Motivated by the Strong Cosmic Censorship Conjecture, in the presence of a cosmological constant, we consider solutions of the scalar wave equation $\Box_g \psi = 0$ on fixed subextremal Reissner–Nordström–de Sitter backgrounds (M, g), without imposing symmetry assumptions on ϕ. We provide a necessary condition, in terms of surface gravities and a parameter for an exponential decaying Price law, for a local energy of the waves to remain bounded up to the Cauchy horizon. The energy we consider controls, in particular, regular transverse derivatives at the Cauchy horizon, which allows us to extend the solutions (as functions), to the Cauchy horizon, in $C^0 \cap H^1_{loc}$. This corresponds to another manifestation of the potential breakdown of Strong Cosmic Censorship in the positive cosmological constant setting.