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The Fundamental Equations of Quantum Mechanics. 

By P. A. M. DIRAC, 1851 Exhibition Senior Research Student, St. John's 

College, Cambridge. 

(Communicated by R. H. Fowler, F.R.S.-Received November 7th, 1925.) 

? 1. Introduction. 

It is well known that the experimental facts of atomic physics necessitate 
a departure from the classical theory of electrodynamics in the description of 
atomic phenomena. This departure takes the form, in Bohr's theory, of the 

special assumptions of the existence of stationary states of an atom, in which it 
does not radiate, and of certain rules, called quantum conditions, which fix 
the stationary states and the frequencies of the radiation emitted during tran- 
sitions between them. These assumptions are quite foreign to the classical 

theory, but have been very successful in the interpretation of a restricted region 
of atomic phenomena. The only way in which the classical theory is used is 

through the assumption that the classical laws hold for the description of the 
motion in the stationary states, although they fail completely during transitions, 
and the assumption, called the Correspondence Principle, that the classical 

theory gives the right results in the limiting case when the action per cycle of 

the system is large compared to Planck's constant h, and in certain other special 
cases. 

In a recent paper* Heisenberg puts forward a new theory, which suggests 
that it is not the equations of classical mechanics that are in any way at fault, 
but that the mathematical operations by which physical results are deduced 
from them require modification. All the information supplied by the classical 

theory can thus be made use of in the new theory. 

? 2. Quantum Algebra. 

Consider a multiply periodic non-degenerate dynamical system of u degrees 
of freedom, defined by equations connecting the co-ordinates and their time 
differential coefficients. We may solve the problem on the classical theory in 
the following way. Assume that each of the co-ordinates x can be expanded 
in the form of a multiple Fourier series in the time t, thus, 

x =- a,... a (a1o2 ... cu) exp. i (al1l -t- C2 )2 +* ...+ au,o) t 

- == a, exp. i (oco) t, 
* Heisenberg, ' Zeits. f. Phys.,' vol. 33, p. 879 (1925). 



Fundamental Equations of Quantum Mechanics. 

say, for brevity. Substitute these values in the equations of motion, and equate 
the coefficients on either side of each harmonic term. The equations obtained 
in this way (which we shall call the A equations) will determine each of the 

amplitudes x, and frequencies (oco), (the frequencies being measured in radians 

per unit time). The solution will not be unique. There will be a u-fold 

infinity of solutions, which may be labelled by taking the amplitudes and 

frequencies to be functions of u constants K1 ... wK. Each x, and (oCi) is 
now a function of two sets of numbers, the a's and the K's, and may be written 

Xa,K (OCo)K. 

In the quan.tum solution of the problem, according to Heisenberg, we still 
assume that each co-ordinate can be represented by harmonic components 
of the form exp. iot, the amplitude and frequency of each depending on two 
sets of numbers n1 ... nu and m1 ... mn, in this case all integers, and being 
written x (nm), o (nm). The differences nf -- M correspond to the previous 
a, but neither the n's nor any functions of the n's and m's play the part of the 

previous c'S in pointing out to which solution each particular harmonic 

component belongs. We cannot, for instance, take together all the components 
for which the n's have a given set of values, and say that these by themselves 
form a single complete solution of the equations of motion. The quantum 
solutions are all interlocked, and must be considered as a single whole. The 
effect of this mathematically is that, while on the classical theory each of the 
A equations is a relation between amplitudes and frequencies having one 

particular set of /c's, the amplitudes and frequencies occurring in a quantum 
A equation do not have one particular set of values for the n's, or for any 
functions of the n's and mr's, but have their n's and m's related in a special way, 
which will appear later. 

On the classical theory we have the obvious relation 

(aoC)K + (pw), = (a + P, O). 

Following Heisenberg, we assume that the corresponding relation on the 

quantum theory is 

o (n, n - a) + , (n - a, n- - - ) = o (n, n - a - ) 
or 

co (nm) + o) (mk) = co (nk). (1) 

This means that co (nm) is of the form Q (n) - Q (m), the D's being frequency 
levels. On Bohr's theory these would be 2nl/h times the energy levels, but we 
do not need to assume this. 

