P4-Protect: 1+1 Path Protection for P4

Steffen Lindner, Daniel Merling, Marco Häberle, Michael Menth

http://kn.inf.uni-tuebingen.de
Agenda

► Motivation
► Mechanism
 ▪ Overview
 ▪ Packet selection
► Evaluation
 ▪ Processing time
 ▪ TCP Throughput
 ▪ Influence on Jitter
► Conclusion
Motivation

- Critical traffic requires 100% reliability
 - Classical FRR mechanisms/reconvergence have too long response times
 - Reconvergence happens at time scale of a seconds
 - FRR detection may take a few 10s of milliseconds

- 1+1 Protection protects 100% at SLF/SNF without packet loss

- Classic field of application: Optical Networks, MPLS, Ethernet

- Our solution: 1+1 Path Protection for IP networks with P4

- Requirement: Start and end point are P4 switches (e.g. Tofino Edgecore Wedge)
Setup

- Two P4 switches are connected via a network with several, preferably disjoint paths
- The network can be composed of P4 switches and legacy devices
- It is also possible that the P4 switches are connected to each other via a foreign network

Objective

- Redundant transfer of data between the two P4 switches
Mechanism

- Upon packet arrival, ingress node (PTI) decides if traffic should be redundantly transmitted
- Redundant traffic gets replicated onto two different paths
- Traffic is tunneled to egress node (PTE)
- The PTE decides which packet version gets accepted
Path selection

- In the own network, traffic engineering can be used to ensure disjoint paths between PTI and PTE
- To secure traffic over a foreign network, e.g. the internet, we suggest the use of triangular routing
- One path is build using an intermediate IP hop to enforce as disjoint paths as possible
Protection header

- PTE needs to forward packets without duplicates
- Protection header contains connection identifier and sequence number
- Sequence number is used to accept the first version of each packet

<table>
<thead>
<tr>
<th>Connection Identifier</th>
<th>Next Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequence Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Packet Selection

- Duplicates must be recognized at the PTE and must not be forwarded.
- Due to packet loss and latency differences, packets with sequence numbers within a given range should be accepted.
- We leverage a receive window to compensate for packet loss and latency differences.

Acceptance criterion with window width W:

$$SN_{last}^{PTE} < SN \leq SN_{last}^{PTE} + W$$

- Due to cyclic sequence number range wrap-around, must be considered.
Evaluation – Processing time

P4-Protect: 1+1 Path Protection for P4 – Steffen Lindner – 02.04.2020
Evaluation – TCP Throughput

PTI

P4-Switch

Host

PTE

Number of client/server pairs

Goodput (Gb/s)

Plain

Unprotected

Protected

0 25 50 75 100

1 2 3 4

P4-Protect: 1+1 Path Protection for P4 – Steffen Lindner – 02.04.2020
Evaluation – Influence on Jitter

P4-Protect: 1+1 Path Protection for P4 – Steffen Lindner – 02.04.2020
P4-Protect enables 100G 1+1 protection without performance loss compared to legacy implementations.

Only two 100G P4 switches are required (PTI and PTE).

With the help of triangular routing, P4-Protect can also be used across foreign networks.
Steffen Lindner
University of Tuebingen
Faculty of Science
Department of Computer Science
Chair of Communication Networks