Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks

K. Laufer,a M. Nordhoff,a M. Halama,a R. E. Martinez,b M. Obst,c M. Nowak,d H. Stryhanyuk,e H. H. Richnow,e A. Kappler,f

Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany; Mineralogy-Petrology, Institute of Environmental Sciences, University of Freiburg, Freiburg im Breisgau, Germany; Experimental Biogeochemistry, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany; Experimental Mineralogy, Mineralogy and Geodynamics, University of Tübingen, Tübingen, Germany; ProVIS, Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark

ABSTRACT Microaerophilic Fe(II) oxidizers are commonly found in habitats containing elevated Fe(II) and low O2 concentrations and often produce characteristic Fe mineral structures, so-called twisted stalks or tubular sheaths. Isolates originating from freshwater habitats are all members of the Betaproteobacteria, while isolates from marine habitats belong almost exclusively to the Zetaproteobacteria. So far, only a few isolates of marine microaerophilic Fe(II) oxidizers have been described, all of which are obligate microaerophilic Fe(II) oxidizers and have been thought to be restricted to Fe-rich systems. Here, we present two new isolates of marine microaerophilic Fe(II)-oxidizing Zetaproteobacteria that originate from typical coastal marine sediments containing only low Fe concentrations (2 to 11 mg of total Fe/g of sediment [dry weight]; 70 to 100 μM dissolved Fe2+ in the porewater). The two novel Zetaproteobacteria share characteristic physiological properties of the Zetaproteobacteria group, even though they come from low-Fe environments: the isolates are obligate microaerophilic Fe(II) oxidizers and, like most isolated Zetaproteobacteria, they produce twisted stalks. We found a low organic carbon content in the stalks (~0.3 wt%), with mostly polysaccharides and saturated aliphatic chains (most likely lipids). The Fe minerals in the stalks were identified as lepidocrocite and possibly ferrihydrite. Immobilization experiments with Ni2+ showed that the stalks can function as a sink for trace metals. Our findings show that obligate microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria group are not restricted to Fe-rich systems but can also be found in low-Fe marine environments, which increases their overall importance for the global biogeochemical Fe cycle.

IMPORTANCE So far, only a few isolates of benthic marine microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria exist, and most isolates were obtained from habitats containing elevated Fe concentrations. Consequently, it was thought that these microorganisms are important mainly in habitats with high Fe concentrations. The two novel isolates of Zetaproteobacteria that are presented in the present study were isolated from typical coastal marine sediments that do not contain elevated Fe concentrations. This increases the knowledge about possible habitats in which Zetaproteobacteria can exist. Furthermore, we show that the physiology and the typical organo-mineral structures (twisted stalks) that are produced by the isolates do not notably differ from the physiology and the cell-mineral structures of
isolates from environments with high Fe concentrations. We also showed that the organo-mineral structures can function as a sink for trace metals.

KEYWORDS geomicrobiology, iron oxidizers, marine microbiology, sediment

The characteristic organo-mineral structures that are produced by most microaerophilic Fe(II)-oxidizing bacteria were first described in 1836 by Ehrenberg (1). It took more than 70 years before these bacteria were cultivated in the laboratory (2), which remains challenging, due to their specific requirements regarding oxygen and Fe(II) concentrations. At circumneutral pH, at which these bacteria live, they have to compete with the abiotic oxidation of Fe(II) by O$_2$ (3, 4). At low O$_2$ concentrations, this abiotic reaction is slow and the bacteria are able to outcompete the abiotic reaction (5, 6).

Microaerophilic Fe(II) oxidizers are commonly found in environments where opposing gradients of O$_2$ and Fe(II) exist (7). They have been found in freshwater habitats, such as wetland sediments and Fe(II)-rich springs (8–11), as well as in marine habitats, including sediments from a continental margin (12), hydrothermal vents (13–16), coastal seawater (17, 18), and in a redox-stratified water column (19). So far, microaerophilic Fe(II) oxidizers from marine habitats almost exclusively belong to the Zetaproteobacteria (20, 21). One exception was reported in a study by Edwards et al. (13), who isolated psychrophilic microaerophilic Fe(II) oxidizers related to the Alphaproteobacteria and Gammaproteobacteria. All known isolates of the Zetaproteobacteria are obligate microaerophilic Fe(II)-oxidizing bacteria which belong to the genus *Mariprofundus*. However, the number of isolates is very limited and probably not representative of the diversity of Zetaproteobacteria. So far, six isolates were described, and four of these were isolated from Fe mats at the Lo‘ihi Seamount hydrothermal vents, Hawaii, USA (9, 20, 22, 23). More isolates originated from an Fe mat in a salt marsh in Maine, USA (17) and the oxic-anoxic boundary layer at the redox-stratified water column of Chesapeake Bay (19).

Based on molecular data, there is evidence for the worldwide presence of Zetaproteobacteria (Fig. 1). The majority of studies on microaerophilic Fe(II)-oxidizing bacteria were performed in habitats with elevated aqueous and solid-phase Fe(II) concentrations, and to date, all benthic isolates were obtained from such habitats. These habitats include Fe mats at hydrothermal vents or Fe-rich seeps in salt marshes, with an Fe content of up to 183 mg/g of sediment (dry weight) (24), which we refer to as high-Fe environments. So far, no isolates were obtained from typical marine sediments with an Fe content in the low-milligram to gram range, such as those from which the isolates were obtained in the present study (2 to 11 mg/g of sediment [dry weight]) (25). We refer to these environments as low-Fe environments, relative to the high-Fe environments defined above. However, the primary requirement for their growth, i.e., an interface of redox gradients of Fe and oxygen, is common in the environment and is typical of marine sediments. Porewater concentrations of Fe(II) in these sediments range from tens to hundreds micromolar (26) and are potentially suitable for the growth of marine microaerophilic Fe(II) oxidizers (27, 28). In a previous study, we found evidence for the presence of Zetaproteobacteria in these sediments using the cultivation-dependent most probable number (MPN) technique (up to 1×10^6 cells · g of sediment$^{-1}$ [dry weight]) and quantitative PCR (qPCR) (up to 3.2×10^6 cells · g of sediment$^{-1}$ [dry weight]) (25).