2x2 
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On the classical theory we can mnultiply two harmonic components related to 
the same set of c's, as follows:- 

a,, exp. i (oco), t. b exp. i (PBO)K t = (ab)a+p,K exp. i (ct + P, o)), t 

where 
(ab)a+p,K =K aaKbp. 

In a corresponding manner on the quantum theory we can multiply an (nn) 
and an (nk) component 

a (nm) exp. io (nm) t. b (mnk) exp. ic (mk) t = ab (nk) exp. io (nk) t 

where ab (nk) a (nm) b (mk). 

We are thus led to consider the product of the amplitudes of an (nm) and 

an (mk) component as an (nk7) amplitude. This, together with the rule that 

only amplitudes related to the same pair of sets of numbers can occur added 

together in an A equation, replaces the classical rule that all amplitudes 

occurring in an A equation have the same set of K's. 

Ve are now in a position to performnl the ordinary algebraic operations on 

quantum variables. The sum of x and y is determined by the equations 

{x + y} (nm) == x (nm) + y (nm) 
and the product by 

xy (nm),== Se x(nk) y (km) (2) 

similar to the classical prod-uct 

(xy) =- 4SX KYa -r,. 

An important difference now occurs between the two algebras. In general 

xy (rn) - yx (nm) 

and quantum multiplication is not commutative, although, as is easily verified, 

it is associative and distributive. The quantity with components xy (nim) 

defined by (2) we shall call the Heisenberg product of x and y, and shall write 

simply as xy. Whenever two quantum quantities occur multiplied together, 

the Heisenberg product will be understood. Ordinary multiplication is, of 

course, implied in the products of amplitudes and frequencies and other 

quantities that are related to sets of u's which are explicitly stated. 

The reciprocal of a quantum quantity x may be defined by either of the 

relations 
1/x.x=1 or x.1/x==l. (3) 

These two equations are equivalent, since if we multiply both sides of the 
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former by x in front and divide by x behind we get the latter. In a similar 

way the square root of x may be defined by 

V/x. V/x - x. (4) 

It is not obvious that there always should be solutions to (3) and (4). In 

particular, one may have to introduce sub-harmonics, i.e., new intermediate 

frequency levels, in order to express A/x. One may evade these difficulties by 
rationalising and multiplying up each equation before interpreting it on the 

quantum theory and obtaining the A equations from it. 
We are now able to take over each of the equations of motion of the system 

into the quantum theory provided we can decide the correct order of the 

quantities in each of the products. Any equation deducible from the equations 
of motion by algebraic processes not involving the interchange of the factors 
of a product, and by differentiation and integration with respect to t, may 
also be taken over into the quantum theory. In particular, the energy 
equation may be thus taken over. 

The equations of motion do not suffice to solve the quantum problem. On 
the classical theory the equations of motion do not determine the xaK, (aco) 
as functions of the K's until we assume something about the c's which serves 
to define them. We could, if we liked, complete the solution by choosing 
the c's such that aE/a cr = cT/2rc, where E is the energy of the system, 
which would make the EC, equal the action variables Jr. There must be corre- 

sponding equations on the quantum theory, and these constitute the quantum 
conditions. 

? 3. Quantum Differentiation. 

Up to the present the only differentiation that we have considered on the 

quantum theory is that with respect to the time t. We shall now determine 
the form of the most general quantum operation d/dv that satisfies the laws 

d cd d (X + Y) = X + - Y c([ )- +ddv (I) 

and 
d d d 
+ (xy) = x .y + . y. (II) dv dv Y dv 

(Note that the order of x and y is preserved in the last equation.) 
The first of these laws requires that the amplitudes of the components of 

dx/dv shall be linear functions of those of x, i.e., 

dx/dv (nm) = En. a (nm ; n'm')x (n'm'). 
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There is one coefficient a (nm; n'm') for any four sets of integral values for 
the n's, r's, n"s and m"s. The second law imposes conditions on the a's. 
Substitute for the differential coefficients in II their values according to (5) 
and equate the (nm) components on either side. The result is 

En'm'k a (nm n'm') x (n'k) y (km') -- Ek,k, a (nk ; n'k') x (n'k') y (km) 

+ E2kk x (nk) a (km ; k'm') y (k'm'). 

