Marine Geosciences / Oceanography Fields and disciplines

Marine Geosciences; Oceanography

- Chemical Oceanography
 - Marine chemistry; marine geochemistry
- Biological Oceanography
 - Marine biology; marine biogeochemistry
 - Marine ecology
- Physical Oceanography
 - Ocean circulation & Climate (change)
 - Dynamics of the ocean floor, Marine Geodynamics
- Marine Sedimentology

Chemical Oceanography

Where do the elements on the seawater come from?

- 1. Weathering of continents delivered to the oceans by rivers (also dust blown material)
- 2. Hydrothermal alteration of the oceanic crust
- 3. Volcanic degassing

The oceans as a chemical system

Quelle: http://www.meeresgeo-online.de/

Input:

rivers: **18.3** x **10**⁹ tons/yr

Glaciers und ice: 2.0 x 109 tons/yr

Wind (dust particles): 0.6 x 109 tons/yr

Hydrothermal alteration of the oceanic crust

Volcanic degassing

Discharge:

Sedimentation

- ▶ anorganic
- biological

Processes along ocean floor and mid-ocean ridges

Chemical Oceanography

TABLE 1. COMPARISON OF RIVER WATER

AND SEA WAT	ER COMPOSITION Average river	Average sea	River water	Sea water
Ions	water (mM/l)	water (mM/l)	ratio to Cl	ratio to Cl
Hco $_3$	0.86	2.38	5.375	0.0044
So ₄	0.069	28.2	0.43125	0.0517
Cl -	0.16	545	1	1
Ca ²⁺	0.33	10.2	2.0625	0.0187
Mg ²⁺	0.15	53.2	0.9375	0.09761
Na ⁺	0.23	468	1.4375	o.8587
K +	0.03	10.2	0.1875	0.0187

Georg Forchhammer (1794-1865)

Danish Mineralogist

River water

Sea water

[&]quot;The quantity of different elements in seawater is not proportional to the quantity of elements which river water pours into the sea..."

Marine mass balances

Marine mass balances

Magnesium problem

	Supply of Mg ²⁺	Rivers Total	1.3 1.3	units: 10 ¹⁴ g/yr
	Removal of Mg ²⁺	1 Original budget* Carbonate formation Ion exchange Glauconite formation Mg–Fe exchange Burial of interstitial water Subtotal	0.075 0.097 0.039 0.29 0.11 0.61	Percentage river flux 47
Basalt-seawater i	nteraction	Modified budget Hydrothermal activity Subtotal Total removal	0.60 0.60	46 93

^{*} After Drever (1974).

Residence times in seawater of solutes

	Α	В	С	D	E
Concentration					Residence
	in rivers	Input to ocean	Concentration	Amount	time
Ele-	ppm	from rivers	in ocean	in ocean	in ocean
<u>ment</u>	(ppm)	(grams/yr)	(ppm)	(grams)	(years)
a	6	2x10 ¹⁴	19,350	261x10 ²⁰	130x10 ⁶
Na	5	2x10 ¹⁴	10,760	145x10 ²⁰	72x10 ⁶
SO ₄	8	3x10 ¹⁴	2,712	37x10 ²⁰	12x10 ⁶
Mg	3	1x10 ¹⁴	1,294	17x10 ²⁰	17x10 ⁶
Ca	13	5x10 ¹⁴	412	6x10 ²⁰	1x10 ⁶
K	1	0.3x10 ¹⁴	399	5x10 ²⁰	16x10 ⁶
HCO ₃	52	20x10 ¹⁴	145	2x10 ²⁰	0.1x10 ⁶
Si	10	4x10 ¹⁴	0.5-10 (6)	0.08x10 ²⁰	.02x10 ⁶ (20k)

B: River Input of element = Concentration x Amount of water flowing in rivers from rivers to oceans = $A \times 0.374 \times 10^{20}$ grams/year

D: Amount of element in oceans = Concentration x Amount of water in oceans in oceans = $C \times 1.35 \times 10^{24} \text{ grams} / 10^6$

E. Residence Time = Amount of element ÷ Rate of input in ocean from rivers

(i.e., how long it would take rivers to resupply oceans with their present mass of a given element)

= D ÷ B

The blue planet

Where did the water in the oceans come from?

- 1. Earth held onto some water when it formed. Some of that water has remained with the Earth, and might be recycled through the planet's mantle layer.
- 2. delivered after Earth formed by ice-rich asteroids (carbonaceous chondrites) or comets.

Example Physical Oceanography

Research facilities for marine geosciences in Germany

- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel from 2004-2012: IfM-GEOMAR
- MARUM Zentrum für marine Umweltwissenschaften, Bremen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven
- Max-Planck-Institut f
 ür marine Mikrobiologie, Bremen
- Institut für Meereskunde, Hamburg (focus on physical oceanography)
- Leibnitz-Institut für Ostseeforschung, Warnemünde (focus on shore lines and marginal basins)

Research facilities for marine geosciences in Germany

Research facilities for marine geosciences in Germany

Ocean bathymetry

Present-day Earth topography [m]

Hypsometric curve

The Oceans

Ocean	Surface Area (million km²)	Water Volume (million km³)	Avg. Depth (km)	Max. Depth (km)
Pacific	177	700	4.0	11.0
Atlantic	98	335	3.6	9.2
Indian	77	285	3.7	7.5
Arctic	15	15	1.1	5.2

Pacific ocean: less than double size, but more than double volume compared to the Atlantic ocean

Continental Margins

Continental Shelf

Submerged part of the continent Gently sloping (less than 1°) Up to 1500 km wide; averages 80 km wide Locally cut by *canyons* (eroded by rivers during the Ice age low sea level)

Continental Slope

Boundary between continental and oceanic crust Steeply sloping compared to shelf (averages about 5° slope, up to 25°); about 20 km wide

Continental Rise

At base of continental slope; slope angle decreases

Thick accumulation of sediment transported downslope from continental shelf

At mouths of submarine canyons, *deep-sea fans* are present.

May be carved by turbidity currents - bottom-currents carrying suspended sediment downslope

Submarine Canyons

Schelf und continental slope along California; source: USGS

Submarine Canyons

("super-highways")

cut into the seabed of the continental slope formation during lowstands of sea level

Deep-sea fan

large-scale sediment deposition

sediments introduced through submarine canyons

formed by turbidity currents

examples: Amazonas fan; Bengal fan; Indus fan

Deep Ocean Basins

Abyssal plains (Tiefseeboden)

Flat, deep ocean floor Depth may be 3 - 5 km Sediments bury topography of oceanic crust

The deepest part of the oceans

May exceed 10.000 m deep

Deepest is Mariana trench in Pacific Ocean (more than 11.000 m)

Occur at subduction zones where oceanic crust is forced downward into the mantle

Mid-ocean ridges

continuous range of undersea mountains winding through 70.000 km of the world's oceans

Seamounts

Undersea volcanic peaks which formed along mid-ocean ridges or over hot spots May be eroded flat on top and called *guyots*May be ringed by coral reefs called *atolls*

