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5 Van Vleck and the application of the correspondence principle
to the interaction of matter and radiation

In the two-part paper that forms the focal point of our study, Van Vleck
(1924b,c) explored in a systematic and physically cogent fashion the implica-
tions of the correspondence principle for several aspects of the interaction of
matter and radiation. The paper is signed June 19, 1924 and appeared in the
October 1924 issue of The Physical Review. In this paper, Van Vleck gives
a detailed derivation of the correspondence principle for absorption, which
he had introduced in a short note in the Journal of the Optical Society in
America, signed April 7, 1924 (Van Vleck, 1924a). In addition, he thoroughly
examined the issues involved in connecting Einstein’s A and B coefficients
to features of classical electron orbits. Finally, as we mentioned in sec. 3.4 in
Part One of our paper, he showed that, in the limit of high quantum numbers,
Kramers’ quantum formula for polarization merges with the classical formula
for polarization in arbitrary non-degenerate multiply-periodic systems.

In part I of his paper, reproduced in (Van der Waerden, 1968), Van Vleck
(1924b) discusses the transition from quantum-theoretical expressions for emis-
sion, absorption, and dispersion to corresponding classical expressions that one
expects to hold in the limit of high quantum numbers. It is only in part II,
not included in (Van der Waerden, 1968), that Van Vleck (1924c) derives the
classical expressions for absorption and dispersion of radiation by a general
non-degenerate multiply-periodic system, using standard methods of canoni-
cal perturbation theory in action-angle variables. Van Vleck could assume his
audience to be thoroughly familiar with these techniques. This is no longer
true today. For the sake of clarity of exposition, we therefore invert the order
of Van Vleck’s own presentation.

In sec. 5.1, we present the basic elements of the canonical formalism in action-
angle variables and use it to rederive the classical formula (6) in sec. 3.1
for the dipole moment of a charged one-dimensional simple harmonic oscil-
lator. Though much more complicated than the derivation in sec. 3.1, this
new derivation has two distinct advantages. First, it suggests a way of trans-
lating the classical formula into a quantum formula with the help of Bohr’s
correspondence principle and Einstein’s A and B coefficients. Secondly, both
the derivation of the classical formula and its translation into a quantum for-
mula can easily be generalized to arbitrary non-degenerate multiply-periodic
systems.

In sec. 5.2, we translate the classical formula for the dipole moment of a
simple harmonic oscillator into a quantum formula. In sec. 5.3, we similarly
convert classical formulae for emission and absorption by a simple harmonic
oscillator to the corresponding quantum formulae. Both the mathematical
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manipulations and the physical interpretation are particularly transparent in
the case of a simple harmonic oscillator, and Van Vleck himself frequently used
this example for illustrative purposes. The generalization of the various results
to arbitrary non-degenerate multiply-periodic systems, which is a primary
focus of Van Vleck’s paper, will be deferred to sec. 6. In sec. 7, we present (or
outline) modern derivations of various results in secs. 5 and 6. In sec. 8, we
summarize our conclusions.

5.1 Deriving the classical formula for the dipole moment of a simple har-
monic oscillator using canonical perturbation theory

In this subsection we rederive formula (6) in sec. 3.4 for the dipole moment of
a charged one-dimensional simple harmonic oscillator, using canonical pertur-
bation theory in action-angle variables. Like Kramers, Van Vleck was a master
of these techniques in classical mechanics. As Van Vleck recalled fifty years
after the fact:

In 1924 I was an assistant professor at the University of Minnesota. On an
American trip, Ehrenfest gave a lecture there . . . [He] said he would like to
hear a colloquium by a member of the staff. I was selected to give a talk
on my “Correspondence Principle for Absorption” . . . I remember Ehrenfest
being surprised at my being so young a man. The lengthy formulas for
perturbed orbits in my publication on the three-body problem of the helium
atom [Van Vleck, 1922] had given him the image of a venerable astronomer
making calculations in celestial mechanics (Van Vleck, 1974, p. 9). 176

We begin by reviewing some of the mathematical tools we need. 177 Con-
sider a classical Hamiltonian system with phase space coordinates (qi, pi),
i = (1, 2, . . . N) and Hamiltonian H(qi, pi), which does not explicitly depend
on time. Hamilton’s equations are

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

. (15)

176Van Vleck failed to conform to Ehrenfest’s image of a young physicist in another
respect. In an interview in 1973, “Van Vleck recalled, “I shocked Ehrenfest . . . when
I told him I liked popular music.” Ehrenfest, he said, “thought that was completely
irreconcilable with my having written any respectable papers.”” (Fellows, 1985, p.
54)
177This material is covered in standard graduate textbooks on classical mechanics,
such as (Goldstein, 1980), heavily influenced by (Born, 1925) (Goldstein, 1980, pp.
429, 493, 540). We recommend (Matzner and Shepley, 1991).
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Consider a contact transformation (qi, pi) → (q′i, p
′
i) preserving the form of

Hamilton’s equations, in the sense that there exists a new Hamiltonian H ′

such that

q̇′i =
∂H ′

∂p′i
, ṗ′i = −∂H ′

∂q′i
. (16)

Since Hamilton’s equations (15) and (16) must hold simultaneously, the vari-
ational principles

δ

t2∫
t1

(∑
i

piq̇i −H(qi, pi)

)
dt = 0, δ

t2∫
t1

(∑
i

p′iq̇
′
i −H ′(p′i, q

′
i)

)
dt = 0 (17)

for arbitrary times t1 and t2 must also hold simultaneously. This implies that
the difference between the two integrands in eq. (17) must be a total time
derivative(∑

i

piq̇i −H(qi, pi)−
∑

i

p′iq̇
′
i + H ′(p′i, q

′
i)

)
dt = dF, (18)

which will not contribute to the variation of the action. The apparent depen-
dence of F on the 4N + 1 variables (qi, pi, q

′
i, p

′
i, t) can be reduced to 2N + 1

variables via the equations for the contact transformation (qi, pi) → (q′i, p
′
i).

If we choose to write F as a function of the initial and final coordinates,
F = F (qi, q

′
i, t), then the partial derivatives of F can be read off directly from

eq. (18):

∂F

∂t
= H ′ −H,

∂F

∂qi

= pi,
∂F

∂q′i
= −p′i. (19)

By solving (at least in principle!) the second of these three equations for q′i as
a function of (qi, pi), and then substituting the result in the third to obtain
p′i, we see that the function F encodes the full information of the transforma-
tion (qi, pi) → (q′i, p

′
i). This function is called the generating function of the

transformation. Given F the form of the new Hamiltonian H ′ can be obtained
(again, in principle!) from the first of eqs. (19).

A special case of great interest occurs when the generating function F can be
chosen so that the resulting Hamiltonian is independent of the new coordinates
q′i (which are then called ignorable). Hamilton’s equations then immediately
imply that the associated momenta p′i are time-independent, and that the new
coordinates q′i are linear in time. In this circumstance the new momenta are
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usually called action variables—the notation Ji is conventional for these—
while the new coordinates are dubbed angle variables, with the conventional
notation wi.

To illustrate the above with a concrete example, which we shall be using
throughout this section, consider a one-dimensional simple harmonic oscillator
with Hamiltonian: 178

H =
p2

2m
+

1

2
mω2

0q
2. (20)

Consider the transformation induced by

F =
1

2
mω0q

2 cot q′. (21)

This function does not explicitly depend on time, so H ′ = H (see eq. (19)).
Eq. (19) also tells us that

p =
∂F

∂q
= mω0q cot q′, p′ = −∂F

∂q′
=

1

2
mω0q

2 csc2 q′. (22)

From the latter equation it follows that q2 = (2p′/mω0) sin2 q′ or that

q =

√
2p′

mω0

sin q′. (23)

Inserting this expression for q into the expression for p, we find

p =
√

2mω0p′ cos q′. (24)

Substituting eqs. (23)–(24) for q and p into eq. (20) we find

H = ω0p
′. (25)

178A short digression on the (almost inevitable) notational confusions lurking in this
subject is in order. We shall continue to use the conventional notation ω to denote
angular frequencies, with the ordinary frequency (reciprocal period) denoted by
the Greek letter ν. Unfortunately, Van Vleck uses ω to denote ordinary frequency!
Moreover, there is the embarrassing similarity of the angle variables wi to the fre-
quencies ωi. Also, there is the need to distinguish between the frequencies of the
isolated mechanical system (ω0 = 2πν0 for the simple harmonic oscillator) and the
frequency of an applied electromagnetic wave, which we shall denote as ω = 2πν
throughout.
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Since H ′ = H, this means that the new coordinate variable q′ is ignorable, as
desired. Hamilton’s equations for (q′, p′) are:

q̇′ =
∂H

∂p′
= ω0, ṗ′ = −∂H

∂q′
= 0, (26)

from which it follows that q′ = ω0t+ε and that p′ = H/ω0 is time-independent.
Instead of the canonically conjugate variables (p′, q′) it is customary to employ
rescaled action-angle variables

J ≡ 2πp′, w ≡ 1

2π
q′. (27)

Hamilton’s equations for (J, w) are:

ẇ =
∂H

∂J
= ν0, J̇ = −∂H

∂w
= 0. (28)

It follows that J = H/ν0 and w = ν0t + ε (appropriately redefining the arbi-
trary phase ε) for our one-dimensional oscillator.

The connection to the terminology action variable is easily seen in this exam-
ple. In this simple case, the action is defined as the area enclosed by a single
orbit of the periodic system in the two-dimensional phase space spanned by
the coordinates (p, q):

J =
∮

pdq. (29)

Inserting eqs. (23) and (24) into the integrand, we find

∮ (√
2mω0p′ cos q′

)
d

(√
2p′

mω0

sin q′
)

=

2π∫
0

2p′ cos2 q′dq′ = 2πp′, (30)

which is just the expression for J in eq. (27).

The result (23) represents, of course, the solution of the equation of motion
of the oscillator

q(t) = D cos 2πν0t = D cos 2πw, (31)

where we have chosen the phase shift ε to start the oscillator at maximum
displacement at t = 0, and where the amplitude is a function of the action
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variable

D =

√
J

mπω0

. (32)

We now turn to our basic model for dispersion, i.e., a charged one-dimensional
simple harmonic oscillator subjected to the periodically varying electric field
of an electromagnetic wave. Earlier, we used elementary techniques of classical
mechanics to analyze this system (see eqs. (2)–(6) in sec. 3.1). Although such
methods are physically transparent, they depend on an explicit treatment of
the equations of motion of a specific and completely specified Hamiltonian.
The same results can be obtained by the methods of canonical perturbation
theory, where general formulas can be obtained for the perturbation in the
coordinate(s) of the system completely independently of the specific nature of
the dynamics. As Van Vleck put it:

If we were to study the perturbations in the motion produced by the incident
wave purely with the aid of [Newton’s second law] it would be impossible to
make further progress without specializing the form of the potential function
[such as, e.g., 1

2
mω2

0q
2 in eq. (20)] . . . However, it is quite a different story

when we seek to compute the perturbations . . . in the “angle variables” w1,
w2, w3 and their conjugate momenta J1, J2, J3 . . . In fact by using them
rather than x, y, z, which is the essential feature of the present calculation,
the periodic properties of the system come to light even without knowing
the form of [the potential] (Van Vleck, 1924c, p. 350).

Using canonical perturbation theory in action-angle variables, we rederive eq.
(6) of sec. 3.1 for the polarization of a one-dimensional charged simple har-
monic oscillator. In sec. 6.2, we turn to the general case of an arbitrary non-
degenerate multiply-periodic system.

The Hamiltonian is now the sum of the Hamiltonian H0 given by eq. (20)
and a perturbative term Hint describing the interaction between the harmonic
oscillator and the electromagnetic wave: 179

H = H0 + Hint =
p2

2m
+

1

2
mω2

0x
2 + eEx cos ωt. (33)

The subscript ‘0’ in ν0 or ω0 refers to the characteristic frequency of the
unperturbed oscillator. Without subscript ν and ω refer to the frequency of
the external electric field.

179As before, we assume that the electric field is in the direction of motion of the
oscillator (cf. sec. 3.1). It follows from eq. (33) that the force F = −∂V/∂x of the
electric field on the charge is −eE cos ωt, in accordance with eq. (3) in sec. 3.1 (recall
that we use e to denote the absolute value of the electron charge).
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Absent a perturbing field (E = 0, H = H0), we can write x(t) in terms of the
action-angle variables J and w = ν0t:

x(t) =
∑

τ=±1

Aτ (J)e2πiτw, (34)

where Aτ has to satisfy the conjugacy relation Aτ = A∗
−τ to ensure that x(t) in

eq. (34) is real (x(t) = x∗(t)). Note that we have changed notation somewhat
compared to eq. (31). We returned to Cartesian coordinate notation (x instead
of q), and the amplitude has been redefined: 180

D = 2|Aτ |. (35)

The action-angle variables J = H0/ν0 and w = ν0t satisfy Hamilton’s equa-
tions (see eq. (28)):

0 = −J̇ =
∂H0

∂w
,

∂H0

∂J
= ẇ = ν0. (36)

It is a special feature of the simple harmonic oscillator that the frequency
ν0 is independent of the amplitude of motion (and thereby of the action).
The generating function for the contact transformation from (x, p) to (w, J)
is time-independent (cf. eq. (21)), so eq. (19) implies that the old and new
Hamiltonians coincide in value (i.e., one simply reexpresses the original Hamil-
tonian in the new variables). Even with the perturbation turned on we shall
continue to use the same contact transformation, computing the perturbations
(∆w, ∆J) induced by the applied field in the action-angle variables (w, J) as
an expansion in E. These are not action-angle variables for the full Hamilto-
nian H0 +Hint, only for the unperturbed Hamiltonian H0 (cf. Van Vleck 1926,
pp. 200–201).

