An SDN Architecture for Automotive Ethernets

M. Häberle, F. Heimgärtner, H. Löhr, N. Nayak, D. Grewe, S. Schildt, M. Menth

http://kn.inf.uni-tuebingen.de
Motivation

- In-vehicle networks today
 - Low bandwidth technologies
 - Static configuration, determined during manufacturing

- Future
 - More bandwidth demand
 - Configuration changes after purchase
 - Plug-and-play add-on components
 - Downloadable features

- Reconfigurable networks required
Evolution of E/E-Architectures

► Distributed ECUs connected to single CAN bus
► Multiple CAN buses connected to central gateway
 ▪ Additional application specific buses (LIN, MOST, FlexRay)
► Consolidation of functionality into more powerful devices
 ▪ Domain model
 – ECUs separated into Domains (safety, comfort, infotainment,…)
 – One or more buses per domain connected to domain controller
 – Domain controllers connected by backbone network
 – Problem: wiring effort
 ▪ Zone model
 – Zone controllers per location (front left/right, rear left/right,…)
 – ECUs connected to local zone controllers
 – Zone controllers interconnected by backbone network (mesh)
► Automotive Ethernet
► Time Sensitive Networking
Use Case: Trailer Networks

► Trailer connection today
 ▪ Electrical connection (5-22 pins)
 ▪ Fixed function set (tail lamps, turn signals, electric brakes)

► Future
 ▪ Switches in car and trailer
 ▪ Ethernet connection

► Benefits from reconfigurable networks
 ▪ Connection of networked components in trailer to vehicle
 - Cameras
 - Sensors (e.g., park distance control)
 - Actuators (e.g. electric brakes with TSN)
 ▪ Sharing of uplink (e.g., Wi-Fi for caravans/camping trailers)
Use Case: Driver-Assistance Systems

- Downloadable driver-assistance systems or OTA updates

- Benefits from reconfigurable networks
 - Change of data sources (sensors, etc.)
 - Reconfiguration of real-time streams

- Example: Update of collision avoidance system
 - Initial feature set
 - Check forward traffic only
 - Update
 - Check backward traffic while reversing
 - Needs access to reversing camera or PDC sensors
 - Re-configuration of network required
Automotive SDN Architecture

Controlplane

- Inventory DB
- Permissions DB
- TSN Calculator
- Authenticator
- Network Controller

Dataplane

- TSN Scheduler
- Firewall
- Failsafe Mechanisms
- Access Control

Haeberle et. al.: An SDN Architecture for Automotive Ethernets, 2020-04-01, KuVS-FG NetSoft, Tuebingen
Components
- Scheduler
- Rate limiter
- Firewall
- Fail-safe mechanisms
- Redundant links
- Access control

Functionality
- Interconnect components and applications
- Connect components and applications to management system

Traffic classes
- Hard real-time
 - Safety-critical components
 - Fixed deadlines
- Soft real-time
 - Less critical systems
 - Degraded operation possible with missed deadlines
- Configuration
 - Management
 - Discovery
- Best effort
 - Infotainment
 - All other traffic
Two switches (front and rear switch)

Two backbone links between front and rear

- Link aggregation during normal operation
- Rescheduling traffic to the operational link in case of link failure
- 1+1 protection for selected critical flows
Management

- Data plane configured by network controller
- Controller directly connected to one of the switches
- In-band signaling
 - Reduced wiring effort
 - Extensibility (trailer use case)
- Northbound interface
 - Used to trigger reconfigurations
 - Access restricted by ACLs and permission levels
Operations: TSN Configuration

- Safety critical components require real-time communication
- Updates of Time Sensitive Networking (TSN) configuration
 - Allocation of bandwidth
 - Re-calculation of schedules
 - Path selection for 1+1 protection
- Hybrid scheduling
 - In-car controller calculates initial schedule
 - Guarantees for safety-critical systems
 - Non-optimal, with approximations
 - Cloud service is triggered for schedule calculation
 - Re-use cached schedule for same constellation
 - Compute optimal schedule if no cached schedule available
Operations: Discovery

► Discovery of devices based on signed manifest
 ▪ Network ports of switches blocked initially, only discovery channel open
 ▪ New device sends manifest via broadcast message on discovery channel
 – Contains information about device (identification, requirements to network, access to northbound API of controller required, …)
 – Signed by manufacturer of device
 – External store of CA certificates, local cache
 ▪ Controller re-configures network, gives access to northbound API if requirements of device are not static (e.g. if apps can be installed)

► Application discovery similar
 ▪ Difference: Manifest sent by Host device via northbound API
Operations: Failover

► Single backbone link failure
 ▪ Traffic is rerouted through remaining backbone link
 ▪ Pre-calculated outage schedule for TSN flows

► Controller failure
 ▪ No reconfiguration possible anymore
 ▪ Backup flows and schedules pre-computed for critical systems
 ▪ Switches apply backup configuration if connection to controller lost

► Switch failure or double backbone link failure
 ▪ Components enter fail-safe state
 ▪ Backup systems to ensure safe stop of vehicle
Security

- Devices and Applications
 - New devices can only access network for discovery
 - Manifest signed by trusted manufacturer required
 - Device sends app manifest to controller via northbound API
 - Central CA store contains CA certificates

- Network security
 - Specific flows between devices and applications
 - Firewall for outside connections
 - Filtering of uplink, V2X, Bluetooth, Wi-Fi
 - MACsec or AUTOSAR SecOc for integrity protection
 - Access restrictions for controller interfaces
Conclusion

- Legacy automotive networks
 - Low bandwidth
 - Static configuration

- New applications and use cases
 - Higher bandwidth demand
 - More flexibility needed

- Technology for future automotive networks
 - Automotive Ethernet
 - Time-Sensitive Networking

- SDN concepts for automotive ethernets
 - Configuration and management
 - Path selection
 - TSN Schedules
 - Access Control
Marco Häberle, MSc.
haeberle@informatik.uni-tuebingen.de
University of Tuebingen, Dept. of Computer Science
Chair of Communication Networks
Sand 13, 72076 Tuebingen, Germany
http://kn.inf.uni-tuebingen.de/