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N non-interacting bosons

Trapping potential

The many-body Hamiltonian is a sum of single-particle 
Hamiltonians whose eigenvalues have the form

The ground state of N non-interacting bosons is given by 
putting all particles into the lowest single-particle state:

with

Density distribution: Cloud size is independent of N and is 
fixed by the harmonic oscillator length:

height of the 
central peak: 
5 × box size

Density distribution of 80000 
23Na atoms in a trap 

non-interacting

interacting

(geometric average)



N interacting bosons

The time evolution of the field operator of N interacting bosons is given in the Heisenberg 
representation by

Field operator:

single particle wave function annihilation / creation operators:

Many-body Hamiltonian describing N interacting bosons confined by an external potential is given 
in second quantization by

Solving the equation for more than 104 particles involves heavy numerical work. 
Instead, we develop a mean-field theory that allows one also to understand the behavior of the 
interacting bose gas in terms of a set of parameters having a clear physical meaning.   



Gross-Pitaevskii theory

The time evolution of the field operator of N interacting bosons is given in the Heisenberg 
representation by

Field operator:

In a BEC macroscopic occupation of the ground state: 

single particle wave function

small perturbation

annihilation / creation operators:

ground state wave function

thus

(Bogoliubov 1947)

Approximation of the field operator at very low T: 



Gross-Pitaevskii equation

This replacement is analogous to the transition from quantum electrodynamics to the classical 
description of electromagnetism in the case of a large number of photons. 

Due to the large particle number the non-commutivity of the field operators is not important and the 
field can be described by classical functions.

In general:

with and

classical field, order parameter, wavefunction of the condensate

Gross-Pitaevskii equation (1961)

Replacement of the potential in the Heisenberg equation shall reproduce the same low energy 
scattering properties given by the bare potential V. 

This is given by the pseudo-potential: with



The GP theory is a microscopic theory that describes the interacting non-uniform 
bose gas at zero temperature.

• GP describes BECs in traps that are non-uniform.

• GP exhibits new features in the dynamics as compared to the uniform case. 

The GP theory is today the main tool for investigating trapped BECs. The GP 
equation has the form of a mean-field equation where the order parameter 
(condensate wavefunction) has to be calculated in a self-consistent way. 

The GP theory describes typical properties of interacting condensates like 
propagation of excitations, interference, etc.

Gross-Pitaevskii theory



Four wave mixing

Another interpretation: Bragg scattering of a matter wave on a matterwave grating. 

Density modulated grating at 45° represents a potential grating for the incoming 
wave due to the density dependent interaction potential.

The density modulation reflect the incoming wave with the same momentum by 90°.
Of course, the role of the two counter propagating initial waves can be interchanged. 



Four wave mixing

Wave mixing with sum and difference frequency generation is known from 
nonlinear optics with intense laser fields. 

The nonlinear interaction of the electric 
field with the mediums then described by:  

Similar nonlinear interaction is found in the 
GP-equation:

Difference: particle conservation in BEC!

Four wave mixing in BEC:

Three incoming orthogonal 
matterwaves with momentum 
of equal amplitude and 
orthogonal direction generate 
a fourth wave.



Conservation laws associated with the GP equation

1. Particle number N due to 

The continuity equation is received by multiplying the GP equation by Ψ* 
and subtracting the complex conjugate of the resulting expression.

with

The velocity field results to
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∂
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and the current density



Conservation laws associated with the GP equation

The condensate is a liquid with a velocity potential

→ „irrotational flow“
(because decidedness of the phase, only 
quantized vortices are possible.)

2. The total energy is also conserved (for time independent potentials)
The time dependence of the order parameter is

Separating the time evolution, we get the stationary GP equation

with

The value of chemical potential μ is given by the normalization condition:
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Creation of vortices in BEC

Stirring one/two laser beams: 

J. Abo-Shaeer et al., Science 292, 476 (2001)

The examples show approximately (A) 16, (B) 32, (C) 80,and (D) 130 vortices. 
The vortices have „crystallized“ in a triangular pattern. The diameter of the cloud 
in (D) was 1 mm after ballistic expansion, which represents a magnification of 20.



Quantized vortices in the Gross-Pitaevskii theory

Quantized vortex along the z axis 
is described by the order parameter:

κ is integer, ϕ is the angle around z,

Tangential velocity of the vortex state:

Angular momentum along z:

The GP equation takes the form:  

centrifugal term

For κ ≠0, Φ vanishes on the z axis.

Non-interacting gas:

quantum of circulation



Quantized vortices in the Gross-Pitaevskii theory

Noninteracting gas, for κ =1:

Energy of the state:             + ground state energy

BEC with repulsive interaction, κ =1

Size of the core: 
(healing length)

Critical frequency for creating a vortex: 

0
C

E E
N

κ−
Ω =

κh

With        the Thomas-Fermi radius of the 
condensate. 

Creation of single quantized vortices is favored: 2
kinE (N )∝ κh

(kinetic E of atoms circulating around the core)



Creation of vortices in BEC

Topological vortices: Decay of double quantized vortices:

Axial absorption images of condensates 
after 15 ms of ballistic expansion with a
variable hold time after imprinting a doubly 
quantized vortex.