Eventually, we are interested in the displacement ∆x in the particle coordinate
(to first order in E) induced by the applied field. To first order, ∆x is given
by

∆x =
∂x

∂J
∆J +

∂x

∂w
∆w. (37)

Using eq. (34) to evaluate ∂x/∂J and ∂x/∂w, we can rewrite this as:

180Inserting Aτ = |Aτ |eiϕ into eq. (34), we find x(t) = (|Aτ |+ |A−τ |) cos (2πw + ϕ).
Since Aτ = A∗

−τ , |Aτ |2 = AτA
∗
τ is equal to |A−τ |2 = A−τA

∗
−τ . The phase angle ϕ is

immaterial.
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∆x =
∑

τ=±1

(
∂Aτ

∂J
∆J + 2πiτAτ∆w

)
e2πiτw. (38)

Assuming the external field to be switched on at time zero, the first-order
shifts ∆w and ∆J are given by:

∆J =

t∫
0

∆J̇dt, ∆w =

t∫
0

∆ẇdt, (39)

where the integrands ∆J̇ and ∆ẇ are determined by Hamilton’s equations.

The perturbation in eq. (33) will induce a time-dependence in the action vari-
able, as Hamilton’s equation for the action variable in the presence of the
perturbing field now reads

J̇ = −∂H0

∂w
− eE

∂x

∂w
cos 2πνt = −eE

∂x

∂w
cos 2πνt. (40)

Note that we still have ∂H0/∂w = 0, so ∆J̇ = J̇ . At this point it is convenient
to replace cos 2πνt by 1

2
(e2πiνt + e−2πiνt). Inserting eq. (34) into eq. (40), we

find

∆J̇ = −πieE
∑

τ=±1

τAτ

(
e2πi(τw+νt) + e2πi(τw−νt)

)
. (41)

To obtain the polarization, which is a linear effect in the applied field E, we
only need ∆J and ∆w to first order in E. This means that the angle variables
w in the exponents in eq. (41) can be taken to zeroth order, i.e., w = ν0t.
Integrating ∆J̇ we find:

∆J =

t∫
0

∆J̇dt =
eE

2

∑
τ=±1

τAτ

{
1− e2πi(τν0t+νt)

τν0 + ν
+

1− e2πi(τν0t−νt)

τν0 − ν

}
. (42)

Next, we need to compute the first order shift ∆w in the angle variable w.
Hamilton’s equation for the angle variable w in the presence of the perturba-
tion is: 181

181 It is a special feature of the simple harmonic oscillator that the characteristic
frequency ν0 is independent of the amplitude and thus of the action variable J (see
eq. (32)). In general, ν0 will be a function of J . The first term on the right-hand
side of eq. (43) would then become ∂H0/∂J = ν0(J) = ν0 + (∂ν0/∂J)∆J .
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ẇ =
∂H0

∂J
+ eE

∂x

∂J
cos 2πνt

= ν0 +
eE

2

∑
τ=±1

∂Aτ

∂J

(
e2πi(τw+νt) + e2πi(τw−νt)

)
. (43)

Once again, w may be replaced by ν0t in the exponentials in eq. (43). Inte-
grating the second term in eq. (43), which gives the shift ∆ẇ due to Hint, we
find:

∆w =

t∫
0

∆ẇdt =
ieE

4π

∑
τ=±1

∂Aτ

∂J

{
1− e2πi(τν0t+νt)

τν0 + ν
+

1− e2πi(τν0t−νt)

τν0 − ν

}
.(44)

Substituting expressions (42) and (44) for ∆J and ∆w into eq. (38), we find

∆x =
eE

2

∑
τ ′=±1

∑
τ=±1

{
∂Aτ ′

∂J
τAτ − τ ′Aτ ′

∂Aτ

∂J

}
1− e2πi(τν0t−νt)

τν0 − ν
e2πiτ ′ν0t (45)

+ (ν → −ν),

where “(ν → −ν)” here and below is shorthand for: “the same term with
ν replaced by −ν everywhere.” The coherent contribution to the polarization
comes from the terms in eq. (45) with the same time-dependence as the applied
field, i.e., from terms in which the time-dependence is given by the factor
e±2πiνt. In the terminology of Van Vleck (1924c): “the part of the displacement
which is resonant to the impressed wave” (p. 361). These are the terms in which
the summation indices, which in the case of the simple harmonic oscillator only
take on the values ±1, have opposite values, i.e., τ = −τ ′. The contribution
of such terms to the first-order displacement is

∆xcoh =
eE

2

∑
τ=±1

{(
∂A−τ

∂J
τAτ + τA−τ

∂Aτ

∂J

)
−e−2πiνt

τν0 − ν
+ (ν → −ν)

}

=
eE

2

∑
τ=±1

τ
∂|Aτ |2

∂J

{
e−2πiνt

ν − τν0

− e2πiνt

ν + τν0

}
. (46)

The imaginary part of this expression is a sum over the product of odd and
even functions of the index τ ,

−eE

2

∑
τ=±1

τ
∂|Aτ |2

∂J

(
1

ν − τν0

+
1

ν + τν0

)
sin 2πνt, (47)

and therefore vanishes, leaving only the real part:
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∆xcoh =
eE

2

∑
τ

τ
∂|Aτ |2

∂J

(
1

ν − τν0

− 1

ν + τν0

)
cos 2πνt

=
eE

2

∑
τ

τ
∂|Aτ |2

∂J

(
2τν0

ν2 − τ 2ν2
0

)
cos 2πνt. (48)

Since |Aτ |2 = |A−τ |2 (see note 180) and since τ only takes on the values ±1
in the case of the simple harmonic oscillator, τ 2 = 1 and the two terms in the
summation over τ are identical. Although in this special case the derivative
with respect to J only acts on |Aτ |2, we are free to include the expression
2ν0/(ν

2−ν2
0) within the scope of the derivative (recall that ν0 does not depend

on J in this case). Eq. (48) then becomes

∆xcoh = 2eE
∂

∂J

(
ν0

ν2 − ν2
0

|Aτ |2
)

cos 2πνt. (49)

The resulting expression for the dipole moment, p(t) = −e∆xcoh, of a one-
dimensional charged simple harmonic oscillator is a special case of the expres-
sions for the dipole moment of a general non-degenerate multiply-periodic sys-
tem with the same charge given by Kramers and Van Vleck. Kramers (1924b,
p. 310, eq. 2∗) denotes this quantity by P and gives the following formula:

P =
E

2

∑ ∂

∂I

(
C2ω

ω2 − ν2

)
cos 2πνt. (50)

In the special case of a one-dimensional charged simple harmonic oscillator, ω,
I, and C correspond to ν0, J , and 2|Aτ | in our notation, respectively. There
appears to be a factor e2 missing in Kramers’ formula. We shall derive the
corresponding formula (41) in (Van Vleck, 1924c, p. 361) in sec. 6.2.

Eq. (49) is equivalent to eq. (6), the result of our much simpler derivation in
sec. 3.1. Recalling that (cf. eqs. (31)–(32), eqs. (34)–(35) and note 180)

x(t) = 2|Aτ | cos 2πν0t =

√
J

2π2mν0

cos 2πν0t, (51)

we have |Aτ |2 = J/(8π2mν0), and eq. (49) reduces to

∆xcoh =
eE cos 2πνt

4π2m(ν2 − ν2
0)

. (52)

The dipole moment is thus given by:

p(t) = −e∆xcoh =
e2E

4π2m(ν2
0 − ν2)

cos 2πνt, (53)
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in agreement with eq. (6) in sec. 3.1.

The preceding discussion employs a version of canonical perturbation theory in
which a single set of action-angle variables, chosen for the unperturbed Hamil-
tonian, is used throughout the calculation, even after the time-dependent per-
turbation is switched on. Accordingly, the new action variables are no longer
constant, and the new angle variables are no longer linear in time. The same
classical polarization result is derived in a somewhat different manner by Born
(1924) and by Kramers and Heisenberg (1925). Born performs a contact trans-
formation in which the generating function F (cf. eq. (18)) is chosen as a
function of (qi, p

′
i), the old coordinates and the new momenta, which is then

evaluated systematically order by order in the perturbation to maintain the
constancy of the new action variables. In (Kramers and Heisenberg, 1925) the
same procedure is followed, but as only the first order result is needed, it
suffices to use the infinitesimal form of the contact transformation. 182

5.2 Converting the classical formula for dispersion to a quantum formula in
the special case of a simple harmonic oscillator

Using Bohr’s correspondence principle as our guide, we now ‘translate’ the
classical formula (49) for displacement (and thence for polarization) into a
quantum formula. Two main ingredients go into this particular application
of the correspondence principle: (1) a rule—commonly attributed to Born
(1924) 183 but found independently by both Kramers and Van Vleck (see
below)—for replacing derivatives with respect to the action variables in clas-
sical formulae by difference quotients involving neighboring quantum states;
(2) the A and B coefficients of Einstein’s quantum theory of radiation. In gen-
eral, the ‘translation’ of a classical formula into a quantum formula involves a
third step. The orbital frequencies need to be replaced by transition frequen-
cies. The case of a simple harmonic oscillator has the special features that the
only relevant transitions are between adjacent states and that the transition
frequency νi→f coincides with the mechanical frequency ν0. Another special
feature is that the correspondence between quantum and classical results for
large quantum numbers continues to hold all the way down to the lowest quan-
tum numbers, due to the extremely simple form of the energy spectrum, with
uniformly spaced levels.

Using the rule for replacing derivatives by difference quotients, the quantum
formula for polarization is obtained from (49) by the formal correspondence

182For a discussion of infinitesimal canonical transformations, see Ch. 11 of (Matzner
and Shepley, 1991).
183See, e.g., (Jammer, 1966, p. 193), (MacKinnon, 1977, p. 148), (Cassidy, 1991, pp.
178, 186, 188), or (Aitchison et al., 2004, p. 1372).
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replacement

∂F (w, J)

∂J

∣∣∣∣∣
J=rh

→ 1

h
(F (r + 1)− F (r)), (54)

where F can be any dynamical quantity of the system. Classically, it is a
function F (w, J) on phase space. F (r) denotes its value, F (w, J = rh), in the
quantum state specified by the integer quantum number r. In the correspon-
dence limit where r gets very large, the difference between the values rh and
(r+1)h for the action variable J becomes so small that the difference quotient
to the right of the arrow in eq. (54) approaches the derivative on the left. With
this prescription, the classical formula eq. (49) turns into a quantum expres-
sion for the coherent part of the displacement of the particle in quantum state
r:

∆xr
coh =

2eE

h

(
ν0|Ar+1|2

ν2 − ν2
0

− ν0|Ar|2

ν2 − ν2
0

)
cos 2πνt. (55)

The amplitudes Ar correspond to the Aτ (with τ = ±1) in eq. (49), and are
related to the amplitudes Dr in eq. (32) for an oscillator in state r by Dr =
2|Ar| (see eq. (51)). As we saw in sec. 3.3, Ladenburg (1921) showed how these
amplitudes can be connected to the Einstein A coefficients for spontaneous
emission (not to be confused with the amplitudes Ar).

At this point we briefly review Einstein’s quantum theory of radiation (Ein-
stein, 1916a,b, 1917), using the notation of (Van Vleck, 1924b). Imagine an
ensemble of atoms—or indeed, any conceivable quantized mechanical system,
such as one-dimensional quantized oscillators—in interaction and statistical
equilibrium with an ambient electromagnetic field of spectral density ρ(ν). If
we label the stationary states of the atoms by indices r, s, . . ., the number of
atoms in state r (of energy Er) by Nr, and recall the Bohr frequency condition
νrs = (Er−Es)/h, Einstein’s analysis gives the average rate of energy emission
of light of frequency νrs for an atom in state r as

dEr→s

dt
= hνrs (Ar→s + Br→sρ(νrs)) , (56)

and the average rate of energy absorption of light of frequency νrs by an atom
in state s as

dEs→r

dt
= hνrsBs→rρ(νrs), (57)

where Ar→s, Br→s, and Bs→r are the transition probabilities for spontaneous
emission, stimulated emission, and absorption, respectively. Einstein’s analy-

13



sis of the requirements for thermodynamic equilibrium and comparison with
Planck’s law of black-body radiation then yields the critical relations

Br→s = Bs→r =
c3

8πhν3
rs

Ar→s. (58)

For a charged simple harmonic oscillator, the only allowed transitions amount
to changes in the action by one unit of Planck’s constant h, so there is only
a single Einstein coefficient for spontaneous emission from the state r + 1,
namely Ar+1→r. The correspondence principle dictates that we associate the
rate of spontaneous energy emission for high quantum numbers,

dEr+1→r

dt
= hν0Ar+1→r (59)

(cf. eq. (56), in the absence of external radiation) with the classical result for
the power emitted by an accelerated (in this case, oscillating) charge, given
by the Larmor formula (Jackson, 1975; Feynman et al., 1964, Vol. 1, Ch. 32):

P =
2

3

e2

c3
v̇2. (60)

For an oscillator in state r, with x(t) = Dr cos ω0t, this becomes, for the
instantaneous power emission Pr in state r

Pr =
2

3

e2

c3
ω4

0D
2
r cos2 ω0t, (61)

the time average of which, 1
3
(e2/c3)ω4

0D
2
r , then gives the desired connection

between the amplitudes Dr = 2|Ar| appearing in eq. (55) and the Einstein
coefficient Ar+1→r in the correspondence limit:

hν0Ar+1→r =
4

3

e2

c3
ω4

0|Ar+1|2

|Ar+1|2 =
3hc3

64π4e2ν3
0

Ar+1→r. (62)

Van Vleck (1924b) refers to this connection as the “correspondence principle
for emission” (p. 333). Substituting the expression for |Ar+1|2 in eq. (62) into
eq. (55) for ∆xr

coh and multiplying by the charge −e to obtain the dipole
moment per oscillator and by the number density of oscillators nosc, we arrive
at the following result for the polarization induced by the electric field E:

Pr = 3
noscc

3

32π4
E

(
Ar+1→r

ν2
0(ν

2
0 − ν2)

− Ar→r−1

ν2
0(ν

2
0 − ν2)

)
cos 2πνt. (63)
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Of course, for the special case of the ground state of the oscillator, r = 0,
the second term in eq. (63) cannot be present. Ladenburg’s quantum formula
for dispersion accordingly only had the equivalent of the first term in eq. (63)
(see eq. (8) in sec. 3.3). The full equation corresponds to eq. (5) in (Kramers,
1924a), and to eq. (17) in (Van Vleck, 1924b), except for a factor of 3, as we
have not assumed random orientation of the oscillators (Van Vleck, 1924b,
footnote 25).