This must be true for all values of the amplitudes of x and y, so that we can 

equate the coefficients of x (n'k) y (k'm') on either side. Using the symbol 
38, to have the value unity when m = n (i.e., when each my = n,) and zero 
when m = n, we get 

8kk) a (nim; n'm') a- ( ,nk a (k n'k) - a (Tm; k'm'). 

To proceed further, we have to consider separately the various cases of equality 
and inequality between the kk', mm' and nn'. 

Take first the case when k k', m % m', rn n'. This gives 

a (nm ; n'm') = 0. 

Hence all the a (nm; n'm') vanish except those for which either n - n' or 
m m' (or both). The cases k = k', m =- m', n % n' and k = k', m tm', 

= n' do not give us anything new. Now take the case k - k', m =m', 
n - n'. This gives 

a (nmn; n'm) = a (nk ; n'k). 

Hence a (nm; n'm) is independent of m provided n = n'. Similarly, the case 
k = k ', m n', n = n' tells us that a (nm; nm') is independent of n provided 
m == m'. The case k =/ k', m m', n == n' now gives 

a (nk'; nk) 4- a (km; ,'m) == 0. 

We can sum up these results by putting 

a (nk'; nk) = a (kk') --- a (kcm; k'm), (6) 

provided k f= k'. The two-index symbol a (kk') depends, of course, only on 
the two sets of integers k and k'. The only remaining case is k =- k', m =-- m', 
n = n', which gives 

a (nm; nm) =( a (nk ; nk) + a (km ; km). 

This means we can put 
a (nm ; nm) -- a (mm) - a (nn). (7) 

Equation (7) completes equation (6) by defining a (kk') when k = --'. 
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Equation (5) now reduces to 

dx/dv (nm) = m, ?ma (nm; inm') x (rnm') -+ n,m a (nrm; X'm) x (n'm) 
+ a(nm; nm) x (nm) 

=- Em' - m a (m'm) x (nm') - Sn,, a (nn') x (n'm) 

+ {a ((mm) - a (nn)} x (rm) 

-= k {x (ik) a (km) - a (nk) x (km)}. 
Hence 

dx/dv - xa - ax. (8) 

Thus the most general operation satisfying the laws I and II that one can 

perform upon a quantum variable is that of taking the difference of its Heisen- 

berg products with some other quantum variable. It is easily seen that one 
cannot in general change the order of differentiations, i.e., 

d2x d2X 
dudv dvdu' 

As an example in quantum differentiation we may take the case when (a) 
is a constant, so that a (rnm) = 0 except when n = m. We get 

dxldv (nm) = x (nm) a (mm) -a (nn) x (znm). 

In particular, if ia (mmr) = Q (m), the frequency level previously introduced, 
we have 

dx/dv (nm) = io (nm) x (nm), 

and our differentiation with respect to v becomes ordinary differentiation with 

respect to t. 

? 4. The Quantum Conditions. 

We shall now consider to what the expression (xy- yx) corresponds on the 
classical theory. To do this we suppose that x(nu, --a) varies only slowly 
with the n's, the n's being large numbers and the a's small ones, so that we 
can ,put 

x (I, n - c) == xa, 

where c, =- uh or (nu + a,.) h, these being practically equivalent. We now have 

x (n, n-a) y (n -., n--c - ) -y (n, n-p) x (n - , n-a- ) 

= { ((n, n-oc)-x (n-- , n- -)} y (n-a, n-.--( ) 

-{y (n, n- f)-y (n-c, n-ca-)} x (n-p, --a-). 

