Ocean as a chemical system

Ocean as a chemical system

source/input →

internal reactivity →

sink/output

transport cycle

Chester Marine Geochemistry

Marine geochemistry

How do the oceans work as a chemical system?

```
describing chemical processes
identifying pathways (source to sink journey)
relate them to fluxes
particulate – dissolved interaction
transport – removal process
marine mass balances
```

World Water Balance

River water drainage

Table 3.1 The major element composition of rivers draining into the oceans; units, mg l⁻¹ (data from Martin & Whitfield (1983) and Riley & Chester (1971)).

Element	Atlantic	Indian	Arctic	Pacific	World average river water	Sea water
Na+	4.2	8.5	8.8	5.2	5.3	10733
K+	1.4	2.5	1.2	1.2	1.5	399
Ca ²⁺	10.5	21.6	16.1	13.9	13.3	412
Mg ²⁺	2.5	5.4	1.3	3.6	3.1	1 2 9 4
Cl-	5.7	6.8	11.8	5.1	6.0	19344
SO ₄ ²⁻	7.7	7.9	15.9	9.2	8.7	2712
SO ₄ ²⁻ HCO ₃ ⁻ SiO ₂ ³⁻	37	94.9	63.5	55.4	51.7	142
SiO ₃ ⁻³	9.9	14.7	5.1	11.7	10.7	_
TDS*	78.9	154.9	123.7	105.3	101.6	_

^{*} TDS = total dissolved solids.

Pattern of element solubility in river waters

(a)

(b)

(c)

Cation log z/r between +0.48 and +1.08 Cation electronegativity between 1.2 and 1.9

Ca²⁺, Na⁺, K⁺ and Mg²⁺

$$\mathrm{Fe}_{(\mathrm{aq})}^{3+} + 3\mathrm{H}_{2}\mathrm{O}_{(1)} \longrightarrow \mathrm{FeOH}_{3(s)} + 3\mathrm{H}_{(\mathrm{aq})}^{+}$$

$$S(VI)_{(s)} + 4H_2O_{(1)} \rightarrow SO_{4(aq)}^{2-} + 2H_{(aq)}^+$$

Pattern of element solubility in river waters

Chemical signals transported by rivers

Precipitation or runoff

Water mixing in estuaries

Water mixing in estuaries

Ocean Geochemistry

- Oceans are the main reservoir of water on the Earth ~97% by volume.
- Much higher contents of dissolved solids than most other natural waters (35 g / kg water)
- Compared to other natural waters, seawater is remarkably homogeneous in composition

Total dissolved solids (g/kg)				
Rain	0.005			
River	0.1			
Ocean	35			

Properties of Seawater

- Water covers 71% of the earth's surface
- 97% of the water is contained in the oceans
- Water molecules hydrogen bridge bond
- High solubility (except oil)
- High heat capacity
- High heat of vaporisation
- Transport medium
- Salinity varies around 35g salt/kg

Ocean as a chemical system

Ocean reservoir

Chemical composition of seawater differs largely from that of stream water

Element budget of seawater depends on input and output/discharge

Composition of Seawater

Salinity

Quantity of dissolved salt content of the water (weight in grams of the dissolved inorganic matter in one kilogram of water)

Chlorinity: concentration of dissolved chloride

S‰ = 1.80655 CI‰

Standard seawater has a salinity

of 34.99 ppt (or ‰) and a chlorinity of 19.37 ‰. The electrical conductivity of this water at T=15 °C is 42.9 mS/cm

bring water brine pools 50+ ppt

saline water

seawater, salt lakes 30-50 ppt

brackish water

estuaries, mangrove swamps, brackish seas and lake, brackish swamps

.5-30 ppt

ponds, lakes, rivers, streams, aquifers

0-.5 ppt

Electrical conductivity

Milli-Q water rainwater GW Silicates GW Carbonates Ocean water

0.054 μS/cm 30-60 μS/cm 130 μS/cm 260 μS/cm 43000 μS/cm

 $1 \, ^{\circ} dH = 33 \, \mu S/cm$

Temperature-salinity-density variation

- 1. Seawater density is controlled by temperature and salinity
- 2. T of seawater is fixed at the sea surface by heat exchange with atmosphere

Temperature and salinity can only be changed at the surface → conservative properties