One may easily guess that the corresponding formula for a more general,
multiply-periodic system will take the form of (Van Vleck, 1924b, eq (17)), in
analogy to (63):

Pr = 3
noscc

3

32π4
E

(∑
s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)
cos 2πνt, (64)

where the sum over s (resp. t) corresponds to states higher (resp. lower) than
the state r, and where νij is Van Vleck’s notation for the transition frequency
νi→j. In the correspondence limit where r is very large and neither s nor t
differ much from r, the transition frequencies νsr and νrt become equal to the
orbital frequencies in the orbits characterized by the values rh, sh, and th
for the action variable J . For the harmonic oscillator, the sums in eq. (64)
degenerate to a single term each (with s = r+1, t = r−1), and the transition
frequencies νsr, νrt are all equal to the mechanical frequency ν0. In sec. 6.2 we
shall present Van Vleck’s derivation of eq. (64) in detail.

As we indicated above, there is some disagreement in the historical literature
as to who was (or were) responsible for the key move in the construction of
the quantum dispersion formula on the basis of the correspondence principle,
viz. the replacement (54) of derivatives with respect to the action variable
by difference quotients. Jammer (1966, p. 193) and Mehra and Rechenberg
(1982–2001, Vol. 2, p. 173) suggest that Kramers got the idea from Born via
Heisenberg. Dresden (1987, p. 222) makes it clear that Kramers found the rule
before Born, but allows for the possibility that Born found it independently, as
Kramers did not state the rule in his first Nature note (Kramers, 1924a), the
only presentation of the Kramers dispersion formula that Born had seen when
he wrote (Born, 1924). Van Vleck certainly discovered the replacement (54)
of derivatives by difference quotients for himself. Since Van Vleck (1924a)
announced the correspondence principle for absorption, which he could not
have derived without this rule, in a paper submitted in April 1924, whereas
(Born, 1924) was not received by Zeitschrift für Physik until June 1924, Van
Vleck clearly could not have taken the rule from Born’s paper. That Kramers,
Van Vleck, and probably Born independently hit upon the same idea, under-
scores that the rule (54) for replacing derivatives by difference quotients is so
natural that it readily comes to mind when one is trying to connect quantum-
theoretical expressions to classical ones on the basis of the correspondence
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principle.

Writing to Born in 1924, Van Vleck sounds slightly annoyed at Born’s insinua-
tion that he, Van Vleck, did not realize that one needs to replace derivatives by
difference quotients to get from classical to quantum-theoretical expressions.
In the letter from which we already quoted in sec. 2.4, Born had written:

I am sending you my paper On Quantum Mechanics [Born, 1924], which
pursues a goal similar to yours. While you limit yourself to the correspon-
dence with high quantum numbers, I conversely aim for rigorous laws for
arbitrary quantum numbers. 184

To which Van Vleck replied:

I have read with great interest your important, comprehensive article. There
is, as you say, considerable similarity in the subject matter in your article
and mine, especially as regards to dispersion 185 . . . As noted in your letter
you mention more explicitly than do I the fact that formulas of the quantum
theory result from those of the classical theory by replacing a derivative by
a difference quotient. I have stressed the asymptotic connection of the two
theories but I think it is clear in the content of my article that in the
problems considered the classical and quantum formulas are connected as
are derivatives and difference quotients. 186

As we already mentioned in sec. 1.2 (see note 17) and sec. 3.4 (note 101),
Van Vleck used the correspondence principle—in particular, the replacement
of derivatives by difference quotients—to check that quantum formulae merge
with classical formulae in the limit of high quantum numbers, whereas Born
wanted to use the principle to construct quantum formulae out of their classi-
cal counterparts. We sympathize with Van Vleck’s point in response to Born
that the difference between the two approaches should not be exaggerated.
Although Van Vleck could take the quantum formulae for emission and dis-
persion from (Ladenburg and Reiche, 1923) and (Kramers, 1924a), respec-
tively, he had to construct his own quantum formula for absorption on the
basis of Einstein’s quantum theory of radiation. The formula for absorption
was undoubtedly easier to guess than the one for dispersion, which took the
combined efforts of Ladenburg and Kramers (see secs. 3.3–3.4), but, given that
Ladenburg and Reiche (1923) got it wrong, it was not completely trivial either

184Born to Van Vleck, October 24, 1924 (AHQP).
185Van Vleck seems to be talking here about (Van Vleck, 1924b,c), whereas Born
was talking about (Van Vleck, 1924a). Born asked Van Vleck to send him “an
offprint of your extensive calculations.” Van Vleck obliged: “As you requested, I am
sending you under separate cover a reprint of Parts I and II of my computations,”
presumably (Van Vleck, 1924b,c).
186Van Vleck to Born, November 30, 1924 (AHQP).
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(see sec. 5.3). Moreover, Van Vleck’s crucial insight that what matters is the
differential absorption was guided by the analogy between the quantum and
the classical case. In fact, as Van Vleck (1924a, p. 30) himself pointed out
(in a passage we quoted in sec. 3.4), his insight that one needs to take into
account the effects of “negative absorption” (stimulated emission) to arrive
at a quantum absorption formula that merges with the classical absorption
formula in the correspondence limit, is precisely analogous to the insight that
one needs to add a term describing such effects to the Ladenburg dispersion
formula to arrive at a quantum dispersion formula, the Kramers formula, that
merges with the classical dispersion formula in the correspondence limit. As
we also saw in sec. 3.4, Van Vleck formulated his correspondence principle of
absorption before Kramers (1924a) published his dispersion formula. In short,
Van Vleck knew perfectly well how to construct quantum formulae on the
basis of correspondence considerations when he had to. And while it is true
that Born put more emphasis on the constructive use of the correspondence
principle, this did not lead Born to additional results of any consequence for
subsequent developments. It was left to Heisenberg to show how one could use
the correspondence principle as a guide not just to a few new formulae but
to a whole new theory. In the aftermath of Heisenberg’s breakthrough, the
Göttingen-Copenhagen attitude seems to have been that the correspondence
principle had been the ladder that had allowed physicists to get from the
old quantum theory to the new matrix mechanics, a ladder that in the safe
possession of the new theory could be discarded. Interestingly, Van Vleck’s
attitude toward the correspondence principle did not change. In early 1928 he
published a paper the aim of which is described as follows in the introduction:

In studying the very significant statistical interpretation [of quantum me-
chanics], the writer at first experienced considerable difficulty in understand-
ing how the quantum formulas for averages and probabilities merge into the
analogous classical expressions in the region of large quantum numbers and
also, of course, in the limit h = 0. In the present note we shall aim to trace
through the asymptotic connection between the formulas of the two theo-
ries, which does not seem to have been adequately elucidated in existing
papers (Van Vleck, 1928, p. 178). 187

Even post-Umdeutung, Van Vleck thus continued to think of the correspon-
dence principle in terms of checking rather than constructing quantum formu-
lae.

187We are grateful to John Stachel for drawing our attention to this paper, in which
Van Vleck introduced what has become known as the “Van Vleck determinant.”
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5.3 Emission and absorption classically and quantum-theoretically in the spe-
cial case of a simple harmonic oscillator

Before we present Van Vleck’s “correspondence principle for absorption” (for
the special case of a simple harmonic oscillator), we gather some useful re-
sults from the classical theory of a charged oscillator (of natural frequency
ν0) coupled to a Maxwellian electromagnetic field. Such an oscillator (i) emits
electromagnetic radiation of frequency ν0 in the absence of an external field,
(ii) absorbs energy from an applied electromagnetic field of frequency ν, and
(iii) undergoes a net displacement coherent with an applied electromagnetic
field (or “polarization”, analyzed above).

The Larmor formula (60) gives the power loss due to radiation by our charged
harmonic oscillator. The energy loss of the oscillating system can be ascribed
to a radiative reaction force given by

Frad =
2e2

3c3
v̈ ≡ mτDv̈, (65)

where we shall assume that the characteristic radiation damping time τD is
very short in comparison to the mechanical period: ω0τD << 1, so that radi-
ation damping is very slow on the time scale of the mechanical oscillations of
the system. The equation of motion of the oscillator (in the absence of external
applied forces) now becomes

v̇ − τDv̈ + ω2
0x = 0. (66)

To a good approximation, the coordinates and velocities of this system are still
behaving as harmonic oscillations of frequency ω0 so we may assume v̈ ' −ω2

0v
in (66) and obtain

ẍ + τDω2
0ẋ + ω2

0x = 0. (67)

Inserting the Ansatz x(t) = De−αt into equation (67), we find:

(α2 − τDω2
0α + ω2

0)De−αt = 0. (68)

Neglecting a term with τ 2
Dω4

0 (recall that ω0τD << 1, so that τ 2
Dω4

0 << ω2
0),

188

188Such terms are treated incorrectly in any event by the approximation leading to
eq. (67).
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we can rewrite the expression in parentheses as:

(α− 1

2
τDω2

0 + iω0)(α− 1

2
τDω2

0 − iω0). (69)

It follows that:

α ' 1

2
τDω2

0 ± iω0 ≡ Γ/2± iω0. (70)

Thus, we have a solution of the form

x(t) = De−Γt/2 cos ω0t, (71)

from which the average rate of oscillator energy loss from the Larmor formula
(60) at small times (i.e., when damping due to the e−Γt/2 factor can be ignored)
is easily seen to be

−dEosc

dt
=

e2

3c3
D2ω4

0 =
16π4e2

3c3
D2ν4

0 (72)

(where we used that v̇ ' ω2
0D). The constant Γ = τDω2

0 is called the radiative
decay constant. We emphasize again that the preceding discussion presupposes
the narrow resonance limit, Γ << ω0. In terms of Γ, the basic equation of
motion (67) can be written as

ẍ + Γẋ + ω2
0x = 0. (73)

Now suppose that our charged oscillator is immersed in an ambient electro-
magnetic field, characterized by a spectral function (energy density per unit
spectral interval) ρ(ν). As we are dealing with one-dimensional oscillators we
shall simplify the discussion by assuming that only the x-component of the
electric field is relevant as all the oscillators are so aligned. Then (using over-
bars to denote time averages) the average value of the electromagnetic energy

density is (in Gaussian units) (1/4π)Ē
2

= (3/4π)Ēx
2

= ρ(ν)∆ν in the fre-

quency interval (ν, ν + ∆ν). If Ex = E cos 2πνt we have Ēx
2

= E2/2 so finally
we have

E2 =
8π

3
ρ(ν)∆ν. (74)

The equation of motion (73) must be modified to include the coupling to the
external field (switching back temporarily to angular frequencies, ω = 2πν,
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and using complex notation to encode amplitude and phase information):

ẍ + Γẋ + ω2
0x =

eE

m
eiωt ≡ Fapp/m, (75)

and the average rate of energy absorption of the oscillator from the ambient
field is simply the time average 〈Fappẋ〉. This linear second order equation is
solved by a sum of transients (i.e. solutions of the homogeneous equation: see
eq. (73))

xtr(t) = De−Γt/2 cos ω0t, (76)

plus the following particular solution coherent with the applied perturbation

xcoh(t) = Re
eE

m

eiωt

ω2
0 − ω2 + iΓω

, (77)

so that the desired time average 〈Fappẋ〉 = 〈Fapp(ẋtr + ẋcoh)〉 giving the energy
absorption rate becomes

〈Fappẋ〉 = 〈eE cos ωt
eE

m
Re

(
iωeiωt

ω2
0 − ω2 + iΓω

)
〉. (78)

Note that the transient part of the particle coordinate xtr(t) is not coherent
with the applied field (we assume ω 6= ω0), and therefore does not contribute to
the time average of the energy absorption. This explains why the amplitude D
of the oscillations is absent from the final result, which will instead depend only
on the specific energy density of the ambient field. In other words, even though
the charged particle may be executing very large amplitude oscillations xtr(t),
the only part of the full coordinate x(t) responsible for a nonvanishing average
absorption is the part of the displacement xcoh(t) induced by the applied field,
which is proportional to E and does not involve the amplitude D. As we
shall see below, the corresponding feature of the quantum calculation in the
correspondence limit led Van Vleck to the very important realization that the
net energy absorption involves a difference in the amount of absorption and
stimulated emission as described in Einstein’s quantum theory of radiation.