Most known marine Zetaproteobacteria have been shown to produce organo-mineral structures in the form of either twisted stalks or tubular sheaths, with lengths of several micrometers to tens of micrometers, similar to many microaerophilic Fe(II)-oxidizing bacteria from freshwater habitats (22, 29, 30). Mineralogical analyses of the biogenic minerals in twisted stalks formed by Zetaproteobacteria identified mainly a remarkably stable, poorly crystalline ferrihydrite (29, 31). In one of these studies, lepidocrocite was found at the surface of stalks (29). Spectroscopic and microscopic analyses of the organic components present in twisted stalks from marine and freshwater microaerophilic Fe(II)-oxidizing bacteria indicated the presence of acidic poly-
saccharides, saturated lipids, and a small amount of protein (29, 32–35). However, more detailed information on the exact nature of these organic compounds is so far lacking. Chan et al. (29) described a model for Fe(II) oxidation by the marine microaerophilic Fe(II) oxidizer *Mariprofundus ferrooxydans* PV-1 in which cells excrete oxidized Fe, i.e., Fe(III), from discrete locations on the cell surface bound to organic polymers that then become the fibers of the twisted stalks. The authors provide evidence that precipitation of the Fe(III) bound to the organic polymers only starts to occur over time within the stalks and thereby is directed away from the cell. A later study (35) found evidence that stalks of *Mariprofundus ferrooxydans* PV-1 might contain a much lower fraction of organic carbon than previously thought. The authors found hints of evidence that adsorption of cellular material released during osmotic shock introduced by sample preparation may be responsible for higher fractions of organic carbon in the stalks (35). Such sorption of charged organic molecules, but also binding of metal cations, such as nickel, to the stalks, is expected based on previous studies with microaerophilic (31, 34–37) and anaerobic Fe(II)-oxidizing bacteria (34, 38–41). Some of these metal cations are important for bacterial growth (42, 43); nickel, for example, is an essential nutrient for some microorganisms and is incorporated into nickel-dependent enzymes (43). Binding of nickel to stalks therefore can affect its availability to microorganisms. This has been reported for microaerophilic bacteria from an abandoned silver mine (34). In marine environments, nickel was found in biogenic iron oxide deposits at a hydrothermal vent (44) that contained sheaths and stalks produced by microaerophilic bacteria but also other components, like diatoms and organic carbon. However, specific information about how twisted stalks in particular affect nickel availability in marine systems is missing.

Based on the knowledge gaps described above, the aim of this study was to characterize two isolates of microaerophilic Fe(II)-oxidizing microorganisms from typi-
cal coastal marine sediments (Norsminde Fjord and Kalø Vig, Denmark). The specific goals were to (i) evaluate the phylogenetic and physiological properties of the isolated bacteria, as well as their potential contribution to autotrophic Fe(II) oxidation in low-Fe environments, (ii) determine the properties of the twisted stalks (structure, mineralogy, and organic content) produced by our isolates, and (iii) evaluate the potential influence of the stalks on the mobility of metal cations, such as nickel in these habitats.

RESULTS

Isolation, phylogeny, and physiology of microaerophilic Fe(II) oxidizers. After 4 to 5 transfers in a dilution-to-extinction series on zero-valent iron (ZVI) plates, cell morphology appeared homogenous in fluorescence microscopy. Both cultures produced characteristic twisted stalks, which were easily recognizable via light microscopy (Fig. 2). The increase in numbers of cells and stalks observed microscopically after inoculation of ZVI plates, as well as the fact that since their isolation, the cultures have been successfully transferred >50 times under microaerophilic Fe(II)-oxidizing conditions on ZVI plates in the absence of any organic carbon or significant concentration of another inorganic electron donor, clearly demonstrated that the isolated strains are Fe(II) oxidizers.

Growth tests revealed that growth occurred only with Fe(II) provided as FeS in gradient tubes or as ZVI under microoxic conditions in plates, but not with any of the tested single substrates nor with complex media (Table 1). The cultures were considered to be pure, as no growth was found on any other substrate or complex media. Although the cultures could not grow on H$_2$ alone under microoxic conditions, we cannot, however, exclude that the growth on ZVI plates was partly promoted by the H$_2$ that is produced by reaction of the ZVI with H$_2$O. The isolates’ ability to grow in FeS gradient tubes, where no H$_2$ is supplied, shows that H$_2$ is not required for growth.

The twisted stalks that formed during growth with FeS in gradient tubes were shorter and appeared to be less tightly coiled (Fig. 2) than those produced during growth on ZVI plates. Salinity tests showed that no growth occurred at salinities between 1.6 and 3.4, while between salinities of 6.9 and 23, normal cell growth with the presence of cells and twisted stalks were observed (Table 2). At a salinity of 5.2, only weak growth was observed, and compared to normal growth conditions, only a few
cells and twisted stalks were present. For the two isolated cultures, the same salinity dependence was observed. The decreasing salinity in our experiments represents a gradual transition from saltwater to freshwater conditions. Therefore, concentration changes of a particular medium component, e.g., magnesium, might have also affected bacterial growth. However, the complete absence of growth between salinities of 1.6 and 3.4 with all medium components still being present, even though at lower concentration, suggests that salinity is the main selective factor.

Phylogenetic analysis based on the 16S rRNA gene revealed that both isolates belong to the class **Zetaproteobacteria**. Both cultures were 94% identical to *Maripropfundus ferrooxydans* PV-1 (Fig. 3), indicating that they might belong to a genus other than *Maripropfundus*, which is currently the only genus within the *Maripropfundaceae*. However, to make a clear decision as to whether the isolates belong to a novel genus, the sequences obtained in this study are too short, and a more detailed genetic study is required to elucidate this.

Morphology of cells and twisted stalks. Microscopic analysis showed that cells of both Fe(II)-oxidizing strains were slightly curved rods approximately 1 μm long and 0.4 μm wide (Fig. 2F). Furthermore, it was found that for cells of both isolates, in cultures grown for a few days to a week on ZVI plates, most of the cells were associated with the network of twisted stalk filaments, and only a few cells were not attached to twisted stalks and were motile, probably by flagellar movement. In contrast, in older cultures (grown for >1 week), the number of cells being detached from twisted stalks and moving probably by flagellar movement was higher. The twisted stalks of both cultures were easily visible by light microscopy (Fig. 2). The culture from Norsminde Fjord produced stalks that were more finely structured than those produced by the Kalø Vig isolate (Fig. 2 and 4). In both cultures, but to a larger extent in the culture from Kalø Vig, the twisted stalks were aggregating, resulting in large patches of twisted stalk structures (Fig. 2A). The stalk surface was initially smooth, with some attached round aggregates (diameter, ~0.3 μm). In the Norsminde cultures, but to a greater extent in

TABLE 1 Combinations of electron acceptors and electron donors on which growth of the two isolated strains of *Zetaproteobacteria* was tested

<table>
<thead>
<tr>
<th>Electron acceptor</th>
<th>Electron donor</th>
<th>Growth</th>
<th>Stalks</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ b</td>
<td>FeS</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>O₂ b</td>
<td>ZVI</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>O₂ b</td>
<td>H₂</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ b</td>
<td>MnCl₂</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ b</td>
<td>S²</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ b</td>
<td>H₂SO₄</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ b</td>
<td>DMSO</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ b</td>
<td>H₂S</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ b</td>
<td>Various organic substrates</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ c</td>
<td>Various organic substrates</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>O₂ c</td>
<td>LB or R2A (solid and liquid)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>Lactate/acetate/yeast extract</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Fe(III)</td>
<td>Lactate/acetate/yeast extract</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>Lactate/acetate/yeast extract</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

^aBoth strains were able to grow with Fe(II) and O₂ only under microoxic conditions.
^bMicrooxic conditions.
^cFull atmospheric oxygen concentration.

