Example: wage inequality ------------------------ ge_entr.ado - German Socio-Economic Panel (GSOEP) - wave 1996 - strictly positive wages - STATA-Output: . ge_entr weight96 wage95 ---------------------------------------------------------------- Generalized entropy measures with bootstrap confidence intervals ---------------------------------------------------------------- Confidence level = 0.95, 100 bootstrap replications ---------------------------------------------------------------- GE^-1 = 0.334055, confidence interval [0.304113 ; 0.368023] MLD = 0.200512, confidence interval [0.183040 ; 0.217421] THEIL = 0.170764, confidence interval [0.147927 ; 0.189413] GE^2 = 0.206883, confidence interval [0.099874 ; 0.256426] ---------------------------------------------------------------- Example: wage inequality difference ----------------------------------- diff_ge.ado - German Socio-Economic Panel (GSOEP) - waves 1996 and 1986 - only strictly positive wages count - STATA-Output: . diff_ge weight86 wage85 c86 weight96 wage95 c96 ------------------------------------------------------------------ Generalized entropy differences and bootstrap confidence intervals ------------------------------------------------------------------ Confidence level = 0.95, 100 bootstrap replications ------------------------------------------------------------------ GE^-1 = -0.023410, confidence interval [-0.062718 ; 0.022843] MLD = -0.013676, confidence interval [-0.031238 ; 0.012549] THEIL = -0.013886, confidence interval [-0.048052 ; 0.031287] GE^2 = -0.024116, confidence interval [-0.151645 ; 0.121033] ------------------------------------------------------------------ Example: subgroup decomposition of wage inequality -------------------------------------------------- sub_dec.ado - German Socio-Economic Panel (GSOEP) - wave 1996 - subgroup 1 = natives, subgroup 2 = foreigners - strictly positive wages - STATA-Output: . sub_dec weight96 wage95 df96 Subgroup decomposition with bootstrap confidence intervals ---------------------------------------------------------- Confidence level = 0.95, 100 bootstrap replications ---------------------------------------------------------- Contributions to overall inequality measured by MLD --------------------------------------------------- Total ----- MLD = 0.200512, confidence interval [0.180616 ; 0.217859] Within-group: absolute contributions ------------------------------------ subgroup 1 = 0.186745, confidence interval [0.167548 ; 0.203651] subgroup 2 = 0.012550, confidence interval [0.009742 ; 0.015203] Within-group: relative contributions ------------------------------------ subgroup 1 = 0.931337, confidence interval [0.917095 ; 0.950596] subgroup 2 = 0.062589, confidence interval [0.047448 ; 0.076688] Between-group: absolute contribution ------------------------------------ MLDB = 0.001218, confidence interval [0.000130 ; 0.001893] Between-group: relative contribution ------------------------------------ MLDB = 0.006074, confidence interval [0.001082 ; 0.009352] Within-group MLD ----------------------- subgroup 1 = 0.201577, confidence interval [0.179612 ; 0.220917] subgroup 2 = 0.170554, confidence interval [0.142482 ; 0.201566] Population shares ----------------- subgroup 1 = 0.926417, confidence interval [0.918377 ; 0.935736] subgroup 2 = 0.073583, confidence interval [0.065322 ; 0.081696] Contributions to overall inequality measured by THEIL ----------------------------------------------------- Total ----- THEIL = 0.170764, confidence interval [0.146156 ; 0.189939] Within-group: absolute contributions ------------------------------------ subgroup 1 = 0.161042, confidence interval [0.137997 ; 0.181576] subgroup 2 = 0.008571, confidence interval [0.006556 ; 0.010893] Within-group: relative contributions ------------------------------------ subgroup 1 = 0.943065, confidence interval [0.932124 ; 0.959447] subgroup 2 = 0.050192, confidence interval [0.034516 ; 0.063181] Between-group: absolute contribution ------------------------------------ THEILB = 0.001152, confidence interval [0.000176 ; 0.001781] Between-group: relative contribution ------------------------------------ THEILB = 0.006743, confidence interval [0.001261 ; 0.010470] Within-group THEIL ----------------------- subgroup 1 = 0.171574, confidence interval [0.146337 ; 0.192979] subgroup 2 = 0.139622, confidence interval [0.120459 ; 0.166902] Income shares ------------- subgroup 1 = 0.938613, confidence interval [0.931090 ; 0.949598] subgroup 2 = 0.061387, confidence interval [0.051975 ; 0.070205] Example: interquartile transitions of equivalent income ------------------------------------------------------- mob.ado - German Socio-Economic Panel (GSOEP) - waves 1996 and 1997 - state 1 = 1. quartile, state 2 = 2. quartile etc. - no weights (i.e. all weights = 1) - STATA-Output: . gen w=1 . mob w d961 d962 d963 d964 d971 d972 d973 d974 ------------------------------------------------------------------ Prais mobility index, estimate and bootstrap confidence interval ------------------------------------------------------------------ Confidence level = 0.95, 100 bootstrap replications ------------------------------------------------------------------ Prais index = 0.451590, confidence interval [0.432648 ; 0.484881] ------------------------------------------------------------------ Example: mobility index difference ---------------------------------- diff_m.ado - two states - artificial data: w d11 d12 d21 d22 d31 d32 d41 d42 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 - STATA-Output: . diff_m w d11 d12 d21 d22 d31 d32 d41 d42 ------------------------------------------------------------------------ Prais mobility difference, estimate and bootstrap confidence interval ------------------------------------------------------------------------ Confidence level = 0.95, 100 bootstrap replications ------------------------------------------------------------------------ Prais difference = -0.100000, confidence interval [-0.200000 ; 0.175000] ------------------------------------------------------------------------ .