Zentrum für Molekularbiologie der Pflanzen (ZMBP)

Research Group Üstün

Proteolytic degradation pathways and their role in plant immunity



Üstün, S., and Hofius, D. (2018). Anti- and pro-microbial roles of autophagy in plant-bacteria interactions. Autophagy 14, 1465-1466. https://www.tandfonline.com/doi/abs/10.1080/15548627.2018.1475817?journalCode=kaup20

Üstün S., Hafrén A., Liu Q., Marshall R., Minina E.A., Bozhkov P., Vierstra R., Hofius D. (2018) Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants. The Plant Cell, 30 (3) 668-685; DOI: 10.1105/tpc.17.00815 http://www.plantcell.org/content/30/3/668press|blog|editorial|F1000

Hafrén A., Üstün S., Hochmuth A., Svenning S., Johansen T., Hofius D. (2017) Turnip mosaic virus counteracts NBR1-mediated selective autophagy of the 
viral silencing suppressor HCpro. Plant Physiology pp.01198.2017; DOI: 10.1104/pp.17.01198 http://www.plantphysiol.org/content/176/1/649

Üstün S., Hafrén A., Hofius D. (2017). Autophagy as a mediator of life and death in plants. Curr Opin Plant Biol 40, 122-130. https://www.sciencedirect.com/science/article/pii/S1369526617300845?via%3Dihub

Üstün, S.* and Börnke, F. (2017). Ubiquitin Proteasome Activity Measurement in Total Plant Extracts. Bio-protocol 7(17): e2532. DOI: 10.21769/BioProtoc.2532. https://bio-protocol.org/e2532

Witzel, K.; Üstün, S.; Schreiner, M.; Grosch, R.; Börnke, F.; Ruppel, S. (2017) A proteomic approach suggests unbalanced proteasome functioning induced by the growth-promoting bacterium Kosakonia radicincitans in Arabidopsis. Frontiers in Plant Science. 2017 8:661. https://www.frontiersin.org/articles/10.3389/fpls.2017.00661/full

Üstün S.*, Sheikh A., Gimenez-Ibanez S., Jones A., Ntoukakis V.*, Börnke F*. (2016) The proteasome acts as a hub for plant immunity and is targeted by Pseudomonas type-III effectors. Plant Physiology 172: 1941-1958 http://www.plantphysiol.org/content/172/3/1941.long

Üstün S., Bartetzko V., Börnke F. (2015) The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid. Frontiers Plant Science 6:599 https://www.frontiersin.org/articles/10.3389/fpls.2015.00599/full

Üstün S.* and Börnke F* (2015) The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6. Plant Physiology 168: 107-119 http://www.plantphysiol.org/content/168/1/107

Üstün S.* and Börnke F (2014) Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Frontiers Plant Science 5:736 https://www.frontiersin.org/articles/10.3389/fpls.2014.00736/full

Üstün S.*, König P., Guttman D.S., Börnke F.* (2014) HopZ4 from Pseudomonas syringae, a novel member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants. Molecular Plant-Microbe Interaction 27: 611-623 https://apsjournals.apsnet.org/doi/10.1094/MPMI-12-13-0363-R 

Üstün S., Bartetzko V., Börnke F. (2013) The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence. PLoS Pathogens 9: e1003427 http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003427

Üstün, S., Müller, P., Palmisano, R., Hensel, M., Börnke, F. (2012). SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. New Phytologist 194: 1046-1060. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2012.04124.x

Arsova, B., Hoja, U., Wimmelbacher, M., Greiner, E., Üstün, S., Melzer, M., Petersen, K., Lein, W., Börnke, F. (2010). Plastidial Thioredoxin z Interacts with two Fructokinase-like Proteins in a Thiol-Dependent Manner: Evidence for an essential Role in Chloroplast Development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22: 1498-1515. http://www.plantcell.org/content/early/2010/05/28/tpc.109.071001 

Corresponding author