Ebert, M., Finkel, M.: Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging. J. Contam. Hydrol., 90 (1-2), 58-80, 2007, doi:10.1016/j.jconhyd.2006.09.014.

Bürger, C. M., Bayer, P., Finkel, M.: Algorithmic funnel-and-gate system design optimization. Water Resour. Res., 43, W08426, 2007, doi:10.1029/2006WR005058.

Bayer, P., Finkel, M.: Optimization of concentration control by evolution strategies: Formulation, application, and assessment of remedial solutions. Water Resour. Res., 43, W02410, 2007, doi:10.1029/2005WR004753.

Bayer, P., Finkel, M.: Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones. Water Resour. Res., 40, W06506, 2004, doi:10.1029/2003WR002675.

Participation in Coordinated Research Projects

Research Training Group 1829 "Integrated Hydrosystem Modelling"

funding institution: Deutscher Forschungsgemeinschaft

funding period: 2012-2021

spokesperson: Olaf Cirpka

Collaborative Research Center 1253 "CAMPOS-Catchments as Reactors"

funding institution: Deutscher Forschungsgemeinschaft

funding period: 2017-2021

spokesperson: Peter Grathwohl

Innovative Training Network "ENIGMA"

funding institution: European Commission, Horizon2020

funding period: 2017-2021

coordinator: Tanguy Le Borgne, CNRS/Université de Rennes

Research Unit FOR 2131 "Data Assimilation for Improved Characterization of Fluxes Across Compartmental Interfaces"

funding institution: Deutscher Forschungsgemeinschaft

funding period: 2014-2020

spokesperson: Clemens Simmer, University of Bonn