TABLE 2 Salinity dependence of the growth of two strains of *Zetaproteobacteria* isolated from Norsminde Fjord and Kalø Vig

<table>
<thead>
<tr>
<th>Salinity</th>
<th>Growth</th>
<th>Stalks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6–3.4</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5.2</td>
<td>+ (weak)</td>
<td>+ (few)</td>
</tr>
<tr>
<td>6.9–23</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

^aThe salinity dependence was determined with ZVI plates as the Fe(II) source, and the results shown are valid for both strains.
Kalø Vig cultures, the smooth stalk surface gradually became rough with clearly visible mineral spikes when grown for more than a few days on ZVI plates (Fig. 4). This change is possibly due to transformation of the initially poorly crystalline mineral precipitates to the more crystalline mineral phase lepidocrocite, which has also been observed by Chan et al. (29) on the surface of stalks produced by pure cultures of *Mariprofundus ferrooxydans* PV-1. It could also be clearly seen how multiple cell divisions lead to multiple branching of the twisted stalks (Fig. 2B). The length of the twisted stalks ranged from 15 to 78 \(\mu m \) in both cultures. Stalk width was evaluated by scanning electron microscopy analysis and ranged from 0.7 to 1 \(\mu m \) in the culture from Norsminde Fjord and from 1 to 1.5 \(\mu m \) in the culture from Kalø Vig (Fig. 4). The twisted stalks consisted of bundles of fibrils aligned parallel to the length of the stalk. The diameters of individual fibrils were \(\sim 0.15 \mu m \) in the culture from Norsminde Fjord and...
0.2 μm in the culture from Kalø Vig. The stalks formed in the culture from Kalø Vig were generally more tightly coiled.

Stalk composition. X-ray diffraction analysis (μXRD) of Fe minerals in the twisted stalks showed signals for lepidocrocite (FeOOH) and halite in both cultures (Fig. 5). The halite observed in μXRD samples stems from the saltwater medium used for cultivation, which was not completely removed prior to drying of the samples. Mössbauer spectra

FIG 4 Scanning electron microscopy images of the microaerophilic Fe(II) oxidizers isolated from Norsminde Fjord (A and B) and Kalø Vig (C and D) grown on ZVI plates for 5 days. (A and C) Shown are mostly smooth stalk surfaces. (B and D) Shown are the spikey features that appear on the surface of some stalks when incubation time exceeds 4 days. Scale bars = 1 μm.

FIG 5 Mössbauer spectra collected at 77 K and μ-X-ray diffractograms (bottom right) of the Fe minerals formed in cultures of the microaerophilic Fe(II) oxidizers isolated from Norsminde Fjord, Kalø Vig, and abiotic controls. arb., arbitrary; v, velocity.
revealed the presence of elemental Fe [Fe(0)], an Fe(II) phase, and at least one Fe(III) phase. The Fe(III) component of the Mössbauer spectra showed characteristics for Fe(III) oxyhydroxides with magnetic splitting below 77 K, as for lepidocrocite (45). However, the presence of ferrihydrite is also possible, because it shows Mössbauer absorption properties at 77 K very similar to those of lepidocrocite, so that the two Mössbauer absorption patterns cannot be distinguished. Due to its poor crystallinity, ferrihydrite is not easily identified by XRD. The small amounts of 8 mol% and 6 mol% Fe(II) (of total Fe) as well as the 8 mol% and 11 mol% Fe(0) (of total Fe) detected in the Kalø Vig and Norsminde Fjord isolates, respectively, probably stem from the Fe source in the growth medium and might be deposited on the stalk surface during filtration in sample preparation. We quantified the carbon and nitrogen content of the stalks in pooled samples from both cultures to evaluate the amount of organic material present in the stalk structure and found 0.3 wt% carbon and 0.04 wt% nitrogen. To further characterize the organic components in the stalks, we used Fourier transform infrared (FTIR) spectroscopy (Fig. 6), as well as on pooled samples from both cultures. The spectrum was assigned using references 46–48. The presence of absorption bands at 2,920 cm\(^{-1}\) and 2,850 cm\(^{-1}\) (Fig. 6, bands 1 and 2) is indicative of polymethylene chains found in most lipids which contain CH\(_2\) groups. -CH and -CH\(_2\) asymmetric stretching (out of plane) generates an absorption band at 2,926 cm\(^{-1}\), and the -CH\(_2\) symmetric stretching (in plane) produces a band at 2,853 cm\(^{-1}\). -CH\(_2\) bends or scissors vibrations would also contribute an absorption band at 1,460 cm\(^{-1}\) (Fig. 6, band 5). The lack of well-defined peaks above 3,000 cm\(^{-1}\) suggests the absence of =C-H groups and the presence of mostly saturated aliphatic chains. However, the broad absorption feature in this region of the spectrum with the maximum at \(\approx 3,500\) cm\(^{-1}\) is associated with the fundamental -OH stretch vibration of water. Weak bands at 920 and 970 cm\(^{-1}\) may arise from N\(^+\)-(CH\(_3\))\(_3\) symmetric and antisymmetric stretches in lipids. A -CH\(_3\) antisymmetric bend can generate an absorption band, potentially explaining the observed band at 1,460 cm\(^{-1}\) (Fig. 6, band 5). Membrane lipids possibly account for the band at 1,368 cm\(^{-1}\) (Fig. 6, band 6). The band at 1,630 cm\(^{-1}\) (Fig. 6, band 3) is consistent with the amide
Il absorption band, but the bending mode of molecular H$_2$O would also create a band at 1,640 cm$^{-1}$. Therefore, in case H$_2$O was not completely removed by freeze-drying, it could also cause or contribute to this band. The absorption band at 1,504 cm$^{-1}$ (Fig. 6, band 4) could be explained by aromatic -C=O- and indicates the presence of the amino acid tryptophan (Trp), with a -C=O absorption reported at 1,622 cm$^{-1}$, and a C-N stretching vibration combined with an N-H bending absorption at 1,509 cm$^{-1}$, also corresponding to the amide II arrangement. This is an indication for a small portion of protein present in the stalk structure. The bands observed at 1,020 and 1,100 cm$^{-1}$ (Fig. 6, bands 7 and 8) have been suggested to correspond to ionized -P-O- and -P-OH, respectively. However, lepidocrocite also generates characteristic bands at 1,018 and 1,161 cm$^{-1}$. Absorption in the range of 800 to 1,200 cm$^{-1}$ (Fig. 6, region 9) corresponds to the fingerprint region of polysaccharides. However, based on the FTIR data alone, an unambiguous assignment to polysaccharides is not possible. To confirm the presence of polysaccharides, we also analyzed the stalks by confocal laser scanning microscopy (CLSM). Stalks of both strains bound the lectins wheat germ agglutinin (WGA) and peanut agglutinin (PGA), indicating the presence of polysaccharides (Fig. 7). Binding of WGA was weaker than PNA in cultures from Norsminde Fjord, while stalks from cultures from Kalø Vig bound less PNA than WGA. Binding also varies within stalks and between different stalks from the same culture, indicating a heterogeneous polysaccharide content of the stalks. Consistent with the FTIR results, we found poor binding of the protein stain NanoOrange in both cultures (Fig. 7).

