Carl Friedrich von Weizsäcker-Zentrum

Conference: Gödel and Kant on Mathematics and Physics


The conference will take place in hybrid format from October 11th to 13th, 2023 at the Carl Friedrich von Weizsäcker Center, located at the University of Tübingen, Germany. It is organized by Prof. Reinhard Kahle and Marcel Ertel in collaboration with Palle Yourgrau (Harry A. Wolfson Professor of Philosophy at Brandeis University).

If you'd like to attend virtually, please send an e-mail to (


The conference will be divided into three thematic blocks: Gödel and Kant on TimeGödel and Kant on Mathematics, and Gödel on Quantum Physics

Program Overview

(still subject to change)

Wednesday, October 11

9:00-10:00 Kahle, R.: Conference opening

10:00-11:00 Cuffaro, M.: Grete Hermann’s Neo-Kantianism in context

11:00-12:00 Passon, O.: Gödel on Quantum Mechanics

12:00-13:00 Crocco, G. & Audureau, E.: Time and Causality: What do we know about Gödel's Kantianism?

13:00-14:00 Lunch

14:00-15:00 Kovac, S: Time: Idealization and Reality

15:00-16:00 Lazarovici, D.: On the physical possibility of closed time like curves

16:00-17:00 Yourgrau, P.: On the Concept of Time: Gödel, Einstein, Kant

17:00-18:00 Folina, J.: Gödel, Kant and Kantianism

19:30 Conference Dinner

Thursday, October 12

10:00-11:00 Mainzer, K.: Gödel and Kant on Mathematics: then and now

11:00-12:00 Carson, E.: Kant and du Châtelet on the applicability of mathematics

12:00-13:00 Wrigley, W.: Gödelian Platonism and Mathematical Intuition x

13:00-14:00 Lunch

14:00-15:00 Sundholm, G.: Gödel on Curry-Howard

15:00-16:00 Sieg, W.: TBA

16:00-17:00 Zach, R.: Hilbert’s program and infinity

17:00-18:00 Ertel, M.: Kant and Gödel on concepts and intuition: finitism and ordinal recursion

19:30 Conference Dinner

Friday, October 13

11:00-12:00 Lethen, T.: Gödel on natural definitions of the whole numbers

12:00-13:00 Grabmayer, B.: TBA

13:00-14:00 Lunch

14:00-15:00 von Plato, J.: Gödel's interpretations of intuitionistic logic

15:00-16:00 Mar, G.: Are Gödel's Platonism and Turing's computationalism compatible? A Kantian Perspective