Is quantifier scope resolved automatically during reading?
Janina Radó & Oliver Bott
Collaborative Research Center 833, The Construction of Meaning, Tübingen University

Question addressed in the present study

Is quantifier scope computed immediately and automatically as the quantifiers are encountered or is it left underspecified until disambiguating information has been reached (Sanford & Sturt)?

Scope conflict

- Factors affecting scope preferences: a) construction biases (inverse linking), b) distributivity (all vs. every)

 - (1) involves scope conflict: inverse linking (⇒ inverse scope), but non-distributive all (⇒ linear scope)

 Exactly one geometrical object on all cards is a circle.

 2. In (1b) both factors bias towards inverse scope, no conflict arises

- The second quantifier appears after a complete predication in (1)/(2), but before the predicate in (3a)/(3b) (cf. Sanford & Garrod)

 - Automatic scope resolution even without a concrete scenario?

Materials and design of the study

- **i-link**: Genau ein Kreis ist auf allen Karten zu finden.

 Exactly one circle is on all cards to find.

- **sent**: Genau ein Kreis ist auf jeder Karte zu finden.

 Exactly one circle is on every card to find.

 - The same contrast as in (1a)/(1b) can be observed in (2a)/(2b) and (3a)/(3b).

- **contr**: Auf allen/jedem Bild(ern) sollst du nennen!

 You should name all/every picture(s) should you name!

Exp. 1: Combined self-paced reading/verification paradigm

Exp. 1 (N=40): reading stage

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sent</th>
<th>I-link</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>sent conditions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No RT difference between all and every in controls (p > .10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sent: scope conflict ⇒ slower RTs on all than on every</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-link conditions:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No scope computation before processing the verbal predicate?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exp. 2 (N=30): Eyetracking

- **Task**: read sentence, uncover cards, decide at each whether the sentence is true/false or more information is needed (cf. Conroy)

 - Immediate full interpretation: Indication of scope conflict as soon as all is encountered, well before the disambiguation.

 - Underspecification: Indication of scope conflict only at the disambiguation (i.e. at the 2nd card).

Hypotheses and predictions

- Judgments revealed scope conflict in all conditions, but not in every condition (Sanford: Task effect at quantifier; p < .01; f = .10)

 - Same scope distributions in sent and i-link (funciona-al; p < .01)

 - Yes, go on RTS: QQ-conditions slower than controls

 - Verification strategy seems to be in place already at first card

Exp. 1 (N=40): verification stage

- In (1b) both factors bias towards inverse scope, no conflict arises

- These two card displays disambiguate the scope readings

 - yes: yes; no: no; yes: yes