Only the cosine part of the complex exponential in eq. (78) will contribute to
the time average. Using 〈cos2 ωt〉 = 1/2 and eq. (74), we find

〈Fappẋ〉=
e2E2Γ

2m

ω2

(ω2
0 − ω2)2 + Γ2ω2

=
4πe2

3m
ρ
(

ω

2π

)
Γ

ω2

(ω2
0 − ω2)2 + Γ2ω2

1

2π
∆ω (79)

20



for the energy absorption rate due to the ambient field in the frequency in-
terval (ν, ν + ∆ν) = (ω, ω + ∆ω). Since eq. (79) contains the electric field
E squared, it is apparent that the generalization of this linear simple har-
monic oscillator result to an arbitrary multiply-periodic system will require a
second-order canonical perturbation theory calculation, which will necessar-
ily be more involved than the corresponding classical polarization calculation,
which only involves the electric field to the first order. In the case of interest,
where Γ << ω0, the line resonance shape in eq. (79) is highly peaked around
the resonance frequency ω0, so we may use the distributional limit

ε

x2 + ε2
→ πδ(x), ε → 0 (80)

with x = ω2 − ω2
0 and ε = Γω to execute the integration over ω in eq. (79)

and compute the total absorption rate:

〈Fappẋ〉≈
2e2

3m

∫
ρ
(

ω

2π

)
Γ

π

Γω
ω2δ(ω2 − ω2

0)dω

=
πe2

3m
ρ(ν0). (81)

This classical result is found in (Planck, 1921) (Van Vleck, 1924b, p. 339, note
12)) 189 and gives the rate at which a classical charged oscillator gains energy
when immersed in an ambient classical electromagnetic field.

In eq. (62) we found the connection in the limit of high quantum numbers
between the Einstein A coefficients and the amplitudes Dr = 2|Ar| of the
mechanical motion in the emitting state r:

Ar→s '
16π4e2

3hc3
D2

rν
3
rs. (82)

From the Einstein relation (58) this implies a corresponding result for the
B-coefficients:

Br→s = Bs→r =
2π3e2

3h2
D2

r . (83)

In the r-th quantized state of the oscillator, we have J = rh so from eq. (32)

189Van Vleck probably got the references to (Planck, 1921) from (Ladenburg and
Reiche, 1923). Both (Van Vleck, 1924b, p. 339, note 12; p. 340, note 14) and (Laden-
burg and Reiche, 1923, p. 588, note 19; p. 591, note 30) cite “equations (260) and
(159)” and “section 158” in (Planck, 1921).
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the corresponding amplitude Dqu
r of the quantized motion becomes

Dqu
r =

√
rh

2π2mν0

, (84)

and the quantum result for the A coefficients in the present case of a linear
simple harmonic oscillator becomes

Ar→r−1 =
8π2e2ν2

0r

3mc3
, (85)

while the quantum result for the B coeffficients takes the form

Br→r−1 = Br−1→r =
πe2r

3hmν0

. (86)

The Einstein analysis of A and B coefficients makes it clear that at the quan-
tum level we must consider what Van Vleck (1924b, p. 340) calls the “differ-
ential absorption rate”: the rate of energy absorption of the oscillator in state
r going to state r + 1 via (57) minus the stimulated emission induced by the
ambient field and causing the transition r to r− 1 (the B term in (56)). From
eq. (86) we therefore have for the differential absorption rate of an oscillator
in state r

dEnet

dt
= hν0(Br→r+1 −Br→r−1)ρ(ν0)

= hν0(Br+1→r −Br→r−1)ρ(ν0)

= hν0(r + 1− r)
πe2

3hmν0

ρ(ν0)

=
πe2

3m
ρ(ν0), (87)

which is precisely the classical result (81). Note that the dependence on the
quantum state r (or classically, the amplitude of the motion Dr) has cancelled
in the differential absorption rate, corresponding to the lack of coherence dis-
cussed previously between the transient and impressed motion.

Van Vleck derived this result in sec. 4 of his paper. He concluded:

We thus see that in the limiting case of large quantum numbers, where [eq.
(86)] is valid, the classical value [in eq. (81)] for the rate of absorption of
energy is nothing but the differential rate of absorption in the quantum
theory. This connection of the classical and quantum differential absorption
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we shall term the correspondence principle of absorption (Van Vleck, 1924b,
p. 340). 190

In sec. 5, he generalized the result to arbitrary non-degenerate multiply-
periodic systems.

Van Vleck’s correspondence principle for ‘differential absorption’ (i.e., the ex-
cess of absorption over stimulated emission) also clarifies the correspondence
principle for dispersion. As Kramers (1924a,b) emphasized, the negative terms
in the dispersion formula were difficult to account for on the basis of purely
classical concepts—they somehow corresponded to a negative value for e2/m
for those virtual oscillators corresponding to transitions from the initial atomic
level to lower energy levels (see sec. 3.4). Similar negative contributions in
the case of absorption are physically much more transparent: transitions to
higher levels result in a positive absorption of energy from the ambient elec-
tromagnetic field, whereas transitions to lower levels result in energy being
returned to the field. The latter process was therefore known as “negative ab-
sorption” at the time, a term used by both Kramers (1924a, p. 676) and
Van Vleck (1924b, p. 338). Noticing the greater physical transparency of
his correspondence-principle results for absorption, and under the impression
that Kramers’ correspondence-principle arguments for the dispersion formula
rested only on a treatment of harmonic oscillators, Van Vleck added sections
on dispersion to his paper. Sec. 6, “The general correspondence principle basis
for Kramers dispersion formula,” was added to the first quantum-theoretical
part of the paper; sec. 15, “Computation of polarization,” to the classical part
(see the letter from Van Vleck to Kramers of September 1924, quoted in sec.
3.4).

When Kuhn in his AHQP interview with Van Vleck brought up the paper
on the correspondence principle for absorption, Van Vleck said: “I think that
was one of my better papers.” “How did you get into that?,” Kuhn wanted to
know. Van Vleck told him:

Through a misunderstanding of something Gregory Breit [Van Vleck’s col-
league in Minnesota at the time] told me. He said that the net absorption
was the difference between the fluctuations up and the fluctuations down,
referred to some paper of—I think it was (Kretschmann)—but that was an
entirely different thing. It was concerned with the fact that under certain
phase relations the light did work on the atom and under certain phase
relations the atom did work on the light. It was dealing essentially with sta-
tistical fluctuations. I misunderstood his remark and proceeded to try and

190Van Vleck points out that this “is a purely mathematical consequence of the
correspondence principle for emission, which was used in deriving [eq. (86)]” (ibid.).
A few pages later, Van Vleck (1924b, p. 343) notes that he could also have done the
reverse, deriving the correspondence principle for emission from that for absorption.
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get the differential effect between the absorption up from a given stationary
state and a[b]sorption going down. 191

The paper Breit was referring to is presumably (Kretschmann, 1921). In this
paper, Erich Kretschmann (1887–1973), a student of Planck better known for
his work in general relativity (Kretschmann, 1917), gave a purely classical
discussion of the emission and absorption of radiation. What Van Vleck says
here about this paper fits with its contents.

Van Vleck’s comments, however, are also reminiscent of the following passage
in (Ladenburg and Reiche, 1923):

. . . according to Einstein’s assumptions the effect of external radiation on
a quantum atom corresponds to the effect a classical oscillator experiences
from an incident wave. When the frequency of such a wave does not differ
much or not at all from the characteristic frequency of the oscillator, the
reaction of the oscillator consists in an increase or a decrease of its energy,
depending on the difference in phase between the external wave and the
motion of the oscillator. In analogy to this, Einstein assumes that the atom
in state i has a probability characterized by the factor bik to make a tran-
sition to a higher state k under absorption of the energy hν of the incident
wave (“positive irradiation”) and that the atom in state k has another prob-
ability (bki) to return to the state i under the influence of an external wave
(“negative irradiation”) (Ladenburg and Reiche, 1923, p. 586)

As we mentioned in sec. 3.3, Ladenburg and Reiche appealed to the corre-
spondence principle to justify their quantum formulae for emission, absorp-
tion, and dispersion. Except in the case of emission, however, their arguments
were fallacious. We conjecture that this is what inspired Van Vleck to use his
expertise in techniques from celestial mechanics to find the correct expressions
for emission and absorption merging with classical results in the sense of the
correspondence principle. 192 Van Vleck (1924b, p. 339, note 13; p. 344, note
21) cited Ladenburg and Reiche but gave no indication that their paper was
an important source of inspiration for his own. It is not implausible, however,
that Van Vleck simply preferred to pass over their badly flawed calculations

191P. 22 of the transcript of the first session of the AHQP interview with Van Vleck.
Van Vleck told this story in somewhat greater detail to Katherine Sopka. He also
explained to her why he acknowledged Breit in (Van Vleck, 1924a, p. 28) but not in
(Van Vleck, 1924b,c): “As he [Van Vleck] remembers it, he wanted to thank Breit
in the latter, but Breit objected on the ground that the phase fluctuations he had
in mind were quite different from the difference effect employed by Van Vleck and
so, overmodestly, felt no acknowledgment was in order” (Sopka, 1988, p. 135, note
184; this note makes no mention of Kretschmann).
192As we saw in sec. 3.4, Van Vleck’s calculations for dispersion were inspired by
(Kramers, 1924a).
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in silence rather than touting his own clearly superior results. As we men-
tioned in sec. 3.3, one of the problems with the “correspondence” arguments
of Ladenburg and Reiche is that, following (Planck, 1921) and in the spirit of
the derivation of the A and B coefficients in (Einstein, 1917), they focus on
collections of atoms in thermal equilibrium rather than on individual atoms.
What is suggestive of a possible influence of (Ladenburg and Reiche, 1923)
on (Van Vleck, 1924b,c) is that the exact same passages of (Planck, 1921)
are cited in both papers (see note 189 above) and that Van Vleck (1924b)
explicitly comments on the issue of many atoms in thermal equilibrium versus
single atoms, noting that in Planck’s discussion “no explicit mention is made
of the asymptotic connection of the classical absorption and the differential
absorption for a single orbit (where thermodynamic equilibrium need not be
assumed) which is the primary concern of the present paper” (p. 340, note
14). The topic of the third installment that Van Vleck originally planned to
add to his two-part paper also becomes understandable in light of our conjec-
ture about the connection between (Van Vleck, 1924b,c) and (Ladenburg and
Reiche, 1923). As Van Vleck explained in 1977 (see sec. 2.4): “Part III was
to be concerned with the equilibrium between absorption and emission under
the Rayleigh-Jeans law” (Van Vleck and Huber, 1977, p. 939). If Ladenburg
and Reiche did indeed stimulate Van Vleck’s work, however, it is somewhat
puzzling that he does not seem to have recognized that the virtual oscillators
of BKS, which, as we saw in secs. 3.4, 4.1, and 4.2, he consistently attributed
to Slater, were essentially just the substitute oscillators of (Ladenburg and
Reiche, 1923). We also saw, however, that Van Vleck was hardly alone in as-
sociating virtual oscillators with BKS. We thus conclude that it is plausible
that Van Vleck was inspired by (Ladenburg and Reiche, 1923) to formulate
correspondence principles for emission and absorption. For one thing, this
would explain why Van Vleck, who had not worked on radiation theory be-
fore, turned his attention to the interaction between matter and radiation.

6 Generalization to arbitrary non-degenerate multiply-periodic sys-
tems

6.1 The correspondence principle for absorption

The primary result of (Van Vleck, 1924b,c) was an extension of eq. (87) to an
arbitrary non-degenerate multiply-periodic system of a single particle in three
dimensions, and the demonstration that the quantum-differential absorption
coincides with this more general result in the correspondence limit. Before
giving Van Vleck’s result we recall some basic features of multiply-periodic
systems, which we shall in any event need in sec. 6.2, where we give a com-
pletely explicit derivation (following, with minor notational changes, the one
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laid out by Van Vleck) of the corresponding formula for polarization.

The transition from one-dimensional periodic (and harmonic) systems such as
the linear simple harmonic oscillator to three-dimensional multiply-periodic
ones is fairly straightforward. Apart from the obvious need to introduce vector
quantities, there are only two significant additional features. First, there is the
appearance of multiple overtones in the general multiply-periodic expansion
(so that the multiplicity variables in the analogue of eq. (34) take arbitrary
positive and negative integral values, not just ±1). Second, the mechanical
frequencies ν1, ν2, ν3 (with νi = ∂H0/∂Ji) of the separated coordinates are
now in general functions of the amplitude of the classical path, which is to
say, of the action variables Ji (with i = 1, 2, 3). We assume as before that the
imposed electric field is in the X-direction so the x-coordinate of our electron
is the relevant one for computing the induced coherent polarization, and in
analogy to eq. (34) we now have

x(t) =
∑
~τ

A~τe
2πi~τ ·~w, (88)

where in the absence of the external field the angle variables ~w = (w1, w2, w3) =
(ν1, ν2, ν3)t ≡ ~νt and ~τ = (τ1, τ2, τ3) with τi taking on all (positive and nega-
tive) integer values. It will be useful to write eq. (88) in an alternative purely
real form, as a cosine expansion:

x(t) =
∑

~τ,~τ ·~ν>0

X~τ cos (2π~τ · ~νt). (89)

The complex amplitudes A~τ satisfy the conjugacy condition A~τ = A∗
−~τ to

ensure that x(t) is real and we have the relation X2
~τ = 4A~τA−~τ .

193

As before (cf. eq. (33)), the full Hamiltonian has the form

H = H0 + eEx(t) cos 2πνt. (90)

The subscripted mechanical frequencies νi with i = 1, 2, 3 (comprising the
vector ~ν) must be distinguished from the single frequency ν (unsubscripted)
corresponding to the applied field.

