ZeroSDN: A Highly Flexible and Modular Architecture for Full-range Network Control Distribution

Thomas Kohler, Frank Dürr, Kurt Rothermel

October 12th, 2017
Introduction – Control Plane as a Distributed System

- SDN paradigm
 - Separation of control plane and data plane
 - Logically centralized control
 - Global view
 - Distribution transparency
Introduction – Evolution of SDN Controller Architectures

- **Control Plane (CP)**
 - Monolithic
 - Replication support

- **Data Plane (DP)**
 - Fixed controller-instance assignment (master / slave)
Introduction – Evolution of SDN Controller Architectures

- **CP**
 - Modular
 - Monolithic
 - Replication support

- **DP**
 - Fixed controller instance assignment (master / slave)

CP
- Modular
- Monolithic
- Replication support

DP
- Fixed controller instance assignment (master / slave)
Introduction – Evolution of SDN Controller Architectures

- CP
 - Modular
 - Distributed
 - Partitioning
 - Replication support

- DP
 - CF partitioning
 - controller mapping
 - Dynamism

DevoFlow, Kandoo
Introduction – Evolution of SDN Controller Architectures

• Observations & Shortcomings

1. Fully (logically) centralized control model
 ▪ No control communication between switches
 ▪ No switch-local logic (decision making)

2. Heavyweight controllers
 ▪ Modularization frameworks typically heavy-weight
 ▪ Lightweight controllers do not have distribution capabilities

3. Tight switch-controller coupling
 ▪ Fixed mapping
 ▪ No module dynamism
Outline

• Introduction – Evolution of SDN Controller Architectures

• **Architecture for Full-range Network Control Distribution**

• Highly Flexible Control Plane Distribution

• Implementation & Evaluation

• Roadmap to a Highly Scalable Holistic System Control Plane

• Conclusion
Contributions

- SDN Controller Architecture with high flexibility in distribution
 - From logically centralized to fully decentralized control

- Micro-Kernel controller architecture for distributed light-weight controller modules (controllets)

- Pushing down network control to switches (local logic)
 - While leveraging global knowledge

- Decoupling of controllets through a message bus
 - Content-based filtering of data- & control plane events
Architecture for Full-range Network Control Distribution

- μ-Kernel architecture
- Modularity
- Full distribution
 - Local & remote controllets
- Replication
- Message bus
- Event-based network control
Message Bus – Decoupling Event-based Controllets

• Data- / Control- plane events
 ◦ Packets or state changes of switches and data plane end-hosts (DPE)
 ◦ Control coordination messages and control state changes (CPE)

• Message bus paradigm
 ◦ Routing of events to subscribers w/ content-based filtering
 ◦ Emulation of P2P, multicast communication patterns
 ◦ Transparently implement arbitrary delivery semantics

Ravana: Controller Fault-tolerance in SDN; Rexford et al. SOSR‘15
Outline

- Introduction – Evolution of SDN Controller Architectures
- Architecture for Full-range Network Control Distribution
- **Highly Flexible Control Plane Distribution**
 - Fully Distributed Control
 - Local Logic: Local Data Plane Event Processing (LDPEP)
- Implementation & Evaluation
- Roadmap to a Highly Scalable Holistic System Control Plane
- Conclusion
Highly Flexible Control Plane Distribution – Fully Distributed Control

- Network control distribution
 - Top end:
 - full centralization (majority of current SDN controller architectures)
 - Bottom end:
 - full distribution of network control
- Our approach: offer full range of distribution
Highly Flexible Control Plane Distribution – Local Data Plane Event Processing

- So far: enhancing switch capabilities

- Local Data Plane Event Processing (LDPEP)
 - Running controller (decision making) on switch hardware
 - Increased resilience against controller-failures, inherent load balancing
 - Ideally: entirely local decision making \rightarrow most timely reaction
 - .. while having access to neighbours and global knowledge \rightarrow optimality
 - Scale scope of local control with available computing resources
 - Trade-offs (*intermediate procedures*)

InSPired Switches
SOSR‘15

OpenState
SIGCOMM-CCR‘14

P4
SIGCOMM-CCR‘14

Optimality
Resources
Time
Local Data Plane Event Processing

S_i switch

white-box

Decision Process

Control Logic

query/publish

event notif.

query/modify

add/mod. flow

forward packet

Cache

TCP

TCP (OpenFlow)