By inverting the z direction 
magnetic field, a doubly 
quantized vortex is imprinted.

A. E. Leanhardt et al., Phys. Rev. Lett. 89, 190403 (2002)



Collapse for attractive forces (a<0)

For attractive interaction the kinetic energy can not be neglected. It is stabilizing the 
condensate against collapses. 

As long as interaction energy < kinetic energy the condensate is stable.

Ekin :

Eint :

Ekin +Eint :

Critical atom number in a harmonic trap

For N>NC collaps!

with

kinetic energy ~1/r2

interaction energy ~1/r3



Thomas-Fermi approximation (a>0)

We approximate the GP equation for repulsive interaction (a>0) in the limit

interaction energy >> kinetic energy

Thereby takes the density the shape 
of the potential:

1
8

↔ =ng
na

ξ
π

healing lengthint. energy

ξ

density n(r)

single particle potential in 
the condensate



Bose-Einstein condensation
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absorption images 
after

20 ms ballistic 
expansion

T= 1 μK

T= 500 nK

T= 800 nK

The expansion is 
described by the 
scaling equations.
Castin and Dum 
PRL 77, 5316 (1996)



Ballistic expansion of a condensate

The phase of the condensate takes a parabolic profile and its evolution is given also by the 
scaling parameter (see Castin and Dum PRL 77, 5316 (1996) ).

scaling parameters
describing the radial and axial 
size of the condensate at any 
time in units of the Thomas-
Fermi radius



Collective excitations of a condensate (T=0)

Oscillations having wavelengths much smaller than the size of the condensate (                 )
propagate as usual sound waves or free particles according to the Bogoliubov dispersion relation:

trapω >> ω

ckhh ≈ω with

particle like 
excitationsound 

waves

Conversely, excitations at lower frequencies (               ) involve a motion of the whole condensate: 
Center of mass oscillations or collective shape oscillations. These can be derived from the 
hydrodynamic theory of superfluids in the collisionless regime. 

trap~ω ω

2×R (Thomas-Fermi size)
shape oscillations



Bogoliubov dispersion relations

It is possible to excite sound waves and shape oscillations in the condensate at T=0. The 
dispersion relation ω(k) can be derived from the GP equation by the following ansatz:
(Pitaevskii 1961)

u(r) and q*(r) describe small amplitude, harmonic perturbations on the condensate ground state. 

After substitution into the GP equation, we get two coupled differential equations for  u(r) and 
q(r). Taking just the linear terms into account, and with             the dispersion relation reads:  

(Bogoliubov 1947; second quantization, 
and diagonalization of the Hamiltonian) 

ng=μ

ckhh ≈ω with

particle like 
excitationsound 

waves



Speed of sound

A sound wave is generated by focusing a laser pulse into the center of the condensate. 
A wave excitation formed in this way propagates and its position inside the condensate 
is detected at different times. 



Bogoliubov dispersion relation

Excitation Spectrum of a BEC
J. Steinhauer, R. Ozeri, N. Katz, and N. 
Davidson
Phys. Rev. Lett. 88, 120407 (2002) 

Measurements using
„Bragg spectroscopy“



Solitons

Wavepacket like excitations of one dimensional nonlinear systems.

M. Weidemüller, C. Zimmermann (Eds.) „Interaction in ultracold gases“, Whiley-VCH 2003, Weinheim



Dark solitons in BEC with a>0

Phase imprinting, e.g. with applying an optical 
potential to one part of the condensate. 

For a pure phase imprinting (no density 
redistribution), timprint has to be shorter than 
the correlation time tc=μ/ħ of the condensate.

impr int
U tϕ =
h

soliton

density wave

The soliton propagates with a velocity smaller than the sound velocity (density wave).



Role of dimensionality

The dynamics of the condensate significantly changes with the dimensionality.

The dynamics in 1D, 2D, and cross-over regimes are topic of a large number of 
theoretical and experimental work.

Cross-over from 3D to 1D:

3D, quasi homogeneous, Thomas-Fermi regime

confined regime, BEC confined to the radial trap 
ground state, thermal cloud 3D

quasi 1D regime, two dimensional freeze out

…



Expansion of a condensate in a waveguide

axial relaxation reduces interaction energy

“quasi-1D condensate” without excitations

wave packet propagating in 
transverse ground state
v=50 mm/s, Δv=5 mm/s



Role of dimensionality

Regimes of Quantum Degeneracy in Trapped 1D Gases
D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 85, 3745 (2000) 



Gross-Pitaevskii equation

Solution of the GP equation

• The lowest energy solution defines the order parameter and is in general real

• Exited state solutions are usually complex, most famous example is the vortex state

• Since GP is a nonlinear equation, two solutions ψa and ψb corresponding to μa and μb

are not necessarily orthogonal. (The many body wavefunctions are orthogonal but the 
order parameter not necessarily.)