With these notations, Van Vleck’s result for the absorption rate becomes (Van
Vleck, 1924b, p. 342, eq. (16)):

dEnet

dt
=

2

3
π3e2

[
ρ(~τ · ~ν)τk

∂Gτ

∂Jk

+ ρ′(~τ · ~ν)Gττk
∂

∂Jk

(~τ · ~ν)

]
. (91)

193Cf. eqs. (34)–(35) and note 180 in sec. 6.1.
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where ρ′ ≡ ∂ρ/∂ν and where summation over k = (1, 2, 3) is implied and where
Gτ ≡ ~τ · ~νD2

~τ with D2
~τ ≡ X2

~τ + Y 2
~τ + Z2

~τ . In the special case of the harmonic
oscillator, the term with ρ′, the derivative of the spectral function, vanishes
as there is only a single mechanical frequency ν = ν0, which is independent of
the action variable J . In the first term, we get simply

dEnet

dt
=

2

3
π3e2ρ(ν0)

∂

∂J
(ν0D

2). (92)

Using eq. (32), D =
√

J/mπω0, for the amplitude, we recover the previous

result, eq. (87).

Eq. (91) is the product of a highly nontrivial application of canonical pertur-
bation techniques, where quantities of second order in the applied field need
to be properly evaluated (cf. discussion following eq. (79) above). The po-
larization calculation presented in full in the sec. 6.2 only involves canonical
perturbation theory to first order. For the absorption calculation, the variation
in the action variables ∆Jk in particular is needed to second order, and the
integration of the result obtained for a monochromatic incident field needed
to pass to the case of continuous radiation specified by an arbitrary spectral
function ρ(ν) requires considerable care.

Slater also tried his hand at this calculation, as can be inferred from a letter
from Kramers to Van Vleck, from which we already quoted in sec. 3.4. Kramers
wrote:

Slater had, on my request, made the same calculation, and he stated that
the classical mean-absorption formula gave the right result in the limit of
high quantum numbers. I did, however, not see his formula, and am not
quite sure that he had not forgotten the term with ∂ρ/∂ν, without which
the thing is not complete of course. 194

Van Vleck clearly remembered this point almost forty years later. Talking to
Kuhn about his 1924 absorption papers, he mentioned: “I got the term in
partial rho with respect to nu. I’m very proud of the fact that I picked that
one up . . . Slater, at Kramers’ suggestion I guess, made a completely parallel
calculation in Copenhagen which he never published.” 195

194Kramers to Van Vleck, November 11, 1924 (AHQP).
195P. 22 of the transcript of the first session of the AHQP interview with Van Vleck.
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6.2 The correspondence principle for polarization

In this section we retrace the derivation given by Van Vleck (1924c) of the
classical polarization formula for a general non-degenerate multiply-periodic
system (with a single electron) in three dimensions. We remind the reader
that this result is by no means new to Van Vleck, nor, for that matter, to
Born or Kramers, who also produced derivations of the same result at around
this time, using slightly different versions of canonical perturbation theory
(cf. our comments at the end of sec. 6.1). The formula obtained is basically
identical to a formula originally derived in celestial mechanics to compute the
perturbation in the orbits of the inner planets due to the outer ones. As we
saw in sec. 3.2, Epstein had been the first to use the relevant techniques from
celestial mechanics in the context of the old quantum theory. As Van Vleck
reminded Slater: “The classical formula analysis to the Kramer[s] formula
appears to be first ca[lc]ulated by Epstein [1922c].” 196

The derivation is basically a straightforward generalization of the derivation
of sec. 5.1 for the special case of a charged simple harmonic oscillator in an
electromagnetic field (see eqs. (37)–(49)). The first-order perturbation in the
coordinate x(t) (the direction of the electric field in the incident electromag-
netic wave) corresponding to the shifts (∆Jl, ∆wl) in the action-angle variables
is given by the three-dimensional version of eq. (37):

∆x =
∑

l

(
∂x

∂Jl

∆Jl +
∂x

∂wl

∆wl

)
. (93)

As in sec. 5.1, we imagine that the external field is switched on at time zero,
so that the shifts (∆Jl, ∆wl) are the integrals of their time derivatives from 0
to t. In analogy with eq. (42) and using eq. (88) for x(t), we can immediately
write down the equation for ∆Jl to first order in E:

∆Jl =

t∫
0

J̇ldt =
eE

2

∑
~τ

τlA~τ

{
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν
+ (ν → −ν)

}
. (94)

All the terms inside the summation can be taken to zeroth order in the applied
field. The computation of the first-order shifts ∆wl is a little more involved as
new terms, not present in the harmonic-oscillator case, enter (cf. note 181).
The Hamilton equation for ẇl for the full Hamiltonian eq. (90) is (cf. eq. (43)):

ẇl = νl +
eE

2

∑
~τ

∂A~τ

∂Jl

{
e2πi(~τ ·~ν+ν)t + (ν → −ν)

}
. (95)

196Van Vleck to Slater, December 15, 1924 (AHQP).
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Both terms in eq. (95) contribute to the first-order deviation ∆ẇl from the
value of νl for the unperturbed system. Since νl depends on Jk, there will be
a term

∑
k(∂νl/∂Jk)∆Jk (cf. note 181). The second term is just the general-

ization of the corresponding term in eq. (43). Hence, we get:

∆ẇl =
∑
k

∂νl

∂Jk

∆Jk +
eE

2

∑
~τ

∂A~τ

∂Jl

{
e2πi(~τ ·~ν+ν)t + (ν → −ν)

}
. (96)

Upon substitution of eq. (94) for ∆Jk this turns into

∆ẇl =
eE

2

∑
~τ,k

{
∂A~τ

∂Jl

e2πi(~τ ·~ν+ν)t + τk
∂νl

∂Jk

A~τ
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν

}
(97)

+ (ν → −ν).

Integrating eq. (97), we find

∆wl =
eE

4π

∑
~τ,k

{
i
∂A~τ

∂Jl

1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν
(98)

+τk
∂νl

∂Jk

A~τ
2π(~τ · ~ν + ν)t− i(1− e2πi(~τ ·~ν+ν)t)

(~τ · ~ν + ν)2

}
+ (ν → −ν).

Inserting eq. (88) into eq. (93), we arrive at

∆x(t) =
∑
~τ ′,l

(
∂A~τ ′

∂Jl

∆Jl + 2πiA~τ ′τ ′l∆wl

)
e2πi~τ ′·~νt. (99)

Inserting eqs. (94) and (98) for ∆Jl and ∆wl, respectively, into this expression,
we obtain

∆x(t) =
eE

2

∑
~τ,~τ ′,k,l

{
τl

∂A~τ ′

∂Jl

A~τ
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν
− τ ′l

∂A~τ

∂Jl

A~τ ′
1− e2πi(~τ ·~ν+ν)t

~τ · ~ν + ν

+A~τA~τ ′τk
∂νl

∂Jk

τ ′l
2πi(~τ · ~ν + ν)t + 1− e2πi(~τ ·~ν+ν)t

(~τ · ~ν + ν)2

+ (ν → −ν)
}

e2πi~τ ′·~νt. (100)

As in sec. 5.1, we are only interested in the coherent contribution to the
polarization, so we drop all terms in eq. (100) whose time dependence is not

precisely e±2πiνt and find, writing for convenience
∑

k τk(∂/∂Jk) ≡ ~τ · ~∇J ,
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∆xcoh =
eE

2

∑
~τ

{
−~τ · ~∇J(A~τA−~τ )

e2πiνt

~τ · ~ν + ν
(101)

+ A~τA−~τ~τ · ~∇J(~τ · ~ν)
e2πiνt

(~τ · ~ν + ν)2

}
+ (ν → −ν).

Note that the coherent contribution derives from terms in which ~τ ′ = −~τ ,
as otherwise the uncancelled overtones from the mechanical system would
shift the spectral line (as in Raman scattering). Essentially the only addi-
tional physics of (Kramers and Heisenberg, 1925) in comparison to (Van Vleck,
1924b,c) is a detailed examination of such terms, predicted earlier by Smekal
(1923). The terms in eq. (101) involving sin 2πνt vanish, as can be seen with
the help of the identities

∑
~τ

τj

(
1

~τ · ~ν + ν
− 1

~τ · ~ν − ν

)
· (even function of ~τ) = 0

∑
~τ

τjτk

(
1

(~τ · ~ν + ν)2
− 1

(~τ · ~ν − ν)2

)
· (even function of ~τ) = 0.

Thus eq. (101) simplifies to

∆xcoh =−eE

2
cos 2πνt

∑
~τ

{
~τ · ~∇J(

A~τA−~τ

~τ · ~ν + ν
) + (ν → −ν)

}

=−eE cos 2πνt
∑
~τ

~τ · ~∇J

(
~τ · ~νA~τA−~τ

(~τ · ~ν)2 − ν2

)
. (102)

With the replacement X2
~τ = 4A~τA−~τ , we may go over to the cosine form of the

expansion in eq. (102) (cf. eqs. (88)–(89)), summing over only positive values
of ~τ · ~ν (with a factor of 2):

∆xcoh = −eE

2
cos 2πνt

∑
~τ,~τ ·~ν>0

~τ · ~∇J

(
~τ · ~νX2

~τ

(~τ · ~ν)2 − ν2

)
. (103)

This is the generalization of eq. (49) for the harmonic oscillator.

Finally, we obtain the polarization by multiplying the displacement by Nr, the
number of electrons per unit volume (the subscript r refers to the fact that
we shall shortly consider only electrons in a particular quantum state r), and
by −e for the electron charge

P = Nr
e2

2
E cos 2πνt

∑
~τ ·~ν>0

~τ · ~∇J

(
~τ · ~νX2

~τ

(~τ · ~ν)2 − ν2

)
(104)
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which is eq. (41) in (Van Vleck, 1924c; in Van Vleck’s notation, ~τ ·~ν is written
ωτ ) and equivalent to eq. 2∗ in (Kramers, 1924b) (see eq. (50) above).

The equivalence of eq. (104) to the Kramers dispersion formula (64) in the
correspondence limit is sketched in (Kramers, 1924b) and fully explained in
sec. 6 of (Van Vleck, 1924b). 197 Here we follow the latter. So we begin with eq.
(64) for the polarization of a quantized system in state r, without the factor
of 3 corresponding to the assumption that all oscillators be aligned with the
applied field (rather than randomly in 3 dimensional space), and writing Nr

instead of nosc:

Pr =
Nrc

3

32π4
E cos 2πνt

(∑
s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)
. (105)

The sums over s (resp. t) refer to states higher (resp. lower) in energy than
the fixed state r under consideration. In the correspondence limit, we take the
state r to correspond to very high quantum numbers (n1, n2, n3). The states
s, t are associated to the central state r in symmetrical pairs:

s→ (n1 + τ1, n2 + τ2, n3 + τ3),

r→ (n1, n2, n3), (106)

t→ (n1 − τ1, n2 − τ2, n3 − τ3),

with ~τ · ~ν > 0 so that the states s (resp. t) do indeed correspond to higher
(resp. lower) energy states. Furthermore, we assume that ~τ · ~ν << ~n · ~ν so
that the transitions s → r → t correspond to very slight changes in the
classical orbitals (and differences approximate well to derivatives). The Bohr-
Sommerfeld quantization condition (1) associates action values Ji = nih with
a given quantized state, so the formal correspondence principle becomes (cf.
eq. (54) in sec. 6.2):

δ~τF (~n) ≡ F (~n)− F (~n− ~τ) → h~τ · ~∇JF. (107)

In this notation, formula (105) the polarization can be written as

Pr =
Nrc

3

32π4
E cos 2πνt

∑
~τ

δ~τ

(
As→r

ν2
sr(ν

2
sr − ν2)

)
, (108)

with As→r given by Van Vleck’s “correspondence principle for emission” (see

197Cf. Van Vleck to Kramers, September 22, 1924 (AHQP), quoted in sec. 3.4.
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eq. (82) and eq. (62))

As→r =
16π4e2

3hc3
D2

sν
3
sr, (109)

where D2
s = (X

(s)
~τ )2 + (Y

(s)
~τ )2 + (Z

(s)
~τ )2 is the full vector amplitude squared

for the Fourier component of the classical path responsible for the transition
~n + ~τ → ~n. Substituting eqs. (107) and (109) into eq. (108) and replacing the
difference frequency νsr by its classical counterpart ~τ · ~ν, we obtain, :

Pr = NrE cos 2πνt
c3

32π4

16π4e2

3hc3
h
∑

~τ ·~ν>0

~τ · ~∇J

(
~τ · ~νD2

s

(~τ · ~ν)2 − ν2

)

= Nr
e2

2
E cos 2πνt

∑
~τ ·~ν>0

~τ · ~∇J

(
~τ · ~ν 1

3
D2

s

(~τ · ~ν)2 − ν2

)
. (110)

With the replacement 1
3
D2

s → X2
~τ appropriate for randomly oriented atoms,

eq. (110) becomes identical to the classical formula (104). This shows that the
Kramers dispersion formula (105) does indeed merge with the classical result
in the limit of high quantum numbers, as Van Vleck set out to demonstrate.

7 Derivation of the formulae for dispersion, emission, and absorp-
tion in modern quantum mechanics

Describing the impact of the new quantum mechanics on dispersion theory,
Van Vleck wrote in 1929:

Dispersion was particularly bothersome in the old quantum theory, which
could never explain why the resonance frequencies in dispersion were exper-
imentally the spectroscopic frequencies given by the Bohr frequency con-
dition rather than the altogether different frequencies of motion in orbits
constituting the stationary states [cf. our discussion in the introduction of
sec. 3]. The new mechanics, however, yields the Kramers dispersion formula,
previously derived semi-empirically from the correspondence principle . . . As
the result of the masterful treatment by Dirac [1927], a mechanism has at
last to a certain extent been found for the previously so mysterious quantum
jumps between stationary states (Van Vleck, 1929, pp. 494–495).