Immobilization of Ni by twisted stalks. We used time of flight-secondary ion mass spectrometry (TOF-SIMS) to analyze to which extent the stalks formed by the Fe(II)-oxidizing culture from Norsminde Fjord immobilize and bind the trace metal ion Ni$^{2+}$. The stalks’ area is well defined by the distribution of Fe (indicated by the Fe$^{2+}$ ion yield) and revealed a heterogeneous distribution of Ni$^{2+}$ (measured as the Ni$^{2+}$ ion yield) throughout the stalks’ structure (Fig. 8). There are a few spots in the stalks’ area which show an increased Ni$^{2+}$ ion yield. These spots could be due to higher Ni$^{2+}$ concentrations indicating Ni$^{2+}$ precipitates or areas with high Ni$^{2+}$ sorption capacity. However, it has to be kept in mind that small fluctuations in Ni$^{2+}$ ion yields could to some extent also be caused by a heterogeneous composition within the stalks’ area affecting the ion yield due to matrix effects. Therefore, the presented maps of Ni$^{2+}$ distribution are to be considered qualitative data. This is due to the heterogeneous composition of the stalks, which meant it was not possible to measure suitable Ni$^{2+}$-containing organo-mineral reference compounds, thus preventing a more accurate quantitative analysis of the Ni$^{2+}$ content.

DISCUSSION

Diversity and geographic distribution of Zetaproteobacteria in marine systems. Previous studies in coastal marine habitats have provided evidence for the presence of Zetaproteobacteria in coastal waters off Maine, USA, and China, where they were detected on submerged metal-Fe surfaces, as well as in low-Fe sediments of the Skagerrak (17, 18, 49) and in estuarine Fe-rich mats (50). Here, we present further indications that Zetaproteobacteria are not restricted to habitats with elevated Fe concentrations but also seem to be widespread in typical coastal marine sediments that contain lower Fe concentrations. These findings and evidence from molecular data (Fig. 1) indicate that microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria group (potentially) have a higher geographical distribution than previously thought. The adaptation to a broad salinity range observed for our isolates supports this broad geographical distribution. As shown by McAllister et al. (20), Zetaproteobacteria are diverse and exhibit a biogeographic pattern, with 16S rRNA sequences differing more between samples that originate from more distant sampling sites (also found by Scott et al. [21]). However, so far, sequences mostly from Fe-rich habitats were compared, and it is not known how similar or different these sequences are compared to Zetaproteobacteria from low-Fe habitats. Our isolates that stem from low-Fe sedimentary habitats in Aarhus, Denmark, increase the diversity of available zetaproteobacterial cultures, in
FIG 7 Confocal laser scanning microscopy images of stalks of the two microaerophilic Fe(III) oxidizers that were isolated from Norsminde and Kalø Vig stained with three fluorescent dyes: PNA-Alexa Fluor conjugate (peanut agglutinin, specific for terminal β-galactose residues), WGA-Alexa Fluor conjugate (wheat germ agglutinin, specific for N-acetylglucosamine and N-acetylneuraminic acid), and NanoOrange (specific for proteins). In colored composite images, the stalks are visualized in gray by their reflection signal of the laser, and fluorescence stain signals are presented in red. For each sample, an additional nonconfocal transmitted light image of the stalks is shown. In composite images of samples stained with NanoOrange, the histogram was stretched linearly to a saturation of 0.3% of the pixels for better visibility of the stalks’ reflection. Scale bars = 10 μm.
particular since they have only 94% sequence identity to *Mariprofundus ferrooxydans* PV-1. All other isolates are 96 to 99% identical to each other. It can also be seen in the phylogenetic tree (Fig. 3) that our two isolates from Aarhus cluster together and are distinct from the other isolates. This shows that the two isolated *Zetaproteobacteria* from low-Fe habitats are (based on 16S rRNA gene analysis) different from those isolated from high-Fe habitats. However, since the small number of isolated *Zetaproteobacteria* does not reflect the diversity of *Zetaproteobacteria* found in both types of environments, a comparison of further sequences is necessary to establish whether *Zetaproteobacteria* from low-Fe environments generally differ from those found in high-Fe habitats.

In comparison to Scott et al. (21), who reported “little evidence for *Zetaproteobacteria* in marine environments outside of iron-rich systems,” where “iron-rich” in this study was defined by a high content of Fe (oxyhydr)oxides, we have demonstrated that these microorganisms are present in coastal low-Fe sediments from Norsminde Fjord and Kalø Vig. Such typical marine sediments are usually found at the coasts or at continental shelves, which comprise about 7% of the total area of the world’s oceans (51).
Therefore, this significantly increases the known habitats of *Zetaproteobacteria*, which were previously thought to be mainly Fe-rich systems, e.g., systems influenced by hydrothermal venting. As a consequence, *Zetaproteobacteria* could contribute a much larger portion to global Fe cycling than previously thought.