GP is similar to the Ginzburg-Landau equations:
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Supplements 



Gross-Pitaevskii equation

Conditions for the GP equation:

1. Large number of atoms ( ↔ concept of BEC)

2. Dilute gas |a| << n-1/3 and low T                                                      
With these conditions both, the quantum and thermal depletion of the condensate can 
be neglected and the order parameter can be normalized to the total number of atoms.

3. GP describes only phenomena taking place on length scales >> a 

Φ is analogous to E and B of the Maxwell theory. So the condensate wavefunction represents the
classical limit of the de Broglie waves, where the corpuscular aspect of matter does not matter. 

Difference between GP and Maxwell equations:

1. GP contains the Planck constant so the value of ħ enters into coherence and interference 
phenomena. The reason is the different dispersion relation.

2. GP is nonlinear. This raises similarities to nonlinear optics.

Photon: Atom:= → =E cp ckω
2 2

2 2
= → =

hp kE
m m

ω



Hydrodynamic equations

0)( =∇+ nvn&

Differential equations for density and velocity

The wavefunction

is substituted into the time dependent GP equation 

Sorting real and imaginary parts results in two equations: 

Equation of continuity: 

Quantum-Bernouli equation:
(force balance)

quantum pressure

For usual condensates is the quantum pressure negligible and we get the Euler 
equation that is known from the frictionless hydrodynamics. 

The condensate is a superfluid!



Eigenfrequencies of collective excitations for Na/aho>>1, 
small amplitude oscillations

with ansatz (small perturbations on the top of 
the stationary solution of the GP equation)

The hydrodynamic equations

gives for the density modulation (after linearization in δn):

P are polinoms of 2nr order, nr is the 
radial quantum number, l and m are 
quantum numbers of the angular 
momentum.

0)( =∇+ nvn&

Ansatz: periodic modulation

For spherical potentials the solutions are of the form 

The dispersion law for the discretized normal modes: Different from the case of the ideal gas! 



Eigenfrequencies of collective excitations for Na/aho>>1,
small amplitude oscillations

For a trap with cylindrical symmetry (explicit results are known for some particular cases):

The modes (nr,l,m) = (0,2,0) and (1,0,0) are coupled in the cylindrical trap. 
The corresponding new eigenfreuencies are:

The lowest lying eigenmodes:

These are observed in numerous experiments.



Collective small amplitude excitations

Low frequency, small amplitude shape 
oscillations of the condensate in a trap. 

For a condensate in a trap with cylindrical 
symmetry, the lowest lying excitations are 
the following quadrupole modes:  

axial shape oscillation
(small radial contribution)

radial shape oscillation
(small axial contribution)

radial shape oscillation

The center of mass oscillation of the condensate 
in the trap (ω=ωa, ωr) is referred as dipole oscillation.



Condensate oscillation in anharmonic traps

B(z) = 3.879 + 0.219 z2 - 0.011 z3 – 0.026 z4

U(z)

z

tim
e

z (mm)z (mm) z (mm)

initial displacement:
A: 0.45 mm 

B: 0.63 mm

C: 0.79 mm

15 ms time of flight



Shape oscillations

H. Ott, J. Fortágh, S. Kraft, A. Günther, 
D. Komma, C. Zimmermann
PRL 91, 040402 (2003)

cigar pancake

• data well described by the
Gross-Pitaevskii equation

• no damping

• slowly increasing offset due to
transition into 1D regime

aspect ratio r/z after 15 ms time of flight



Spectra of shape oscillations

transition to 
deterministic chaos

• excitation of the fundamental (i) 

• excitation of the 2nd harmonic (ii)

• off-resonant excitation of lowest
collective mode (iii)

• nonlinear sum frequency mixing 
between all modes

cigar pancake



Large amplitude oscillations: scaling equations

We derive the equations for the expansion of a condensate in the Thomas-Fermi regime from a 
harmonic trap. The theory is given by Castin and Dum PRL 77, 5316 (1996) and describes the 
evolution of the condensate density and the phase.

The ansatz solves the hydrodynamic equations: 

This results 6 coupled differential equations for ai and  αI. The 7th parameter a0 is given by the 
normalization.

A practical scaling is the Thomas-Fermi radius: scaling parameter
describing the size of the 
condensate at any time in units 
of the Thomas-Fermi radius

Inserting into the differential  equations

results the scaling equations: and



Scaling equations, expansion

Starting with a condensate in a trap, all velocities are 0      αI = 0,

The scaling equations say that the condensate keeps a parabolic density distribution when the 
trap frequencies change. 

For a trap with cylindrical symmetry:

the phase over the condensate is constant,

bi=1   and   bi/dt=0.

The simplest case: sudden turn off the trap

For a cigar shaped condensate λ<<1, we got analytic solutions

The phase of the condensate takes a parabolic distribution and its evolution is given also by the 
scaling parameter (see original paper).



Scaling equations, expansion

The phase of the condensate takes a parabolic profile and its evolution is given also by the 
scaling parameter (see original paper).

scaling parameters
describing the radial and axial 
size of the condensate at any 
time in units of the Thomas-
Fermi radius