That same year, in the first installment of what would turn out to be an
eight-part paper entitled “Investigations of anomalous dispersion in excited
gases,” Ladenburg likewise provided a brief synopsis of recent developments
in dispersion theory:
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The first successful treatment of dispersion phenomena on the basis of
Bohr’s atomic theory implicitly contained the assumption that the orbital
frequencies of the Bohr electrons are the special values at which dispersion
changes sign. 198 In contrast to this, the point of departure of the newer
development of dispersion theory is the empirical fact that not the orbital
frequencies of the electrons but the frequencies, observable in emission and
absorption, of “quantum jumps,” i.e., spectral lines, are the singular values
of anomalous dispersion. These correspond to the characteristic frequencies
of quasi-elastically bound electrons in the classical electron theory [discussed
in sec. 3.1]. Tying together the notions of this theory with Bohr’s atomic
theory has taught us that the “strength” of the dispersion or of the “substi-
tute oscillators,” which at Bohr’s suggestion were introduced as carriers of
the scattered radiation needed for dispersion, is determined in non-classical
fashion by the “strength,” i.e., the probability of quantum jumps[,] and by
the density of atoms in the “lower” atomic state involved in such quantum
jumps. 199 H.A.Kramers then showed, 200 through correspondence consider-
ations, that the dispersion formula obtained by the author [cf. eq. (8) in sec.
3.3] only holds exactly in the case of non-excited or meta-stable atoms; in
the case of excited non-meta-stable atoms, which can also make spontaneous
transitions to states of lower energy, this formula is incomplete and has to
be supplemented by terms of “negative dispersion,” which correspond to the
“negative absorption” [i.e., stimulated emission] of the radiation theory of
Planck and Einstein. Thus originated the “quantum-theoretical dispersion
formula” [cf. eq. (9) in sec. 3.4] which has finally been given a fully con-
sistent foundation in quantum mechanics and wave mechanics; 201 this new
quantum theory completely avoids concepts like orbital frequencies of elec-
trons in stationary states, and one of its points of departure was precisely
the quantum-theoretical interpretation of dispersion phenomena mentioned
above (Ladenburg, 1928, pp. 15–16)

Rather than pursuing the history of dispersion post-Umdeutung, we shall
present our own modern derivations of quantum formulae for dispersion (sec.
7.1), (spontaneous) emission (sec. 7.2), and absorption (sec. 7.3). Seeing how
modern quantum mechanics sanctions the formulae found by Kramers, Van

198At this point, Ladenburg refers to the papers by Sommerfeld, Debye, and Davisson
and the criticism of them by Bohr and Epstein that we discussed in sec. 3.2.
199At this point, Ladenburg refers to his own work, Bohr’s favorable reaction to it,
and his subsequent work with Reiche, all discussed in sec. 3.3.
200At this point, Ladenburg refers to Kramers’ two Nature notes and to the Kramers-
Heisenberg paper discussed in sec. 3.4.
201At this point, Ladenburg refers to the treatments of dispersion in (Born, Heisen-
berg, and Jordan, 1925, pp. 330–338) [see also (Born and Jordan, 1930, pp. 240–
250)], (Schrödinger, 1926), and (Dirac, 1927). For discussion of Schrödinger’s wave-
mechanical treatment of dispersion, see (Mehra and Rechenberg, 1982–2001, Vol. 5,
pp. 789–796).
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Vleck and others in the old quantum theory on the basis of Einstein’s quan-
tum theory of radiation and Bohr’s correspondence principle will illuminate
various aspects of the relation between the old and the new theory.

First, we show how the orchestra of virtual oscillators of pre-Umdeutung dis-
persion theory survives in the guise of a sum over matrix elements of the
position operator. Second, we show how the diagonal matrix elements of the
fundamental commutation relation for position and momentum, [X, P ] = i~,
are given by the high-frequency limit of the Kramers dispersion formula, a for-
mula known as the Thomas-Kuhn(-Reiche) sum rule (Thomas, 1925; Kuhn,
1925; Reiche and Thomas, 1925). This formula replaces the Bohr-Sommerfeld
condition as the fundamental quantization condition in the Umdeutung paper
(see sec. 3.5). Heisenberg obtained the sum rule by applying the procedure
introduced in the Umdeutung paper for translating classical quantities into
quantum-theoretical ones to (a derivative of) the Bohr-Sommerfeld quantiza-
tion condition. He then showed that the sum rule also obtains by comparing
the high-frequency limit of the Kramers dispersion formula with the polar-
ization of a charged harmonic oscillator in the limit where ν >> ν0 (see our
eq. (53)). In hindsight, we can see clearly in the Umdeutung paper how close
Heisenberg came to recognizing the presence of the commutation relation be-
tween position and momentum in the sum rule serving as his quantization
condition. As he told Kuhn:

I had written down, as the quantization rule the Thomas-Kuhn sum rule,
but I had not recognized that this was just pq minus qp. That I had not
seen. 202

That he did not take this step is probably due to two important obstacles,
one conceptual, the other technical. The conceptual framework of the entire
Umdeutung paper is Lagrangian (as opposed to Hamiltonian): the essential
problem is to find a quantum-theoretical reinterpretation of the classical con-
cepts of position x(t) and velocity ẋ(t) of a particle. Indeed, the conventional
symbol for momentum, p, appears only once in the entire paper, in the state-
ment of the Bohr-Sommerfeld quantization condition (eq. (12) in the paper).
From this point on, p is replaced everywhere by mẋ(t). The canonical connec-
tion between position and momentum (so central, ironically, to the canonical
perturbation theory that led to the dispersion formula in the first place 203 )
seems simply to have vanished from Heisenberg’s thinking at this point. The
other, technical, obstacle was an inconvenient division of the sum over quan-
tum states in the sum rule, which, though very natural from the point of

202P. 12 of the transcript of session 5 of the AHQP interview with Heisenberg. See
also p. 9 of the transcript of session 7. Cf. our discussion in sec. 3.5. Heisenberg
obtained his result by computing (

∮
pdq)n+1 − (

∮
pdq)n.

203Of course, it was also central to (Dirac, 1925).
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dispersion theory, obscured its connection to a commutator, as we shall see
below.

It will also become clear in the course of our modern derivation that the
Kramers dispersion formula is an even more general result in modern quantum
mechanics than it was in the old quantum theory. In the old quantum theory,
it held for any non-degenerate multiply-periodic system with an unperturbed
Hamiltonian such that the unperturbed motion can be solved in action-angle
variables. In modern quantum mechanics, the result holds for any system with
a Hermitian Hamilton operator such that the unperturbed part has a spectrum
that is at least partially discrete. This helps to explain why the Kramers
dispersion formula carries over completely intact from the old quantum theory
to modern quantum mechanics.

7.1 Dispersion

In this subsection, we derive the Kramers dispersion formula in time-dependent
perturbation theory. We then examine the high-frequency limit of this formula
and discuss the role it played in (Heisenberg, 1925) as the fundamental quan-
tization condition replacing the Bohr-Sommerfeld condition.

We consider a quantized charged system (valence electron) with states labeled
by discrete indices r, s, t, ..., and with the Hamilton operator

H = H0 + V (t) = H0 + eEx cos ωt. (111)

We want to calculate the first-order perturbation (in the electric field E) in
the expectation value of the electron position in a particular state |r, t〉. It
is convenient to work in the interaction picture. 204 The state |r, t〉int in the
interaction picture is related to the state |r, t〉 in the Schrödinger picture via:

|r, t〉int ≡ eiH0t/~|r, t〉. (112)

An operator Oint(t) in the interaction picture is related to the corresponding
operator O in the Schrödinger picture via

Oint(t) ≡ eiH0t/~Oe−iH0t/~. (113)

204The special role of H0 in the time dependence of states and operators in the
interaction picture is analogous to the choice of action-angle variables for the free
rather than the full Hamiltonian in the version of canonical perturbation theory used
by Van Vleck. This is what lies behind the close similarities between the calculations
in this section and those in secs. 5.1 and 6.2.
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It follows that expectation values are the same in the two pictures:

int〈r, t|Oint(t)|r, t〉int = 〈r, t|O|r, t〉. (114)

The evolution of the states in the interaction picture is given by:

∂

∂t
|r, t〉int =

i

~
eiH0t/~H0|r, t〉+ eiH0t/~ ∂

∂t
|r, t〉

=
i

~
eiH0t/~ (H0 −H) |r, t〉, (115)

where in the last step, we used the Schrödinger equation

∂

∂t
|r, t〉 = −iH

~
|r, t〉. (116)

Since H0 −H = −V (t) (see eq. (111)), we can write eq. (115) as:

∂

∂t
|r, t〉int =− i

~
eiH0t/~V (t)e−iH0t/~|r, t〉int

=− i

~
Vint(t)|r, t〉int, (117)

where we used eqs. (112)–(113). To first order in Vint(t) (i.e., to first order in
the field E), the solution of (117) is

|r, t〉int = |r, 0〉int −
i

~

t∫
0

dτVint(τ)|r, 0〉int

= |r, 0〉int −
ieE

~

t∫
0

dτxint(τ) cos ωτ |r, 0〉int. (118)

At t = 0 the states (and operators) in the interaction picture coincide with
those in the Schrödinger picture. From now on we thus simply write |r〉 for
|r, 0〉int. The dual (‘bra’) of the vector (‘ket’) in eq. (118) is:

int〈r, t| = 〈r|+ ieE

~

t∫
0

dτ cos ωτ〈r|xint(τ). (119)

To find the dipole moment Pr(t) of the system in state r to first order in
E, we calculate the first-order contribution to the expectation value of the
displacement 〈∆x〉r in the state r induced by the field E:

〈∆x〉r ≡ int〈r, t|xint(t)|r, t〉int − 〈r|xint(t)|r〉. (120)
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Inserting eqs. (118)–(119) into this expression, we find:

〈∆x〉r =
ieE

~

t∫
0

dτ〈r| {xint(τ)xint(t)− xint(t)xint(τ)} |r〉 cos ωτ. (121)

Writing cos ωτ = 1
2
(eiωτ +e−iωτ ), and inserting a complete set of eigenstates of

the unperturbed Hamiltonian H0 (1 =
∑

s |s〉〈s|) between the two coordinate
operators, we obtain

〈∆x〉r =
ieE

2~
∑
s

t∫
0

dτ
(
〈r|eiH0τ/~xe−iH0τ/~|s〉〈s|eiH0t/~xe−iH0t/~|r〉

−〈r|eiH0t/~xe−iH0t/~|s〉〈s|eiH0τ/~xe−iH0τ/~|r〉
)
eiωτ

+ (ω → −ω)

=
ieE

2~
∑
s

t∫
0

dτ
(
ei(Er−Es+~ω)τ/~ei(Es−Er)t/~

−ei(Er−Es)t/~ei(Es−Er+~ω)τ/~
)
〈r|x|s〉〈s|x|r〉 (122)

+ (ω → −ω).

We introduce the notation Xrs ≡ 〈r|x|s〉 for the matrix elements of the coor-
dinate operator. Note that these matrix elements in eq. (122) are accompanied
by time-development phases ei(Er−Es)t/~ of purely harmonic form: they are the
precise correlates in modern quantum mechanics of the substitute oscillators of
Ladenburg and Reiche (1923) or, equivalently, the virtual oscillators of BKS,
as was clearly realized, for instance, by Landé (1926) (cf. the discussion at the
end of sec. 4.3). 205

Performing the time integral in eq. (122), we find

〈∆x〉r =
eE

2

∑
s

[
ei(Er−Es+~ω)t/~ − 1

Er − Es + ~ω
ei(Es−Er)t/~

−ei(Es−Er+~ω)t/~ − 1

Es − Er + ~ω
ei(Er−Es)t/~

]
XrsXsr (123)

+ (ω → −ω).

(cf. eqs. (42) and (44) in sec. 6.1 and eqs. (94) and (98) in sec. 5.2). The

205Once the electromagnetic field itself is quantized, it becomes more natural to
identify the virtual oscillators of BKS with the Fourier components of the quantized
electromagnetic field, which correspond to time-dependent operators creating (or
destroying) the photons emitted (or absorbed) by the atom.
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coherent terms in 〈∆x〉r, i.e. the terms with a time-dependence e±iωt (cf. eq.
(46) in sec. 6.1 and eq. (101) in sec. 5.2), are:

〈∆xcoh〉r =
eE

2

∑
s

XrsXsre
iωt
[

1

Er − Es + ~ω
− 1

Es − Er + ~ω

]
(124)

+ (ω → −ω).

