1 Linear Algebra

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics
1.9 Quadratic forms and sign definitness
Readings

- Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. *Further Mathematics for Economic Analysis*. Prentice Hall, 2008 Chapter 1
Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 26: Symmetric matrices and positive definiteness
 https://www.youtube.com/watch?v=umt6BB1nJ4w
- Lecture 27: Positive definite matrices and minima – Quadratic forms
 https://www.youtube.com/watch?v=vF7eyJ2g3kU
1.9 Quadratic forms and sign definiteness

Definitions

- Degree of a polynomial
- Form of nth degree
- special case: quadratic form

$$Q(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$
A quadratic form $Q(x_1, x_2)$ for two variables x_1 and x_2 is defined as

$$Q(x_1, x_2) = x' A x = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} x_i x_j$$

where $a_{ij} = a_{ji}$ and, thus,

with the symmetric coefficient matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$
1.9 Quadratic forms and sign definitness

Graph of the positive definite form $Q(x_1, x_2) = x_1^2 + x_2^2$

Graph of the positive semidefinite form $Q(x_1, x_2) = (x_1 + x_2)^2$

Graph of the negative definite form $Q(x_1, x_2) = -x_1^2 - x_2^2$

Graph of the negative semidefinite form $Q(x_1, x_2) = -(x_1 + x_2)^2$

Graph of the indefinite form $Q(x_1, x_2) = x_1^2 - x_2^2$
1.9 Quadratic forms and sign definitness

The quadratic form associated with the matrix A (and thus the matrix A itself) is said to be

- **positive definite**, if $Q = x'Ax > 0$ for all $x \neq 0$
- **positive semi-definite**, if $Q = x'Ax \geq 0$ for all x
- **negative definite**, if $Q = x'Ax < 0$ for all $x \neq 0$
- **negative semi-definite**, if $Q = x'Ax \leq 0$ for all x

Otherwise the quadratic form is **indefinite**.

Note: For any quadratic matrix A it holds that $x'Ax = x'Bx$ with $B = 0, 5 \cdot (A + A')$ symmetric.
1.9 Quadratic forms and sign definitness

The quadratic form $Q(x)$ is

- positive (negative) definite, if all eigenvalues of the matrix A are positive (negative): $\lambda_j > 0$ ($\lambda_j < 0$) $\forall j = 1, 2, \ldots, n$;

- positive (negative) semi-definite, if all eigenvalues of the matrix A are non-negative (non-positive): $\lambda_j \geq 0$ ($\lambda_j \leq 0$) $\forall j = 1, 2, \ldots, n$ and at least one eigenvalue is equal to zero;

- indefinite, if two eigenvalues have different signs.
1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.

2) If \mathbf{A} is positive definite, then \mathbf{A}^{-1} exists and is positive definite.

3) If \mathbf{X} is $n \times k$, then $\mathbf{X}'\mathbf{X}$ and \mathbf{XX}' are positive semi-definite.

4) If \mathbf{X} is $n \times k$ and $\text{rk}(\mathbf{X}) = k$, then $\mathbf{X}'\mathbf{X}$ is positive definite (and therefore non-singular).