= hySr {dr Y a, c - x (9)y 
-^r^j^y^ ^s^^~f { 
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Now 

23a,yP exp. 
' 
(3co) t = a {Y exp. i (Bco) t 

where the wr are the angle variables, equal to o,t/2n. Hence the (nm) 

component of (xy - yx) corresponds on the classical theory to 

a {Y exp. i 
() t } a{ ex p. t} 

(oo) t - { {ep } exp. i (co))t} } 

or (xy - yx) itself corresponds to 

-h { .Dy - y x ax 
2Z aK,8 aWr a,K aw,7j 

If we make the Kf equal the action variables J., this becomes ih/2^ times 
the Poisson (or Jacobi) bracket expression 

{} {ax ay a{ ax ay ay _y 
awr air &2- ai'r aqr apr agr apr 

where the p's and q's are any set of canonical variables of the system. 
The elementary Poisson bracket expressions for various combinations of 

the p's and q's are 

fr) qs] ? [,pr)ps =o 0, 

[qrPJ]=- -0 (r s) (10) 
-1. (r s)j 

The general bracket expressions satisfy the laws I and II, which now read 

[x, z] + [y, z] = [x + y, z], IA 

[xy, z] = x, z] y x [y, z]. IIA 

By means of these laws, together with [x, y] = - [y, x], if x and y are 

given as algebraic functions of the pr and q,, [x, y] can be expressed in terms 
of the [qr, q, ][pr, p] and [q, pj], and thus evaluated, without using the 
commutative law of multiplication (except in so far as it is used implicitly on 
account of the proof of IIA requiring it). The bracket expression [x, y] thus 
has a meaning on the quantum theory when x and y are quantum variables, 
if we take the elementary bracket expressions to be still given by (10). 

We make the fundamental assumption that the difference between the Heisen- 

berg products of two quantum quantities is equal to ih/2ic times their Poisson 
bracket expression. In symbols, 

xy - yx = ih/27 . [x, y]. (11) 

648 



Fundamental Equations of Quantum Mechanics. 

We have seen that this is equivalent, in the limiting case of the classical 

theory, to taking the arbitrary quantities Kc, that label a solution equal to 
the J,, and it seems reasonable to take (11) as constituting the general quantum 
conditions. 

It is not obvious that all the information supplied by equation (11) is con- 
sistent. Owing to the fact that the quantities on either side of (11) satisfy 
the same laws I and II or IA and IIA, the only independent conditions given by 
(11) are those for which x and y are p's or q's, namely 

qgrs - qq = 0 

P,iPs - PsPr0 . (12) 

qrPs- Psq = s ih/2r J 

If the only grounds for believing that the equations (12) were consistent with 
each other and with the equations of motion were that they are known to be 
consistent in the limit when h -> 0, the case would not be very strong, since 
one might be able to deduce from them the inconsistency that h -0, which 
would not be an inconsistency in the limit. There is much stronger evidence 
than this, however, owing to the fact that the classical operations obey the 
same laws as the quantum ones, so that if, by applying the quantum operations, 
one can get an inconsistency, by applying the classical operations in the same 

way one must also get an inconsistency. If a series of classical operations 
leads to the equation 0 =0, the corresponding series of quantum operations 
must also lead to the equation 0 - 0, and not to h = 0, since there is no way 
of obtaining a quantity that does not vanish by a quantum operation with 

quantum variables such that; the corresponding classical operation with the 

corresponding classical variables gives a quantity that does vanish. The 

possibility mentioned above of deducing by quantum operations the incon- 

sistency h = 0 thus cannot occur. The correspondence between the quantum 
and classical theories lies not so much in the limiting agreement when h - 0 as 
in the fact that the mathematical operations on the two theories obey in many cases 
the same laws. 

For a system of one degree of freedom, if we take p = mq, the only quantum 
condition is 

2nm (qq - rq = ih. 

Equating the constant part of the left-hand side to ih, we get 

4nm 2k q (nk) q (kn) o (kn) = . 
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This is equivalent to Heisenberg's quantum condition.* By equating the 

remaining components of the left-hand side to zero we get further relations 
not given by Heisenberg's theory. 