Using the Bohr frequency condition ~ωrs = Er −Es, we can write the expres-
sion in square brackets in eq. (124) as:

1

~ωrs + ~ω
− 1

~ωsr + ~ω
=

2ωrs

~(ω2
rs − ω2)

. (125)

Inserting this result into eq. (124) and noting that the terms proportional to
sin ωt vanish, we find the following result for the dipole moment of the system
in state r (cf. eq. (6) or eq. (53))

Pr(t) = −e〈∆xcoh〉r =
2e2E

~
∑
s

ωsrXrsXsr

ω2
sr − ω2

cos ωt. (126)

The sum over s can naturally be separated into states s of higher energy than
r, with ωsr > 0, and states t of lower energy, with ωrt > 0 (ωrt = 0 for r = t):

Pr =
2e2E

~

(∑
s

ωsrXsrXrs

ω2
sr − ω2

−
∑

t

ωrtXrtXtr

ω2
rt − ω2

)
cos ωt. (127)

If we recall the correspondence principle for emission (82), and identify D2
s

with 3(Xs
τ )

2 = 12AτA−τ and the Fourier coefficients Aτ → Xsr, A−τ → Xrs

we get

As→r =
64π4e2

hc3
ν3

srXsrXrs, (128)

whence we recover the original form (64) of the dispersion formula

Pr =
c3

32π4
E cos ωt

(∑
s

As→r

ν2
sr(ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
rt(ν

2
rt − ν2)

)
. (129)

Of course, the above identification of classical Fourier components with matrix
elements of the position operator is at the core of Heisenberg’s 1925 break-
through.
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Returning for a moment to eq. (127), we see that in the Thomson limit where
the frequency of incident radiation far exceeds the difference frequencies ωrs

for the electron states r, s, 206 the polarization Pr becomes asymptotically

Pr ' −2e2E

~ω2

(∑
s

ωsrXsrXrs −
∑

t

ωrtXrtXtr

)
cos ωt. (130)

The preceding equation is in content identical with the next to last (unnum-
bered) equation in sec. 2 in (Heisenberg, 1925), where the Kramers dispersion
theory is explicitly invoked. For large frequencies, we expect the polarization
to approach our previously derived result (see eq. (6) or eq. (53)) for the
polarization of a charged harmonic oscillator in the limit where ν >> ν0:

207

Pr = − e2E

mω2
cos ωt, (131)

Comparing eq. (130) with eq. (131) we find eq. (16) in (Heisenberg, 1925):

h = 4πm

(∑
s

ωsrXsrXrs −
∑

t

ωrtXrtXtr

)
. (132)

This result is first obtained by Heisenberg from the Bohr-Sommerfeld quanti-
zation condition by applying the quantum-theoretical transcription procedure,
which was introduced in sec. 1 of the Umdeutung paper and had been inspired
by dispersion theory. It replaces the Bohr-Sommerfeld condition as the fun-
damental quantization constraint in Heisenberg’s new theory. That the same
result can be obtained directly from the high-frequency limit of the Kramers
dispersion formula is clearly regarded by Heisenberg as strong evidence for
the validity of his transcription procedure. Using eq. (132), together with the
formal transcription of the classical equation of motion, ẍ + f(x) = 0 (eq.
(11) of the Umdeutung paper), Heisenberg (1925) asserts the possibility of “a
complete determination not only of frequencies and energy values, but also of
quantum-theoretical transition probabilities” (p. 268). As Heisenberg points
out, eq. (132) is completely equivalent to the sum rules for oscillator strengths
given by Thomas (1925) and Kuhn (1925). 208

206Or, alternatively, when the incident photon energy far exceeds the energy needed
to ionize the electron, so that the latter can be regarded as essentially a free, un-
bound particle.
207This result is obtained in (Kuhn, 1925) by equating the energy scattered by an
electron in the Thomson limit to the radiation emitted by an oscillating dipole
according to the Larmor formula.
208Heisenberg’s logic is slightly different from ours. Instead of pointing out that
the high-frequency limit (130) of the Kramers dispersion formula and the well-
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The realization that eq. (132) is equivalent to (the diagonal matrix elements of)
the fundamental commutator relation [P, X] = ~/i of modern quantum theory
came shortly after this, in the work of Born and Jordan (1925). The recognition
of eq. (132) as a commutator is mathematically obscured by the separation
of the sum into states higher (s) and lower (t) than the given state r—a
separation which is very natural given the history of the Kramers dispersion
formula. If Heisenberg had applied his own transcription rules for associating
classical variables with quantum two-index quantities to the momentum P ≡
mẊ in the unnumbered equation immediately following (13) in the Umdeutung
paper (Heisenberg, 1925, p. 267), he would have found (using modern matrix
notation): 209

Prs = imωrsXrs. (133)

That Heisenberg did not write down this equation is probably, as we suggested
above, because he was thinking in terms of the Lagrange rather than the
Hamilton formalism. Rewriting eq. (132) as a single sum over all states s, but
splitting the sum into two equal pieces via the identity 2ωsr = ωsr − ωrs, we
find

h = 4πm
∑
s

ωsrXrsXsr

= 2πm
∑
s

(XrsωsrXsr − ωrsXrsXsr) (134)

=−2πi
∑
s

(XrsPsr − PrsXsr),

where in the last step we used eq. (133). In modern notation, this last expres-
sion is immediately recognized as the diagonal matrix element of the funda-
mental commutator [X, P ] = i~:

i
h

2π
= 〈r|XP − PX|r〉

established classical result (131) imply Heisenberg’s quantization condition (132),
Heisenberg (1925, pp. 269–270) points out that eqs. (132) and (130) imply eq. (131).
This is only a cosmetic difference. The point of the exercise is still to show that the
new quantization condition, found through Umdeutung of the derivative of the Bohr-
Sommerfeld condition, follows from well-established results in Kramers’ dispersion
theory and classical electrodynamics. We are nonetheless grateful to Christoph
Lehner for alerting us to this point.
209Following Heisenberg’s procedure in the Umdeutung paper for translating classi-
cal equations into quantum-mechanical ones, we would translate his classical equa-
tion for momentum, mẋ = m

∑
α aα(n)iαωneiαωnt, into the following quantum-

mechanical equation: P (n, n + α) = ima(n, n + α)ω(n, n + α). In modern notation,
this becomes: Prs = imXrsωrs (no summation).
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=
∑
s

(〈r|X|s〉〈s|P |r〉 − 〈r|P |s〉〈s|P |r〉) . (135)

Although Heisenberg recognized the significance of the noncommutativity of
quantum-theoretic quantities in his formalism (see the last three paragraphs
of sec. 1), the simplicity of x(t)p(t) − p(t)x(t) implied by his fundamental
quantization relation (132) eluded him. He was thinking in terms of velocity
rather than momentum. Moreover, even if he had been thinking in terms of
momentum, the origin of his quantization condition in dispersion theory might
well have prevented him from rewriting the summations the way we did in eq.
(134).

7.2 Spontaneous emission

To begin with, we note that we are dealing throughout with the dipole ap-
proximation, which is implicit in the 1924 work, corresponding to the regime
where the wavelength of light is much larger than atomic dimensions (or equiv-
alently, where photon momentum is much smaller than electron momentum).
Once again, note that the notation of (Van Vleck, 1924b, eq. (1)),

x =
∑

τ1τ2τ3

X(τ1, τ2, τ3) cos {2π(τ1ω1 + τ2ω2 + τ3ω3)t + . . .}

=
∑{

1

2
X(τ1, τ2, τ3)e

+2πi(τ1ω1+τ2ω2+τ3ω3)t+... (136)

+
1

2
X(τ1, τ2, τ3)e

−2πi(τ1ω1+τ2ω2+τ3ω3)t+...
}

,

implies that van Vleck’s D2 = X2 + Y 2 + Z2 (Van Vleck, 1924b, line follow-
ing eq. (8)) corresponds to four times the square of the matrix element of
the quantum position operator appearing in the dipole transition formulas of
modern quantum mechanics. For the latter we shall follow the treatment of
(Baym, 1969, Ch. 13).

In the dipole approximation, the spontaneously emitted power per unit solid
angle is given by (Baym, 1969, p. 282, eq. 13–100), for emitted light of polar-

ization vector ~λ, in a transition from state r to state s:

dP

dΩ
=

ω4e2

2πc3
〈r|~λ · ~x|s〉〈s|~λ · ~x|r〉

=
3∑

i,j=1

ω4e2

2πc3
λiλj〈r|xi|s〉〈s|xj|r〉. (137)

Here (unlike Baym) we take real polarization vectors ~λ (plane polarized) rather
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than complex (circularly polarized) ones as our basis. We want the total spon-
taneously emitted power in any event, summed over the two possible polar-
izations for any momentum vector ~k of the emitted photon (so the basis of
photon states is irrelevant). This requires the polarization sum

2∑
λ=1

λiλj = δij − k̂ik̂j, (i, j = 1, 2, 3), (138)

which follows from the fact that the two polarization vectors are any pair of
orthogonal unit vectors perpendicular to the unit vector k̂ along the photon
direction. Finally, we want the total power emitted in any direction, so the
polarization sum (138) must be integrated over all solid angles:

∫
dΩk̂(δij − k̂ik̂j) = 4π

(
2

3
δij

)
. (139)

The Einstein coefficient Ar→s in (Van Vleck, 1924b, eqs. (5) and (9)) refers to
a rate of photon emission (not energy emission) so we must divide eq. (137)
by ~ω. Putting together the above results, we find:

Ar→s =
1

~ω

∫
dΩk̂

dP

dΩk̂

=
ω4e2

2π~ωc3

8π

3

∑
i

〈r|xi|s〉〈s|xi|r〉. (140)

Using the notation Xrs ≡ 〈r|x|s〉, etc. for the matrix elements of position
introduced above we can rewrite this as:

Ar→s =
ω4e2

2π~ωc3

8π

3

(
|Xrs|2 + |Yrs|2 + |Zrs|2

)
. (141)

Replacing the matrix elements Xrs, Yrs, and Zrs by the amplitude Dr in the
correspondence limit as indicated in the preceding section (cf. the remarks
preceding eq. (128)) and substituting ω = 2πν, we arrive at:

Ar→s =
16π4e2ν3

3hc3
D2

r . (142)

D2
r is the amplitude defined by (Van Vleck, 1924b) immediately following eq.

(8), to be replaced by Dr(τ1, τ2, τ3)
2 in eq. (9), with which eq. (142) is seen to

be identical.
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7.3 Absorption

The Einstein formula for absorption (Van Vleck, 1924b, eq. (6)), when com-
bined with the stimulated emission (“negative absorption”) term to yield
(ibid., eq. 15)), leads directly to the correspondence limit result (ibid., eq.
(16)). Here, we check the identity of eq. (15) in (Van Vleck, 1924b) (more
precisely, the unnumbered equation immediately following this one) with the
modern absorption calculation given in (Baym, 1969). For the rate of absorp-
tion of light leading to a transition from state s to (higher) state r, (Baym,
1969, eq. 13–40) reads (in the dipole approximation, ~j~k → ~p/m):

Γabs
s→r =

2πe2

~2c2

ω2

(2πc)3

∫
dΩk̂

∑
λ

〈s|~λ · ~p

m
|r〉〈r|~λ · ~p

m
|s〉|A~k~λ|

2. (143)

As usual, in the dipole approximation we can use (Baym, 1969, eq. 13–98) to
replace matrix elements of the momentum operator with those of the coordi-
nate operator (using the equations of motion). For Hamiltonians of the form
H = (~p2/2m) + V (~x),

[H, xj] =
1

2m
[pipi, xj] =

1

m
pi[pi, xj] =

pi

m

~
i
δij =

~
i

pj

m
, (144)

whence

〈r| ~p
m
|s〉= i

~
〈r|[H,~x]|s〉

=
i

~
(Er − Es)〈r|~x|s〉 (145)

= iω〈r|~x|s〉,

where ~ω = Er − Es. Once again, in eq. (145), we see the “monstrous” dif-
ference frequencies characteristic of quantum theory, which wreaked havoc on
classical interpretations of radiation phenomena, making their appearance in
the modern formalism. Accordingly, eq. (143) becomes

Γabs
s→r =

2πe2

~2c2

ω4

(2πc)3

∫
dΩk̂

∑
λ

〈s|λixi|r〉〈r|λjxj|s〉|A~k~λ|
2. (146)

Now we are going to assume that the ambient light is unpolarized and isotropic
so that the squared amplitude |A~k~λ|2 is in fact independent of λ, k̂, and the
only angular dependence comes in via the polarization vectors. The angle
average of the polarization sum in eq. (146) can then be performed as in eq.

43



(139) to yield

Γabs
s→r =

4πe2

3~2c2

ω4

(2πc)3
〈s|xi|r〉〈r|xi|s〉

∫
dΩk̂|A~k~λ|

2. (147)

Next, we need to establish the relation between the squared mode amplitudes
|A~k~λ|2 and the specific energy density function ρ(ν) defined as the energy per
unit volume per unit frequency interval. The mode amplitudes A~k~λ correspond
to discrete modes for electromagnetic radiation in a box of volume V , with
each mode contributing energy density

1

V
|A~k~λ|

2 ω

2πc2
(148)

(Baym, 1969, eq. 13–14). As the box volume goes to infinity we have the usual
correspondence

1

V

∑
k

→
∫ k2dkdΩk̂

(2π)3
, (149)

so that the total energy density between frequency ν and frequency ν + ∆ν is

ρ(ν)∆ν =
1

V

∑
2πν<kc<2π(ν+∆ν)

2|A~k~λ|
2 ω2

2πc2

→ 1

(2π)3

∫
dΩk̂

2π(ν+∆ν)/c∫
2πν/c

dk k2 ω2

2πc2
2|A~k~λ|

2. (150)

Note that although we continue to write the mode amplitudes A~k~λ as de-
pending on polarization and momentum vector of the photon, we are really
assuming that there is no dependence on the polarization or photon direction.
Hence the factor of 2, with no remaining sum over λ. Eq. (150) gives

ρ(ν)∆ν =
1

(2π)3

2π

c
k2 ω2

2πc2
2
∫

dΩk̂|A~k~λ|
2∆ν, (151)

or, equivalently∫
dΩk̂|A~k~λ|

2 =
4π3c5

ω4
ρ(ν). (152)

Inserting eq. (152) into eq. (147) and multiplying by ~ω to get the rate of
energy absorption (instead of the number rate of photon absorption) we find,
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using the usual association of squares of matrix elements of the position op-
erator to the classical orbit amplitude 1

4
D2

r ,

~ωΓabs
s→r =

4πe2ω

3~c2

ω4

(2πc)3

4π3c5

ω4
ρ(ν)

1

4
D2

r

=
2π3e2

3h
νρ(ν)D2

r , (153)

which coincides with the first term in van Vleck’s equation (Van Vleck, 1924b,
the equation following eq. (15)) for the part of the total absorption rate due to
upward transitions. Of course, the second (negative absorption, or stimulated
emission) term is of exactly the same form (with a minus sign) due to the
symmetry of the Einstein B coefficients.