PCI-E

OF-Agent

PKT_IN

FLOW_MOD

PKT_OUT

Flow Table

TCAM

query

update

p_0 fast-path

p_i

Host$_{src}$

Host$_{dst}$

ASIC - DP CP - CPU

μ-Kernel

MSG

BUS

subscr./notify

aggregate policies

Decision Logic

TCP

query/modify

add/mod. flow

forward packet

Cache

TCP

TCP (OpenFlow)

PCI-E

Flow Table

TCAM

query

update

p_0

Host$_{src}$

Host$_{dst}$

ASIC - DP CP - CPU

μ-Kernel

MSG

BUS

subscr./notify

aggregate policies

Decision Logic

TCP

query/modify

add/mod. flow

forward packet

Cache

TCP

TCP (OpenFlow)

PCI-E

Flow Table

TCAM

query

update

p_0

Host$_{src}$

Host$_{dst}$

ASIC - DP CP - CPU

μ-Kernel

MSG

BUS

subscr./notify

aggregate policies

Decision Logic

TCP

query/modify

add/mod. flow

forward packet

Cache

TCP

TCP (OpenFlow)

PCI-E

Flow Table

TCAM

query

update

p_0

Host$_{src}$

Host$_{dst}$

ASIC - DP CP - CPU

μ-Kernel

MSG

BUS

subscr./notify

aggregate policies

Decision Logic

TCP

query/modify

add/mod. flow

forward packet

Cache

TCP

TCP (OpenFlow)

PCI-E

Flow Table

TCAM

query

update

p_0

Host$_{src}$

Host$_{dst}$

ASIC - DP CP - CPU

μ-Kernel

MSG

BUS

subscr./notify

aggregate policies

Decision Logic

TCP

query/modify

add/mod. flow

forward packet

Cache

TCP

TCP (OpenFlow)

PCI-E

Flow Table

TCAM

query

update

p_0

Host$_{src}$

Host$_{dst}$
InFEP – Lightweight Virtualization of Distributed Control on White-box Networking Hardware, Kohler et al., ManSDN/NFV - CNSM'17
Outline

- Introduction – Evolution of SDN Controller Architectures
- Architecture for Full-range Network Control Distribution
- Highly Flexible Control Plane Distribution
- Implementation & Evaluation
- Roadmap to a Highly Scalable Holistic System Control Plane
- Conclusion
Implementation

- **ZMF**: modular execution framework
 - Dependency and life-cycle management
 - Message bus: communication middleware: ZeroMQ

- **ZeroSDN**: distributed SDN controller application
 - Message de-/serialization: Google Protocol Buffers
 - Core controllets implemented (OF 1.0 - 1.3)

http://zerosdn.github.io/
Evaluation – Raw Controller Performance – Methodology

- Raw controller performance
 - 12 nodes (Xeon, 4 x 3.4GHz), 1GbE \textit{local}
 - 6 node pairs \textit{remote}

- cbench emulates switches
- \# emulated switches \(s = 1 \)
- \# end hosts \(e = 10000 \)
- Observation time \(T = 12\text{min} \)
Evaluation – Raw Controller Performance – Results

- Distribution impact on throughput
 - factor 0.5

- Moderate locality impact on throughput

- Remote vs. local latency
 - factors 2 to 6
Evaluation – Hardware Switch – Methodology

- Performance on a Whitebox-Networking Hardware Switch

- Provoke packet processing in switch control plane

- Measure data plane RTT
Evaluation – Hardware Switch – Results

- Remote TCP connection latency impact factors:
 2 (ZSDN-AFC), 1.9 (NOX), 1.5 (ZSDN)
Outline

• Introduction – Evolution of SDN Controller Architectures
• Architecture for Full-range Network Control Distribution
• Highly Flexible Control Plane Distribution
• Implementation & Evaluation
• Roadmap to a Highly Scalable Holistic System Control Plane
• Conclusion
Roadmap to a Highly Scalable Holistic System Control Plane (Future Work)

• Complex network event processing
 ◦ Predicate logic for evaluation of events
 ▪ logical operators
 ▪ timing constraints
 ▪ sequences of events absence of events
 ◦ Distributed evaluation of complex events in controllets, subscribing to relevant simple events (DPE & CPE)

• Holistic system control plane:
 Application layer events & end-host control
 ◦ NFVs, end-systems (including VMs), applications
 ◦ Execute complex system management workflows
Conclusion

- Highly flexible & modular architecture for full-range network control distribution

- Lightweighted micro-kernel approach

- Decoupling of controllets through a message bus
 - Content-based filtering and hybrid processing of control plane and data plane events

- Exploiting locality of switches along with global knowledge
Thanks for your attention

Any Questions?

Contact & further information:

https://goo.gl/tYWSgW