The quantum conditions (12) get over, in many cases, the difficulties concern- 

ing the order in which quantities occurring in products in the equations of 
motion are to be taken. The order does not matter except when a Pr and qr 
are multiplied together, and this never occurs in a system describable by a 

potential energy function that depends only on the q's, and a kinetic energy 
function that depends only on the p's. 

It may be pointed out that the classical theory quantity occurring in Kramers' 
and Heisenberg's theory of scattering by atomst has components which are 
of the form (8) (with fc= Jr), and which are interpreted on the quantum 
theory in a manner in agreement with the present theory. No classical expres- 
sion involving differential coefficients can be interpreted on the quantum 
theory unless it can be put into this form. 

? 5. Properties of the Quantum Poisson Bracket Expressions. 

In this section we shall deduce certain results that are independent of the 

assumption of the quantum conditions (11) or (12). 
The Poisson bracket expressions satisfy on the classical theory the identity 

[x, y, z] -[[x, Ay] z] + [[y, z], x] -- [[z, ], y] 0. (13) 

On the quantum theory this result is obviously true when x, y and z are 

p's or q's. Also, from IA and IIA 

[X1 + x2, y z] = [x, y, z] + [2, , ] 
and 

[X1, x2: y, ] = X1 [X2 , , ] + [x1, y, z] x2. 

Hence the result must still be true on the quantum theory when x, y and z 
are expressible in any way as sums and products of p's and q's, so that it must 
be generally true. Note that the identity corresponding to (13) when the 
Poisson bracket expressions are replaced by the differences of the Heisenberg 

products (xy - yx) is obviously true, so that there is no inconsistency with 

equation (11). 
If H is the Hamiltonian function of the system, the equations of motion 

may be written classically 

Pr = [p7, H] 24 == [q, H]. 

* Heisenberg, loc. cit. equation (16). 
- Kramers and Heisenberg, Zeits. f. Phys.,' vol. 31, p. 681, equation (18), (1925). 
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These equations will be true on the quantum theory for systems for which 
the orders of the factors of products occurring in the equations of motion are 

unimportant. They may be taken to be true for systems for which these 
orders are important if one can decide upon the orders of the factors in H. 
From laws IA and IIA it follows that 

= I[x, H] (14) 

on the quantum theory for any x. 
If A is an integral of the equations of motion on the quantum theory, 

then 
[A, H] = 0. 

The action variables J,. must, of course, satisfy this condition. If Al and A2 
are two such integrals, then, by a simple application of (13), it follows that 

[A1, A2 = const. 

as on the classical theory. 
The conditions on the classical theory that a set of variables Pt, Q, shall be 

canonical are 
[Qr, Qs] =0 [P,, P] =0 

[Q,, PS] = r. 

These equations may be taken over into the quantum theory as the conditions 
for the quantum variables P., Qr to be canonical. 

On the classical theory we can introduce the set of canonical variables 

Jr, related to the uniformising variables Jr, wr, by 

I = (27r)-' J. exp. 2rniW, r-= - i (2x)-fJ ? exp. - 27iwr. 

Presumably there will be a corresponding set of canonical variables on the 

quantum theory, each containing only one kind of component, so that 

if (nm) = 0 except when m% == nr- 1 and m, = ns (s # r), and r, (nm) - 0 

except when mi == n.f + 1 and m = n, (s 
4 

r). One may consider the 

existence of such variables as the condition for the system to be multiply periodic 
on the quantum theory. The components of the Heisenberg products of 

,r and r, satisfy the relation 

(rn (nn) -= (r ) (mn ) Tir ( mnu) = (rnm) (= mr (mm) (15) 

where the m's are related to the n's by the formulae mi == -- 1, m, - = - (s : r). 
The classical i's and ]'s satisfy rr = - i/27t. J,. This relation does not 

necessarily hold between the quantum i's and <'s. The quantum relation 
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may, for instance, be ,tr -- i/2c . Jr, or 1- (E;q + r2r) = i/27 . J, 
A detailed investigation of any particular dynamical system is necessary in 
order to decide what it is. In the event of the last relation being true, we 
can introduce the set of canonical variables ~.', <' defined by 