Physiology of Zetaproteobacteria isolated from low-Fe coastal marine sediments. The microaerophilic Fe(II)-oxidizing isolates from Norsminde Fjord and Kalø Vig were only 94% identical to other isolated *Zetaproteobacteria* on the basis of 16S rRNA gene identity. However, like the other isolated *Zetaproteobacteria*, they only grew autotrophically by Fe(II) oxidation under microoxic conditions and not via oxidation of several tested organic substrates. H$_2$, which is formed on the ZVI plates used for cultivation during Fe(0) corrosion, was not used alone for autotrophic growth but could potentially supplement the Fe-based metabolism. These findings suggest that our strains are obligate chemolithoautotrophs. This means that they could only be active in a very restricted area in the sediment due to the shallow oxygen penetration in these coastal sediments. Therefore, one ensuing question is: what would be the benefit of being an obligate microaerophilic Fe(II) oxidizer in this low-Fe habitat? This question was also raised previously for other obligate photo- and chemolithoautotrophic sulfur-oxidizing microorganisms (52). However, so far, there is no fully satisfactory answer to this question (52). It is believed that obligate chemolithoautotrophs have some advantages compared to facultative chemolithoautotrophs, e.g., the specialization by having a higher substrate affinity than facultative chemolithoautotrophs, as observed for some aerobic sulfur oxidizers (53–55). However, the disadvantage is that they are dependent on the occurrence of specific environmental conditions in order to be active and oxidize iron(II). To some extent, *Zetaproteobacteria* seem to be adapted to changing environmental conditions, such that they can at least survive when geochemical conditions are changing. The genetic potential for aerotaxis and production of antioxidants has been found, as well as the potential for energy storage in the form of organic carbon (56). Recently, it has also been shown that *Zetaproteobacteria* are able to store energy in the form of polyphosphates (56, 57). The authors postulated that the polyphosphates are produced by *Zetaproteobacteria* using ATP in times when they can perform Fe(II) oxidation and can be used to produce energy to survive under conditions where they cannot gain energy from Fe(II) oxidation (57). It remains to be determined if the uncultivated *Zetaproteobacteria* that are present in the natural habitats are also obligate chemolithoautotrophs or if the currently applied isolation techniques are selective for this type (23). The potential for mixotrophy was found in a sequenced genome of an isolate (58). Additionally, in sequenced genomes of uncultivated *Zetaproteobacteria*, the potential for mixotrophy or even heterotrophy, as well as the potential for other chemolithoautotrophic metabolisms (e.g., sulfide oxidation), were found (23, 58).

Microbial Fe cycling involving microaerophilic Fe(II)-oxidizing Zetaproteobacteria. In a previous study, it was shown that Fe(III)-reducing bacteria are present and coexist with microaerophilic Fe(II) oxidizers within the same layers in sediment from Norsminde Fjord and Kalø Vig (25). As shown by Roden and coworkers (59) using cocultures of a lithoautotrophic microaerophilic Fe(II) oxidizer and an anaerobic dissimilatory Fe(III) reducer, grown in a column system that provided an oxygen gradient, there is the potential for microscale Fe cycling in such stratified systems. The potential for Fe cycling and the coexistence of Fe(III) reducers and Fe(II) oxidizers was also demonstrated in deep-sea Fe-rich systems (60). However, deep-sea systems are often limited in organic carbon, which decreases the potential for Fe cycling in these systems, as the activity of heterotrophic dissimilatory Fe(III) reducers is limited by the availability of their electron donor (60). In organic-rich coastal sediments, such as those from Norsminde Fjord studied here, there is potential for more active Fe cycling between microaerophilic Fe(II) oxidizers and Fe(III) reducers, because (i) the higher organic carbon content of these coastal sediments would favor the activity of heterotrophic dissimilatory Fe(III)-reducing bacteria and (ii) daily and seasonal fluctuations in the oxygen penetration depth would allow for temporally separated Fe cycling between...
microaerophilic Fe(II) oxidizers and anaerobic Fe(III) reducers in the oxic-anoxic transition zone. Therefore, the presence of autotrophic Fe(II)-oxidizing Zetaproteobacteria, which produce Fe(III) minerals that can serve as electron acceptors for heterotrophic Fe(III) reducers, in low-Fe sediments also increases their potential contribution to Fe cycling, because of the favorable conditions for Fe(III) reduction in these habitats.

Potential physiological role of twisted stalk formation. Both isolated microaerophilic Fe(II)-oxidizing Zetaproteobacteria presented in this study produced the characteristic twisted stalks that have been observed in other isolated Zetaproteobacteria (17, 22, 29) and many microaerophilic Fe(II) oxidizers from freshwater habitats (reviewed in reference 7). As suggested by Krepski et al. (33), the production of twisted stalks by bacteria from such different habitats and their occurrence in all isolated Zetaproteobacteria indicate an important physiological role of these structures for microaerophilic Fe oxidation. According to the model proposed by Chan et al. (29), they enable the bacteria to direct precipitation of the Fe(III) oxyhydroxides away from the cell, which, along with a neutral-charge hydrophilic cell surface (61), prevents cell encrustation (29, 62).

We observed that the shapes of the stalks in our cultures were different depending on the growth conditions. Fewer and shorter stalks were formed in cultures that were grown in gradient tubes than in cultures that were grown in ZVI plates. A likely explanation for this observation is the different concentrations and gradients of O2 and Fe(II) that are present in gradient tubes and ZVI plates. While in the ZVI plates O2 concentrations over time are relatively stable, in the gradient tubes, the gradients of O2 and Fe(II) are changing over time (due to consumption of O2 and changes in Fe(II) release from the bottom Fe(II) source) so that in the gradient tubes, it is likely that the cells have to move in order to react to these changes and follow the optimum growth conditions. In order to move, the cells have to either detach from the twisted stalks, which could explain the shorter twisted stalks that were seen in the gradient tubes than in the ZVI plates, or the cells have to direct the stalk growth toward optimal conditions along the oxygen gradient.

Mineral formation and transformation at the twisted stalks. Mössbauer spectroscopy and μXRD showed the presence of lepidocrocite in the stalks. However, the existence of an additional ferrihydrite phase is possible. The occurrence of lepidocrocite has also been observed by Chan et al. (29) on the surface of stalks mainly consisting of ferrhydrite produced by pure cultures of *Mariprofundus ferrooxydans* PV-1. Formation of lepidocrocite is likely in systems with high salinity, particularly in the presence of chloride (46). We therefore assume that stalks formed by our bacteria initially contain ferrhydrite that transforms into lepidocrocite on the surface of the stalk over time. This is consistent with the observed changes from a smooth stalk surface to the occurrence of spike-like features on the surface with increasing incubation time. These spike-like features are similar to the blade-like structures observed by Chan et al. (29). Since both studies were conducted with pure cultures, transformation of ferrhydrite could be faster in these experiments than observed in environmental samples (31) due to less adsorption of silica and organic material, which slows down mineral transformation (31). This would be consistent with the absence of silica from the growth medium and the low organic carbon fraction we found in our stalks.

