Welcome to the Chair of Marketing
! Bewerbungen noch bis 19.9. möglich! Tutorinnen und Tutoren für das WS 2024/25 gesucht!
21.8.2024
Der Lehrstuhl für Marketing sucht für das Wintersemester 2024/25 engagierte Tutorinnen und Tutoren. Neben einer spannenden Tätigkeit erwartet Sie eine Vergütung als wissenschaftliche Hilfskraft. Weitere Details zur Bewerbung finden Sie hier. Wir freuen uns auf Ihre Bewerbung bis zum 19.09.2024!
Exam Review for Summer Term 2024 (Keller)
02.09.2024
The exam review for the following courses will take place on Thursday, September 19, 2024, from 8:30 AM to 9:30 AM sharp at Prof. Dr. Keller’s office (1st floor, room 107, Nauklerstr. 47):
-
B425a Price and Promotion Management (Master)
-
B321E Angewandte Marketingmodelle (Bachelor)
Registration Details:
- Deadline: Registration is possible until Tuesday, September 17, 2024, at noon.
- How to Register: Please send an email to wiebke.keller. @uni-tuebingen.de
Exam Review for Summer Term 2024
09.08.2024
The exam review for the following courses will take place on Wednesday, August 14, 2024, from 9:00 AM to 10:35 AM sharp at FSR Ground Floor, Nauklerstr. 47:
- B320 Market Research
- B321B Brand Management
- B321J Consumer Behavior
- DS320 Introduction to Data Science
- B421 eBusiness
Registration Details:
- Deadline: Registration is possible until Monday, August 12, 2024, at noon.
- How to Register: Please register for one of the available time slots following this link.
Masterarbeit im Rahmen einer Unternehmenskooperation
20.02.2024
Can Data Integration Improve Consumer Demand Planning in the Photovoltaic Industry?
- Forecasting customer demand is a critical business process in most industries. Forecasting solutions in business practice often focus on manual forecasting (“expert forecasts”) or timeseries forecasting. However, these approaches neglect the explanatory power of important external factors for customer demand and may thus lead to poor forecast accuracy in the volatile business environment of the PV industry.
- The goal of this work is to assess whether integrating internal and auxiliary data (e.g., historical data, seasonalities, expert forecasts, time series forecasts, customer demand signals, market data, price developments, Google trends, …) can be leveraged to build a feature-driven demand forecasting model and to improve the demand forecast accuracy at BayWa r.e. Solar Energy Systems.
- This thesis requires solid knowledge of and experience with R / Python as well as experience with Machine Learning.
Supervision: Prof. Dr. Dominik Papies with Dr. David Scheuermann (BayWa r.e. Solar Energy Systems)
On this page you will find all important information about the application process.
Contact
Dr. Dominik Papies
Professor of Marketing
Nauklerstr. 47
1st floor, room 111
+49 7071 29-78202
dominik.papies @uni-tuebingen.de
Program Coordinator:
Office Hours
on the time being, we have no general office opening hours. All counselling appointments are via video call. If you would like to make a Zoom appointment, please email marketing @uni-tuebingen.de
Secretariat
+49 7071 29-78202
marketing @uni-tuebingen.de
Upcoming Events
Business Research Seminar Summer Term 2024
July 24, Dr. Lucas Stich, Professor of Marketing Analytics (Universität Würzburg)
Further details will be provided here.