- (Er + ir)/V2, rt - - (ir +- Tr)/V2, 

and shall then have 
is is ( c + rr rrr 

This is the case that actually occurs for the harmonic oscillator. In general 
Jr is not necessarily even a rational function of the [. and ~r, an example 
of this being the rigid rotator considered by Heisenberg. 

? 6. The Stationary States. 

A quantity C, that does not vary with the time, has all its (nm) components 
zero, except those for which n = m. It thus becomes convenient to suppose 
each set of n's to be associated with a definite state of the atom, as on Bohr's 

theory, so that each C (nn) belongs to a certain state in precisely the same way 
in which every quantity occurring in the classical theory belongs to a certain 

configuration. The components of a varying quantum quantity are so inter- 

locked, however, that it is impossible to associate the sum of certain of them with 
a given state. 

A relation between quantum quantities reduces, when all the quantities are 

constants, to a relation between C(nn)'s belonging to a definite stationary state n. 
This relation will be the same as the classical theory relation, on the assumption 
that the classical laws hold for the description of the stationary states; in 

particular, the energy will be the same function of the J's as on the classical 

theory. We have here a justification for Bohr's assumption of the mechanical 
nature of the stationary states. It should be noted though, that the variable 

quantities associated with a stationary state on Bohr's theory, the amplitudes 
and frequencies of orbital motion, have no physical meaning and are of no 
mathematical importance. 

If we apply the fundamental equation (11) to the quantities x and H we get, 
with the help of (14), 

x (nm) H (mm) - H (nn) x (nm) ih/2r . x (nm) - h/2n . o (nm) x (nm), 

or H (nn) - H (mm) - h/2r . co (nm). 

This is just Bohr's relation connecting the frequencies with the energy 
differences. 
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The quantum condition (11) applied to the previously introduced canonical 
variables i, ,. gives 

ArT (Inn) - 7rr (nn) = ih/27 . [i, r = ih/2r7. 

This equation combined with (15) shows that 

,rTr (nn) = - nr ih/2= + const. 

It is known physically that an atom has a normal state in which it does not 
radiate. This is taken account of in the theory by Heisenberg's assumption 
that all the amplitudes C (nm) having a negative nr or my vanish, or rather do 
not exist, if we take the normal state to be the one for which every rn is zero. 
This makes ,.r (nn) = 0 when l ze = 0 on account of equation (15). Hence in 

general 
Ar3 (nen)= - n, ih!2. 

If Erk =- iJ2n . Jr, then J, n h. This is just the ordinary rule for quan- 
tising the stationary states, so that in this case the frequencies of the system 
are the same as those given by Bohr's theory. If - (rv + - r,) - i/2 J,., 
then Jr-= (n + 2) h. Hence in general in this case, half quantum numbers 
would have to be used to give the correct frequencies by Bohr's theory.* 

Up to the present we have considered only multiply periodic systems. There 
does not seem to be any reason, however, why the fundamental equations (11) 
and (12) should not apply as well to non-periodic systems, of which none of 
the constituent particles go off to infinity, such as a general atom. One would 
not expect the stationary states of such a system to classify, except perhaps 
when there are pronounced periodic motions, and so one would have to assign 
a single number n to each stationary state according to an arbitrary plan. Our 

quantum variables would still have harmonic components, each related to 
two n's, and Heisenberg multiplication could be carried out exactly as before. 
There would thus be no ambiguity in the interpretation of equations (12) or 
of the equations of motion. 

I would like to express my thanks to Mr. R. H. Fowler, F.R.S., for many 
valuable suggestions in the writing of this paper. 

* In the special case of the Planck oscillator, since the energy is a linear function of J, 
the frequency would come right in any case. 
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