Organic compounds in the twisted stalks. We found a low fraction of organic carbon (ca. 0.3 wt%) in the stalks by total organic carbon (TOC) measurements. However, these results are only an estimation, because it is not possible to fully avoid the presence of remaining zero-valent Fe particles during sampling. Even though the actual organic carbon content therefore could be slightly higher, it would still be fairly low. In the organic carbon fraction of the twisted stalks, we found polysaccharides, saturated aliphatic compounds (most probably lipids), and a very small amount of protein. Similar compounds have been detected in stalks of other marine and also freshwater microaerophilic Fe(II)-oxidizing bacteria, but not all authors detected lipids (29, 32–35). The indication of membrane lipids we found by FTIR could be due to the
adsorption of cellular material, which might also be true for the detected protein. Nevertheless, the organic compounds identified in stalks produced by microaerophilic Fe(II)-oxidizing bacteria seem to be consistent based on spectroscopic analyses used for their identification. This suggests that the mechanism of stalk production is similar among microaerophilic bacteria. We tried to determine which specific organic compounds are present in the stalks using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry, but measurements were not successful, probably due to the low organic content in the stalks. It has to be noted that during the necessary washing steps with double-distilled water in FTIR and TOC sample preparation, the remaining cells in the sample potentially released organic material due to osmotic shock. These released organic molecules are expected to adsorb to the stalks, as described by Bennett et al. (35). However, most cells were removed from the samples before washing with double-distilled water in previous separation steps of cells and stalks with artificial seawater (ASW).

Twisted stalks as a sink for Ni\(^{2+}\). Our study clearly showed that stalks formed by the Fe(II)-oxidizing isolate from Norsminde Fjord immobilize the trace metal ion Ni\(^{2+}\). Even though we could assess Ni\(^{2+}\) immobilization by the stalks only qualitatively because of the lack of an appropriate reference compound due to the heterogeneity of the sample, our TOF-SIMS results are in general agreement with previous findings by Schmid et al. (34). They demonstrated Ni\(^{2+}\) immobilization for stalks produced by microaerophilic Fe(II)-oxidizing bacteria collected from an abandoned mine. Sorption of other transition metals to twisted stalks has also been reported (31, 34, 35, 37, 63). Therefore, the presence of twisted stalks affects the availability of transition metals not only for the stalk-forming bacteria but also for other microorganisms. Sorption of transition metals to the stalks will increase their local concentration on the stalk surface while initially decreasing their concentration in the surrounding aqueous phase. If transformation to more crystalline iron mineral phases with a lower surface area occurs at the stalk’s surface, transition metals will be released again to the surrounding aqueous phase. In marine habitats, localized sorption of nickel to twisted stalks may have a high impact. For example, at the Lō‘ihi Seamounts (24), dense mats of Fe minerals formed by microaerophilic Fe(II)-oxidizing bacteria are present and potentially scavenge transition metals exported from these vents, which has been reported for other hydrothermal vent systems (64). Furthermore, Fe mats formed by microaerophilic Fe(II)-oxidizing bacteria found on continental margin sediments (12) may impact the transition of organic compounds and transition metals from the water column into the sediment. Since Zetaproteobacteria are only present at low numbers (25) in the sediments in Aarhus Bay, the formation of dense mats of twisted stalks seems unlikely, and therefore, an effect of stalks formed by these bacteria on Ni\(^{2+}\) availability is probably restricted to microniches. However, considering the wide distribution of Zetaproteobacteria (17, 21, 22, 25, 50), their impact on trace metal availability might be higher in other marine habitats. In ancient ocean environments, Fe(II) was abundant, oxygen was present at microoxic concentrations, and nickel concentrations were much higher (65–67) than in modern marine habitats (~9 nM [68]). Thus, the sequestration of nickel by twisted stalks formed by microaerophilic Fe(II)-oxidizing bacteria may have played an important role. Microaerophilic Fe(II)-oxidizing bacteria are also common members of microbial communities at plant roots in terrestrial habitats (69), and sorption of nickel and other metals to Fe minerals formed by these bacteria will affect their availability for the rest of the microbial root community and the plants.

Conclusions and outlook. By isolating microaerophilic Fe(II)-oxidizing Zetaproteobacteria from typical low-Fe coastal marine sediments, we increased the knowledge regarding their geographical distribution and their contribution to the biogeochemical Fe cycle. Furthermore, we showed that isolates from low-Fe sediments share the characteristic properties of the Zetaproteobacteria group, regarding their physiology and stalk composition, with isolates originating from habitats with high Fe concentrations. We could also show that stalks produced by Zetaproteobacteria potentially
influence the availability of metal cations, such as nickel, for other microorganisms. The methods applied for isolation of the novel strains of Zetaproteobacteria from low-Fe environments presented here were similar to methods that were previously applied for the isolation of microaerophilic Fe(II)-oxidizing bacteria from high-Fe environments (17, 20, 22, 24). As shown by Field et al. (23), slight changes in the methods that are used for isolation can lead to isolates with different physiological characteristics. To better assess the physiological and phylogenetic diversity of Zetaproteobacteria, further isolation attempts should be made with inoculation material originating from environments with distinctly different geochemical characteristics. Moreover, other isolation strategies, e.g., using different Fe sources and concentrations, varying the oxygen content, varying pressure, or providing an organic cosubstrate, should be tested. This all would help further increase knowledge about the geographical distribution and physiological properties of Zetaproteobacteria and confirm or disprove the obligate chemolithoautotrophic nature of this bacterial group.