Temperature-salinity-density variation

Sea surface density

Average seawater, with S = of 35‰ and T = 20°C, has a density σ of 1.025 g/cc Sea Surface Density

Sea surface salinity

Temperature-salinity-density variation

Thermohaline circulation

Thermohaline circulation driven by density differences

→ exchange of surface water and deep water masses

from: White Geochemistry

Speciation and complexation in Seawater

Complex:

MgCO₃⁰ MgHCO₃⁺ MgSO₄⁰ CaSO₄⁰ NaSO₄⁻

Speciation and complexation in Seawater

illustration: ion-pairing of magnesium

as free ion: Mg²⁺

as ion pair MgSO₄ MgCO₃

as complex MgHCO₃-

Major elements in seawater

Properties of elements in seawater

Conservative elements –

occur in constant proportion in seawater; their distribution depends only on transport of water

Non-conservative elements

undergo a variety of reactions:

biogeochemical cycling,
radioactive decay,
isotope fractionation,
exchange with the atmosphere

	•	
Ion	g/kg (ppt)	Percent of
	at $S = 35\%$	Dissolved solids
Cl-	19.354	55.05
SO ₄ ²⁻	2.649	7.68
$HCO_{\overline{3}}$	0.140	0.41
$B(OH)_{4}^{-}$	0.0323	0.07
Br ⁻	0.0673	0.19
F^-	0.0013	0.00
Na^+	10.77	30.61
Mg^{2+} Ca^{2+}	1.290	3.69
Ca^{2+}	0.412	1.16
\mathbf{K}^{+}	0.399	1.10
Sr^{2+}	0.008	0.03

Dissolved gases in seawater

	Atmospheric	Equilibrium Conc. in		
	Partial	Seawater (ml/l)		
	Pressure	0°C	24°C	
He	5.2	4.1×10^{-5}	3.8×10^{-5}	
Ne	1.8	1.8×10^{-4}	1.5×10^{-4}	
N_2	0.781	14.3	9.2	
O_2	0.209	8.1	5.0	
Ar	9.3×10^{-3}	0.39	0.24	
Kr	1.1×10^{-6}	9.4×10^{-5}	8.5×10^{-5}	
Xe	8.6×10^{-8}	1.7×10^{-5}	8.5×10^{-6}	
CO_2	3.6×10^{-4}	0.47	0.24	
N ₂ O	3×10^{-7}	3.2×10^{-4}	1.4×10^{-4}	

solubility of gas in ocean: C = kp C = concentration in seawater, k = Henrys law constant, p = is the partial pressure of the gas in atmosphere

W. White: Geochemistry

Oxygen variation in seawater

oxygen variation due to *respiration* and *photosynthesis*

in the surface ocean, rate of photosynthesis exceeds that of respiration \rightarrow net O_2 production in surface layer

- 1 North Atlantic Bottom Water
- 2 Mediterranean Water
- 3 North Atlantic Deep Water
- 4 Antarctic Bottom Water
- 5 Antarctic Intermediate Water

oxygen minimum typically occurs within the thermocline

W. White: Geochemistry

Distribution of O₂

Anoxic waters

When oxygen is depleted, bacteria will turn to reducing nitrate and sulfate:

$$SO_4^{-2} + H^{+1} \rightarrow H_2S + H_2O + chemical energy (euxinic conditions)$$

Primeval oceans

http://www.goldschmidt2007.org/plenary.php Plenaries - Jochen BROCKS "Molecular Fossils and Early Life on Earth"

Primeval oceans

http://www.goldschmidt2007.org/plenary.php - Plenaries - Jochen BROCKS "Molecular Fossils and Early Life on Earth"

O₂ build-up in the Earth's atmosphere

Stage 1: 3.85–2.45 Ga: no O₂ in atmosphere. Oceans were also largely anoxic

Stage 2: 2.45–1.85 Ga: Great oxygenation event. Formation of BIFs. O₂ produced and

rose to values of 0.02 and 0.04 atm, but absorbed in oceans and seabed

Stage 2: 1.85–0.85 Ga: O₂ starts to gas out of the oceans, but is absorbed by land surfaces.

No significant change in oxygen level

Stage 2: 0.85–present: O₂ sinks filled and the gas accumulates