Plant Transformation


Morgenstelle 1
2. Stock, Raum Nr.218

Morgenstelle 32
5. Stock, Raum 5X17

phone 73223

Booking Trafos


4 sterile benches, growth rooms

sterile bench


Our New Bench: Mission Impossible...


Dr. Kenneth W Berendzen

Transformation technicians

Caterina Brancato
Caterina Brancato



Service provided by Caterina

Transformation Unit Protocols

Protoplasts from cell culture

Cell Culture 01.doc
Cell Culture Maintenance (Arabidopsis, BY2)

BY-2 Tobacco Cell Suspension Protoplasts


PEG transfection protocol 2018

Arabodopsis Cell Culture Protoplasts


Please cite for the protoplast transfection protocol after Feb. 2017:

Mehlhorn D.G., Wallmeroth N., Berendzen K.W., Grefen C. (2018) 2in1 Vectors Improve In Planta BiFC and FRET Analyses. In: Hawes C., Kriechbaumer V. (eds) The Plant Endoplasmic Reticulum. Methods in Molecular Biology, vol 1691. Humana Press, New York, NY.


Transfections performed before Feb.2017 cite:

Schütze K, Harter K, Chaban C (2009) Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol 479: 189-202.

Stable Transformation protocol for potato

Transformation protocol for tobacco

Protoplasts isolation from leaves of Arabidopsis thaliana

Protocol for tomato stable transformation
Protocol for tomato stable transformation

Please cite for tomato transformations:

Wittmann et al. 2015. Plant Pathology. Doi: 10.1111/ppa.12417

1. The unit offers Agrobacterium-mediated transformation of potato, tobacco and tomato.
2. Regenaration and cultivation of transformants.
3. PEG-mediated transformation of protoplasts from cell cultures or mesophyll cells (Arabidopsis or tobacco).
4. Production of cell cultures (wild type).

Fig. Z-stack image of protoplasts liberated from Arabidopsis thaliana leaf tissue.


Fig. Examination of the protoplat transformation efficiency by flow cytometric anaylsis (FCA).

Protoplasts isolated from root cell culture are transformed with a 35S::GFP construct (12kb) as a routine control. As an alternative to calculating the transformation efficiency, we have used FCA as a means for detecting cells expressing GFP. The negative population is marked in black. Cells that are strongly expressing GFP have a fluoresence signal that is well above that of the total plant cell population‘s green autofluoresence (cells marked in dark green); cells marked in light green are those with weaker GFP fluoresence emission. In this example 23% of the cells were transformed with GFP, and 50% of those are strongly expressing GFP.

Anja Hoffmann

Current Publications

Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust A, Chai J, Hedrich R, Van den Ackerveken G, Nürnberger T (2015). An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants, 15140, doi: 10.1038/NPLANTS.2015.140.

J. Wittmann, C. Brancato, K. W. Berendzen and B. Dreiseikelmann (2015).
Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene.
Plant Pathology DOI: 10.1111/ppa.12417