MATERIALS AND METHODS

Isolation and cultivation. Microaerophilic Fe(II) oxidizers were isolated and cultivated in zero-valent iron (ZVI) plates with artificial seawater (ASW) medium and CO₂ as a carbon source, as described by Laufer et al. (25). Briefly, ZVI plates are petri dishes containing ZVI powder and ASW, incubated under microoxic conditions (O₂ = 6 to 10% of atmospheric O₂), that are created with gas packs (BD GasPak EZ Campy; Becton, Dickinson and Co., NJ) inside anoxic jars (Merck, Darmstadt, Germany). Both Fe(II)-oxidizing isolates originate from coastal sediments (water depth, <1 m) located in Aarhus Bay, Denmark. The first field site, Norsminde Fjord (56°1.17’N, 10°15.39’E), is a shallow estuary with a narrow opening to the Baltic Sea. The sediment is muddy and organic rich. Salinity at this field site varied between 14 and 23 and depended on local wind and local precipitation. The second field site at Kale Vig (56°16.81’N, 10°28.05’E) is a sandy beach, where the sediment has a low organic carbon content. Salinity at this field site varied between 20 and 23. The applied isolation strategy supplied bacteria with low O₂ concentrations (6 to 10% atmospheric O₂ concentration) and low Fe²⁺ concentrations (50 to 300 μM [22]) and thus should mimic well the environmental conditions under which they are expected to live in sediments at the two field sites. Culture growth was checked regularly by fluorescence microscopy and a LIVE/DEAD BacLight bacterial viability kit (Molecular Probes, Carlsbad, CA, USA).

Physiological characterization of the isolates. For physiological characterization of the isolates, we tested combinations of different electron acceptors (O₂, NO₃⁻, SO₄²⁻, and Fe(III)) and electron donors (different organic substrates, Fe(II) (ZVI and FeS), H₂S, S₀, S₂O₃²⁻, Mn(V), dimethyl sulfoxide (DMSO), and H₂) as listed in Table 1. The following organic substrates were tested under both atmospheric oxygen concentrations and with ca. 10% atmospheric oxygen concentrations: yeast extract (2 g/liter) and acetate, lactate, propionate, fumarate, succinate, butyrate, formate, pyruvate, citrate, benzoate, ethanol, cyanide, glutamate, glucose, saccharose, glycerol, mannitol, and peptone (all 4 mM concentration). Furthermore, the growth under atmospheric oxygen concentrations on the following complex growth media was tested: LB-ASW and R2A-ASW agar plates and liquid LB-ASW medium. Growth under anoxic conditions (O₂, Mn(IV), and DMSO) or in Hungate tubes (15 ml) containing 9 ml of ASW medium, 1 ml of a culture that was grown on ZVI plates, and either acetate, lactate, or yeast extract (same concentrations described above). Growth under microoxic conditions on inorganic substrates was tested either on ZVI plates (only for ZVI and S₀), in gel-stabilized gradient tubes (for FeS, H₂S, S₀, SO₄²⁻, Mn(V), and DMSO), or in Hungate tubes (15 ml) containing 9 ml of ASW and 1 ml of the culture and a headspace of H₂/CO₂ (80/20), to which 0.5 ml of sterile air was added. The gradient tubes consisted of a top layer of ASW that contained 0.15% agarose and a bottom layer that consisted of ASW and 1.5% agarose. To prepare the gradient tubes, the different inorganic substrates were added at concentrations from 2 to 10 mM. The gradient tubes were prepared completely anoxic and closed with butyl stoppers until inoculation. For inoculation, the gradient tubes were opened under oxic and sterile conditions, and 0.2 g of MgSO₄·7H₂O, 0.1 g of CaCl₂·2H₂O, and 0.05 g of K₂HPO₄. The buffer and the pH were the same as for the ASW. The MWMM had a salinity of 1.6 (measured with a multimeter [Multi 3430; WTW] equipped with a conductivity electrode [TetraCon92; WTW]). The salinity range tested was consequently 1.6 (only MWMM) to 23 (only ASW), and 12 different salinity levels were tested in duplicate. The tests were done on ZVI plates. Growth was investigated by fluorescence microscopy and LIVE/DEAD staining.

Physlogenetic characterization. Phylogenetic analysis of the isolates and construction of the phylogenetic tree, including related autotrophic Fe(II)-oxidizing bacteria, were conducted based on the 16S rRNA gene. DNA from cultures of both isolates (grown on ZVI plates) was extracted with the UltraClean microbial DNA isolation kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA), according to the instructions...
and the absence of most cells in the stalk fraction was confirmed by fluorescence microscopy. The stalks supernatant containing most cells was removed. This step was repeated two times with ASW medium, shaking the Falcon tubes gently by hand. The Fe-containing stalks were allowed to sediment, and the to Falcon tubes, omitting the bottom layer of zero-valent Fe. Cells were separated from the stalks by and organic carbon, samples containing mixtures of stalks and bacteria were transferred from ZVI plates and for 2-dimensional Hi-Star detector. Minerals were identified using the internal database of the EVA software gen, Germany) was used, equipped with a Co anode, a primary graphite monochromator, and a matrix was used as gamma radiation source. The sample spectra were calibrated against a 7-μm-thick α-[57Fe] foil at room temperature (RT). The RECOIL softwaresuite (University of Ottawa, Canada) was used for the calibration and the modeling of the spectra. The spectra were modeled using Voigt-based line shapes. The Lorentz half-width-half-maximum (HWHM) value was kept constant at the minimum line width of the 3 and 4 peaks of the calibration foil (0.12 mm/s and 0.129 mm/s, respectively) in the models, and the Gauss' sigma parameter was used to account for line broadening until the fitting was reasonable. The sample spectra were analyzed with respect to the center shift (CS) values, the quadrupole splitting (Δ), and hyperfine fields (H). ZVI plates that have not been inoculated with bacteria and incubated for the same time as the bacterial samples were used as abiotic controls.

Samples for μXRD were dried and ground in an anoxic glove box (100% N2), deposited on a silicon wafer, and stored in N2-filled jars until analysis under air (within a few minutes to avoid oxidation of O2-sensitive Fe minerals). A Bruker D8 Discover GADDS XRD-2-microdiffractometer (Bruker Optik, Ettlingen, Germany) was used, equipped with a Co anode, a primary graphite monochromator, and a 2-dimensional Hi-Star detector. Minerals were identified using the internal database of the EVA software (version 10.0.1.0).

Elemental analysis and FTIR. For total organic carbon (TOC), nitrogen content, and Fourier transform infrared (FTIR) spectroscopy measurements of the twisted stalks that contained Fe minerals and organic carbon, samples containing mixtures of stalks and bacteria were transferred from ZVI plates to Falcon tubes, omitting the bottom layer of zero-valent Fe. Cells were separated from the stalks by shaking the Falcon tubes gently by hand. The Fe-containing stalks were allowed to sediment, and the supernatant containing most cells was removed. This step was repeated two times with ASW medium, and the absence of most cells in the stalk fraction was confirmed by fluorescence microscopy. The stalks
were then washed twice with sterile double-distilled water to remove salts and freeze-dried in a Christ Alpha 1–4 LD freeze-dyer (Christ, Osterode, Germany). For TOC measurements, 12 mg of stalk material was dissolved in 50 μl of 36% HCl. The acid was allowed to evaporate in a fume hood overnight. TOC and nitrogen content were measured with a CN element analyzer (vario EL: Elementar, Hanau, Germany).