8 Conclusion

Our study of Van Vleck’s two-part paper on the application of the correspon-
dence principle to the interaction of matter and radiation (Van Vleck, 1924b,c)
has led us to consider three clusters of questions. First, there are questions
about the paper itself. What made Van Vleck decide to work in this area?
He had not published on radiation theory before. And—as one is inevitably
tempted to ask—why did Van Vleck not take the next step and arrive at some-
thing like matrix mechanics? That gets us to the second cluster of questions,
about the developments in quantum theory that provide the natural context
for Van Vleck’s work, especially the transition from the old quantum theory
of Bohr and Sommerfeld to matrix mechanics. What was important for this
development and what was not? The third group of questions concerns the
relative importance of American contributions to these developments. In this
final section we collect the (partial) answers we have found to these biograph-
ical, conceptual, and sociological questions.

Let us first dispose of the issue of American contributions to early quantum
theory. Since we focused on the work of only two individuals, Van Vleck and
Slater, we are in no position to draw strong conclusions. Still, it seems safe
to say that our study supports the thesis of Sam Schweber (1986) and others
that, by the early 1920s, the United States had a homegrown tradition in
quantum theory, which, to be sure, was reinforced, but certainly not created
by the influx of European émigrés in the 1930s. We are less sanguine about
the thesis of Alexi Assmus (1992) that American theorists contributed mainly
to molecular rather than to atomic physics, although she may be right that
Slater and Van Vleck are just exceptions to the rule (see sec. 2.4). However,
we did come across several other contributions (some admittedly minor) to
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atomic theory by Americans (Breit, Davisson, Hoyt, Kemble) or by Europeans
working in America (Epstein, Swann). And we do want to emphasize that the
contributions to atomic theory by our main protagonists were absolutely first
rate, even if they did not always receive the recognition they deserved from
their European colleagues (see the correspondence between Born and Van
Vleck cited in secs. 2.4 and 5.2). The quickly refuted but highly influential
Bohr-Kramers-Slater (BKS) theory was built around Slater’s idea of a virtual
radiation field emitted by an atom while in a stationary state (see sec. 4.1).
The derivation of a correspondence principle of absorption for a general non-
degenerate multiply-periodic system, the centerpiece of (Van Vleck, 1924b,c),
is a tour de force that may well have been the most sophisticated application
of the correspondence principle in the old quantum theory. All in all, the
Americans had definitely established a presence in atomic theory by the early
1920s. In the period we examined, they were certainly more prominent than
the British, not to mention the French. Ultimately, however, the decisive steps
were taken in Europe, not in the United States.

This brings us to the question of why Van Vleck stopped short of these deci-
sive steps. Before we offer our best guess as to why Van Vleck did not do what
he did not do, we want to say a few words about why he did what he did. His
papers on the correspondence principle for absorption (Van Vleck, 1924a,b,c)
constitute his first foray into quantum radiation theory. His earlier publica-
tions had dealt with such topics as the extension of Bohr’s model of the atom
to helium and the specific heat of molecular hydrogen. The formulation of a
correspondence principle for absorption, Van Vleck told Kuhn in his interview
for the AHQP in 1963, had been triggered by a comment of his Minnesota
colleague Breit (see also Van Vleck, 1924a, p. 28). Breit’s remark, we conjec-
tured (in sec. 5.3), may have directed Van Vleck to the work of Ladenburg
and Reiche (1923), who proposed quantum formulae for emission, absorption,
and dispersion, invoking but not always correctly implementing the correspon-
dence principle. Van Vleck likewise proposed quantum formulae for emission
and absorption and used his considerable expertise in classical mechanics to
show that these formulae as well as the Kramers dispersion formula merged
with the classical formulae in the limit of high quantum numbers.

So why did Van Vleck not take the next step? The trivial explanation is that
he was too busy working on his Bulletin for the National Research Council on
the old quantum theory (Van Vleck, 1926) to pursue his own research. But
even if he had not been burdened by this Bulletin, we seriously doubt that
Van Vleck would have done what Heisenberg did—as he himself acknowledged
both in a biographical statement prepared for the AHQP and in his interview
for the project (see sec. 1.1). Van Vleck, it seems, was too wedded to the orbits
of the Bohr-Sommerfeld theory to completely discard them, a prerequisite for
Heisenberg’s Umdeutung. This is clear at several points in (Van Vleck, 1924b).
At the end of sec. 1, for instance, we find a formula expressing the Einstein
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coefficient Ar→s as an average over the frequencies of orbits, not allowed by
the Bohr-Sommerfeld quantization condition, between the initial state r and
the final state s. Sec. 2 of the paper is devoted to “a correspondence principle
for orbital distortions” (Van Vleck, 1924b, p. 334, our emphasis). On the issue
of how seriously one should take the orbits of the Bohr-Sommerfeld theory,
Van Vleck might have benefited from direct contact with the Europeans. He
had the distinct disadvantage of reading Sommerfeld instead of talking to Bohr
and his circle. 210 Bohr and Pauli certainly prepared Heisenberg for the step
of leaving orbits behind.

The emphasis on observable quantities in the Umdeutung paper, however,
struck a chord with Van Vleck, who had been primed for such a positivist turn
by his Harvard teacher Bridgman. 211 Explaining the new quantum mechanics
in Chemical Reviews in 1929, 212 he wrote:

Heisenberg’s epoch-making development of the matrix theory was spurred
by Born’s repeated emphasis to his colleagues at Göttingen that the reason
the old quantum theory was then (1925) failing was that we were all too
anxious to use the same concepts of space and time within the atom as
in ordinary measurable large-scale events. . . . the concepts of distance and
time have a meaning only when we tell how they can be measured. This is
very nicely emphasized in Bridgman’s recent book, “The Logic of Modern
Physics” [Bridgman, 1927] . . . one cannot use a meter stick to measure the
diameter of an atom, or an alarm clock to record when an electron is at
the perihelion of its orbit. Consequently we must not be surprised if within
the atom the correlation of space and time is something which cannot be
visualized, and that models cannot be constructed with the same kind of
mechanics as Henry Ford uses in designing an automobile. . . . The goal of
theoretical physics and chemistry must ever be to explain observable rather
than unobservable phenomena . . .What the physicist observes about an
atom is primarily its radiations . . .We may say that we have a sound atomic

210According to Alexi Assmus (1992, pp. 8, 15), Americans had a tendency to follow
Sommerfeld rather than Bohr anyway.
211In the biographical note written for the AHQP, Van Vleck wrote: “I suspect
that Bridgman’s operational philosophy may have subconsciously influenced my
approach to theoretical physics.” At a ceremony honoring Bridgman’s 1946 Nobel
prize, Slater went as far as suggesting a genetic link between Bridgman’s opera-
tionalism and Heisenberg’s uncertainty principle! Schweber (1990) quotes Slater as
saying on this occasion: “It is very likely that this principle, so much like Bridg-
man’s attitude, is actually derived to a very considerable extent from Bridgman’s
thinking” (p. 391).
212For the benefit of the chemists, Van Vleck (1929) compared a matrix to a baseball
schedule: “the entry in row 3 and column 2, for instance, gives information about
a transition between a 3 and 2 quantum state, just as the analogous baseball entry
does about the meetings between teams 3 and 2” (p. 469).
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theory when we have a set of a small number of mathematical postulates
from which these observed things can be calculated correctly, even though it
forces us to discard the usual space-time models (Van Vleck, 1929, p. 468).

Van Vleck was thus ready enough to give up orbits once Heisenberg had shown
the way. He failed to take this step on his own.

The study of Van Vleck’s paper illuminates various aspects of the transition
from the old quantum theory to matrix mechanics that tend to get obscured
when one approaches these developments through, say, (Kramers and Heisen-
berg, 1925). Most importantly perhaps, following (Van Vleck, 1924b,c) rather
than (Kramers and Heisenberg, 1925) or (Born, 1924), we were able to give
a transparent and explicit version of the derivation needed to show that the
crucial Kramers dispersion formula reduces to the classical formula in the limit
of high quantum numbers (see secs. 5.1–5.2 for the special case of a simple
harmonic oscillator, sec. 6.2 for the generalization to arbitrary non-degenerate
multiply-periodic systems, and sec. 7.1 for a closely analogous derivation of the
Kramers formula in modern quantum mechanics). That Van Vleck confirmed
the Kramers dispersion formula without relying on the Bohr-Kramers-Slater
(BKS) theory makes it particularly clear that matrix mechanics grew directly
out of dispersion theory and that BKS was mainly a sideshow (see sec. 4).
The only element of the BKS theory used by Van Vleck is the concept of
virtual oscillators. We saw that this concept actually predates BKS. ‘Virtual
oscillators’ was Bohr’s new name for the substitute oscillators introduced into
dispersion theory the year before and at Bohr’s suggestion by Ladenburg and
Reiche (1923). In addition to popularizing the notion of virtual oscillators,
BKS may have contributed to instilling skepticism about the electron orbits
of the Bohr-Sommerfeld theory. In that sense, it might have helped Van Vleck
had he embraced BKS more wholeheartedly. Overall, however, we argued that
BKS played only a very limited role in the breakthrough to matrix mechan-
ics. The broad acceptance of Einstein’s light-quantum concept following the
discovery of the Compton effect played no role in this development. Physicists
working in dispersion theory, while accepting the Compton effect as decisive
evidence for light quanta, happily continued to treat light as a wave phe-
nomenon.

What was it about dispersion theory that made it so important for the transi-
tion from the Bohr-Sommerfeld theory to the theory of Heisenberg’s Umdeu-
tung paper? As we suggested in the introduction of sec. 3, the answer is that
the discrepancy between orbital frequencies and radiation frequencies—one of
the most radical, if not the most radical aspect of the Bohr model of the atom—
manifested itself glaringly and unavoidably in dispersion theory. The natural
approach to adapting the successful classical dispersion theory of Helmholtz,
Lorentz and Drude to Bohr’s new theory inevitably led to a dispersion formula
with resonance poles at the orbital frequencies (Sommerfeld, 1915b; Debye,

48



1915; Davisson, 1916; Epstein, 1922c), whereas experiment clearly indicated
that the resonance poles should be at the radiation frequencies, associated in
Bohr’s theory with transitions between orbits. Employing Einstein’s A and
B coefficients and Bohr’s correspondence principle (in conjunction with tech-
niques from celestial mechanics customized to the problems at hand) and
building on pioneering work by Ladenburg (1921) and Ladenburg and Reiche
(1923), Kramers (1924a,b) constructed a quantum formula for dispersion with
resonance poles at the transition frequencies rather than at the orbital fre-
quencies and claimed that this formula merged with the classical formula in
the limit of high quantum numbers. Van Vleck (1924b,c) and Born (1924)
were the first to publish an explicit proof that the Kramers quantum formula
does indeed merge with the classical formula for dispersion in a general non-
degenerate multiply-periodic system in the correspondence limit. The three
key moves in translating the classical formula into a quantum-theoretical one
were to (1) replace orbital frequencies by transition frequencies; (2) relate am-
plitudes to Einstein’s A coefficients; and (3) replace derivatives with respect
to the action variable by difference quotients. The first move goes back to the
embryonic version of the correspondence principle in (Bohr, 1913) (Heilbron
and Kuhn, 1969, pp. 274–275). Ladenburg (1921) introduced the second move.
It was made more precise by Kramers and Van Vleck (cf. Jordan’s remarks
quoted in sec. 2.4). Born (1924) is usually credited with the third move and the
rule for replacing derivatives by difference quotients is sometimes even called
“Born’s correspondence rule” (Jammer, 1966, p. 193) or “Born’s discretizing
rule” (Cassidy, 1991, p. 181). It was found independently, however, by both
Kramers and Van Vleck (see the discussion at the end of sec. 5.2).

The Kramers dispersion formula no longer contains any reference to the or-
bits of the Bohr-Sommerfeld theory, but only to transitions between them.
This signaled to Heisenberg that orbits could be dispensed with altogether.
Dispersion theory further told Heisenberg how to generate quantum formulae
from classical formulae in his Umdeutung scheme. The procedure consisted
of the same three moves listed above: one had to replace (1) classical fre-
quencies (more specifically: the Fourier overtones of the classical mechanical
motion) by quantum transition frequencies; (2) classical amplitudes associated
with definite orbits by quantum transition amplitudes associated with pairs
of stationary states; and (3) derivatives by difference quotients. 213 Dispersion
theory also furnished the fundamental quantization condition for Heisenberg’s
new theory. Heisenberg formulated this condition by applying his Umdeutung
procedure to the Bohr-Sommerfeld quantum condition, which was no longer
acceptable because of its explicit reference to orbits. That Heisenberg’s new

213Another factor in Van Vleck’s failure to take the next step might have been that he
used these correspondence-principle replacements to check rather than to construct
quantum formulae. However, even though Born had emphasized the constructive
use of these replacements (see sec. 5.2), he did not do what Heisenberg did either.
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condition also emerged in the high-frequency limit of the Kramers dispersion
formula (see sec. 7.1) convinced him that he had found a sensible replace-
ment for the Bohr-Sommerfeld condition. The relevant formula had been found
in quantum dispersion theory before and was known as the Thomas-Kuhn(-
Reiche) sum rule (Thomas, 1925; Kuhn, 1925; Reiche and Thomas, 1925).
Van Vleck actually had been the first to find this rule, even though he did not
emphasize the result because he thought it was problematic (see sec. 3.5). In
his later years, Van Vleck nonetheless used to mention this achievement with
pride to several of his colleagues (Roger Stuewer, private communication). The
Kramers dispersion formula and the Thomas-Kuhn sum rule are the critical
physical ingredients in the first two sections of (Heisenberg, 1925), in which
the Umdeutung procedure is motivated. Van Vleck was fully cognizant of these
same ingredients by mid-1924. Van Vleck can thus truly be said to have been
on the verge of Umdeutung in Minnesota in the summer of 1924.
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