1. Write the expectation of a random variable (r.v.) \(Z \), \(E(Z) \), extensively
 a) for a discrete random variable
 b) for a continuous random variable

2. \(Var(Z) \) can be written as \(E(Y) \). What is \(Y \)?

3. Write \(Var(Z) \) extensively
 a) for a discrete random variable
 b) for a continuous random variable

4. What does the cumulative density function or cumulative distribution function (c.d.f.) tell you?
 \(F_X(x) = \)

5. \(X \) is a continuous r.v.. How are the c.d.f. \(F_X(x) \) and the density function (d.f.) \(f_X(x) \) related?

6. \(Cov(X, Y) \) can be written as \(E(Z) \). What is \(Z \)?

7. Write \(Cov(X, Y) \) extensively for \(X \) and \(Y \)
 a) as discrete r.v.s.
 b) as continuous r.v.s.

8. Express \(E_{XY}(XY) \) as a function of \(Cov(X, Y) \)

9. Write \(E_{XY}(XY) \) extensively for \(X \) and \(Y \)
 a) as discrete r.v.s.
 b) as continuous r.v.s.

10. \(g(X) \) denotes a measurable function of the r.v. \(X \) (like e.g. \(X^2 \), \(ln(X) \)).
 Write extensively \(E(g(X)) \) for the continuous r.v. \(X \)

11. \(X \) and \(Y \) are cont. r.v.s.. \(Z = g(X, Y) \) is a measurable function. Write extensively \(E(g(X, Y)) \)

12. \(X \) and \(Y \) are cont. r.v.s.. What does the joint c.d.f. \(F_{XY}(x, y) \) tell you?
 Write the c.d.f. extensively. What does the joint p.d.f. \(f_{XY}(x, y) \) tell you?
 (discrete case)

13. How are \(F_{XY}(x, y) \) and \(f_{XY}(x, y) \) (joint density) related? (\(X \) and \(Y \) are cont. r.v.s.)

14. If \(X \) and \(Y \) are independent:
 \(F_{XY}(x, y) = \)
 \(f_{XY}(x, y) = \)

15. If \(X \) and \(Y \) are independent:
 \(E_{XY}(X \cdot Y) = \)
 \(Cov(X, Y) = \)
16. If X and Y are independent:
 $$E_{XY}(h(X) \ast g(Y)) =$$

17. $E_{XY}(X + Y) =$
 $$E_{XYZ}(X + Y + Z) =$$
 $$Var(X + Y) =$$

18. Write extensively for X and Y as discrete r.v.s. and X and Y as continuous r.v.s.
 $f_{X|Y}(X|Y = y)$
 $E_{X|Y}(X|Y = y)$
 $E_{X|Y}(X^2|Y = y)$

19. $E(aX) =$
 $$Var(aX) =$$
 $(a$ is a nonrandom scalar)

20. For $X = (X_1, X_2, \ldots, X_n)'$
 $E(X) = \mu, \mu =$?
 $Var(X) = \Sigma, \Sigma =$?
 $$A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
 \end{bmatrix}
 (A$ is a nonrandom matrix)

 $Z = A \ast X$
 $E(Z) =$
 $Var(Z) =$

21. $Y = a + b \ast X$
 $E(Y)$ =
 $E(Y|X = x) =$

22. Given joint density $f_{XY}(x, y)$. How do you get $f_X(x)$ and $f_Y(y)$?
 a) as discrete r.v.s.
 b) as continuous r.v.s.

23. Under which circumstances can you get $f_{XY}(x, y)$ from $f_X(x)$ and $f_Y(y)$?

24. X and Y are jointly normally distributed
 $$\begin{pmatrix} X \\ Y \end{pmatrix} \sim BVN(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho_{XY}).$$
 What is the relation of parameters and moments?
 X ~
 Y ~
 $X|(Y = y)$
 $Y|(X = x)$
 $E(X|Y = y) =$
 $Var(X|Y = y) =$

2
25. X, Y and Z are normally distributed.

$W = a * X + b * Y + c * Z \sim$

How is W distributed?