FTIR measurements of the stalks were performed on a Bruker Vertex 80V (Bruker Optik GmbH, Ettlingen, Germany), using a Globar light source and a KBr beamsplitter. Absorption spectra were collected from 3,950 to 950 cm⁻¹ at a spectral resolution of 4 cm⁻¹. FTIR measurements were performed with a focal plane array (FPA) detector (64 by 64 elements; pixel size, 2.7 by 2.7 μm; field of view, 170 by 170 μm) attached to the Hyperion 3000 microscope (15× Cassegrain objective) on freeze-dried stalk material deposited on a 1-mm-thick single crystal calcium fluoride window. The spectra were collected with 1,024 scans (averaged) in transmission mode. Reference measurements were performed on a calcium fluoride window without sample.

TOF-SIMS. Nickel immobilization by twisted stalks was analyzed by time of flight–secondary ion mass spectrometry (TOF-SIMS). Cells were grown on ZVI plates with ASW medium containing 100 nM Ni²⁺. Scans (averaged) in transmission mode. Reference measurements were performed on a calcium fluoride deposited on a 1-mm-thick single crystal calcium fluoride window. The spectra were collected with 1,024 scans (averaged) in transmission mode. Reference measurements were performed on a calcium fluoride window without sample.

ACKNOWLEDGMENTS

We thank Wiebke Ruschmeier for help with preparing gradient tubes, Karin Stögerer for help with molecular biological analyses, Ellen Struve for TOC measurements, Annette Flicker for help with the FTIR measurements, and Hartmut Schulz for help with electron microscopy analysis and for freeze-drying the stalk samples. Furthermore, we want to thank Aude Picard for helpful discussions about the composition of the twisted stalks. We acknowledge the Centre for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental Research supported by European Regional Development Funds (EFRE–Europe funds Saxony) for using their analytical facilities for TOF-SIMS analysis. The European Research Council (ERC) provided funding to K. Laufer, M. Nordhoff, and A. Kappler under grant 307320-MICROFOX.

REFERENCES

hydrothermal venting supports Fe-oxidizing bacteria and massiveumber
deposition at 5000 m off Hawaii. ISME J 5:1748–1758. https://
doi.org/10.1038/ismej.2011.48.
15. Forget NL, Murdock SA, Juniper SK. 2010. Bacterial diversity in Fe-rich
hydrothermal sediments at two South Tonga Arc submarine volcanoes.
.00247.x.
communities in iron-silica-rich microbial mats at deep-sea hydrother-
mal fields of the Southern Mariana Trough. Environ Microbiol 11:
iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in near-
2011. Molecular characterization of putative biocorroding microbiota
with a novel niche detection of Epsilon- and Zetaproteobacteria in
19. Field EK, Kato S, Findlay DJ, MacDonald DJ, Chiu BK, Luther GW, Chan CS.
2016. Planktonic marine iron oxidizers drive iron mineralization under
10.1111/gbi.12158.
20. McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL.
2011. Biodiversity and emerging biogeography of the neutrophilic iron-
at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be
https://doi.org/10.1371/journal.pone.0119284.
22. Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL.
2007. A novel lineage of proteobacteria involved in formation of marine
doi.org/10.1371/journal.pone.0000667.
23. Field EK, Syrzyba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R,
Emerson D. 2014. Genomic insights into the uncultivated marine Zeta-
24. Krupsky ST, Hansel TE, Chan CS. 2012. Isolation and characterization of
a novel biominal stalk-forming iron-oxidizing bacterium from a cir-
2016. Submicron-scale heterogeneities in nickel sorption of various
cell-mineral aggregates formed by Fe(II)-oxidizing bacteria. Environ Sci
oxide hydroxide stalks produced by a lithotrophic iron-oxidizing bacteria.
27. Barco RA, Edwards KJ. 2014. Interactions of proteins with biogenic iron
oxide hydroxides and a new culturing technique to increase biomass yields
oxide hydroxide mineralization on microbial extracellular polysaccharides.
j.gca.2009.02.036.
2011. Molecular-level modes of As binding to Fe(III) (oxyhydr) oxides
precipitated by the aerobic nitrate-reducing Fe(II)-oxidizing Acidovorax
doi.org/10.1016/j.gca.2011.02.044.
30. Eickhoff I, Obst M, Schröder C, Hitchcock AP, Tyliszczak T, Martinez RE,
Robbins LJ, Konhauser KO, Kappler A. 2014. Nickel partitioning in bio-
genic and abiogenic ferrihydrite: the influence of silica and implications
doi.org/10.1016/j.gca.2014.03.021.
31. Martinez RE, Pedersen K, Ferris FG. 2004. Cadmium complexation by bac-
teriogenic iron oxides from a subterranean environment. J Colloid
heterogeneity of bacteriogenic iron oxides from a subterranean envi-
est030092j.
Elements 7:89–93. https://doi.org/10.2113/gselements.7.2.89.
10.1016/S0168-6445(03)00042-1.
oxide deposits from Axial Volcano, Juan de Fuca Ridge, northeast
0149050303873.
(ed), Mössbauer spectroscopy of environmental materials and their
reactions, occurrences [sic] and uses. Wiley-VCH Verlag GmbH, Weinheim,
Germany.
39. Tamm LK, Tatulian SA. 1997. Infrared spectroscopy of proteins and
doi.org/10.1017/S0033893997000337.
40. Reyes C, Dellwig O, Dähnke K, Gehre M, Noriega-Ortega B, Böttcher ME,
Meister P, Friedrich MW. 2016. Bacterial communities potentially in-
volved in iron-cycling in Baltic Sea and North Sea sediments revealed by
10.1093/femsec/fyw054.
41. McBeth JM, Fleming EJ, Emerson D. 2013. The transition from freshwater
to marine iron-oxidizing bacterial lineages along a salinity gradient on
pump” in an open ocean general circulation model. Glob Biogeochem
molecular biology and biochemistry: what are the causes of obligate autotrophy

April 2017 Volume 83 Issue 8 e03118-16 aem.asm.org

Laufer et al. Applied and Environmental Microbiology

Downloaded from http://aem.asm.org on March 31, 2017 by guest

