<table>
<thead>
<tr>
<th>#</th>
<th>date</th>
<th>content</th>
<th>Ex</th>
<th>#</th>
<th>date</th>
<th>content</th>
<th>Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.04.</td>
<td>Introduction</td>
<td>1</td>
<td>14</td>
<td>09.06.</td>
<td>Logistic Regression</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>21.04.</td>
<td>Reasoning under Uncertainty</td>
<td>15</td>
<td>15.06.</td>
<td>Exponential Families</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>27.04.</td>
<td>Continuous Variables</td>
<td>2</td>
<td>16</td>
<td>16.06.</td>
<td>Graphical Models</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>28.04.</td>
<td>Monte Carlo</td>
<td>17</td>
<td>22.06.</td>
<td>Factor Graphs</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>04.05.</td>
<td>Markov Chain Monte Carlo</td>
<td>3</td>
<td>18</td>
<td>23.06.</td>
<td>The Sum-Product Algorithm</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>05.05.</td>
<td>Gaussian Distributions</td>
<td>19</td>
<td>29.06.</td>
<td>Example: Topic Models</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11.05.</td>
<td>Parametric Regression</td>
<td>4</td>
<td>20</td>
<td>30.06.</td>
<td>Mixture Models</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>12.05.</td>
<td>Understanding Deep Learning</td>
<td>21</td>
<td>06.07.</td>
<td>EM</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18.05.</td>
<td>Gaussian Processes</td>
<td>5</td>
<td>22</td>
<td>07.07.</td>
<td>Variational Inference</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>19.05.</td>
<td>An Example for GP Regression</td>
<td>23</td>
<td>13.07.</td>
<td>Example: Topic Models</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>25.05.</td>
<td>Understanding Kernels</td>
<td>6</td>
<td>24</td>
<td>14.07.</td>
<td>Example: Inferring Topics</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>08.06.</td>
<td>GP Classification</td>
<td>7</td>
<td>26</td>
<td>21.07.</td>
<td>Revision</td>
<td>13</td>
</tr>
</tbody>
</table>
A Computational Challenge

Integration is the core computation of probabilistic inference

Probabilistic inference requires integrals:

- Evidences. Example from Lecture 3:

\[p(\pi|x_1, \ldots, x_N) = \frac{\prod_i^N p(x_i | \pi)p(\pi)}{\int_0^1 \prod_i^N p(x_i | \pi)p(\pi) d\pi} = \frac{\prod_i^N \pi^n(1 - \pi)^{N-n}}{\int_0^1 \prod_i^N \pi^n(1 - \pi)^{N-n} d\pi} \]

- Expectations (actually, evidences are expectations, too)

\[\langle f \rangle_p := \mathbb{E}_p[f] := \int f(x)p(x) \, dx \]

\[f(x) = x \]

\[f(x) = (x - \mathbb{E}_p(x))^2 \]

\[f(x) = x^p \]

\[f(x) = - \log x \]

...
The Toolbox

Framework:

\[\int p(x_1, x_2) \, dx_2 = p(x_1) \quad p(x_1, x_2) = p(x_1 \mid x_2) p(x_2) \quad p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} \]

Modelling:
- Directed Graphical Models

Computation:
- Monte Carlo
Randomized Methods — Monte Carlo

the idea

▶ the “simplest thing to do”: replace integral with sum:

\[
\int f(x)p(x) \, dx \approx \frac{1}{S} \sum_{i=1}^{S} f(x_i); \quad \int p(x, y) \, dx \approx \sum_i p(y | x_i); \quad \text{if } x_i \sim p(x)
\]

▶ this requires being able to sample \(x_i \sim p(x)\)

Definition (Monte Carlo method)

*Algorithms that compute expectations in the above way, using samples \(x_i \sim p(x)\) are called *Monte Carlo* methods (Stanisław Ulam, John von Neumann).*
A method from a different age

Monte Carlo Methods and the Manhattan Project

Stanisław Ulam
1909–1984

Nicholas Metropolis
1915–1999

John von Neumann
1903–1957

images: Los Alamos National Laboratory / wikipedia
The FERMIAC
analog Monte Carlo computer
Example
a dumb way to compute π

- ratio of quarter-circle to square: $\frac{\pi}{4}$
- $\pi = 4 \int \mathbb{I}(x^T x < 1) u(x) \, dx$
- draw $x \sim u(x)$, check $x^T x < 1$, count

```python
from numpy.random import rand
S = 100000
sum((rand(S,2)**2).sum(axis=1) < 1) / S * 4
```

> 3.13708
> 3.14276
Monte Carlo works on every Integrable Function

is this a good thing?

\[\phi := \int f(x)p(x) \, dx = \mathbb{E}_p(f) \]

- Let \(x_s \sim p, s = 1, \ldots, S \text{ iid. (i.e. } p(x_s = x) = p(x) \text{ and } p(x_s, x_t) = p(x_s)p(x_t) \forall s, t) \)

\[\hat{\phi} := \frac{1}{S} \sum_{s=1}^{S} f(x_s) \quad \leftarrow \text{the Monte Carlo estimator is} \ldots \]

\[\mathbb{E}(\hat{\phi}) =: \int \frac{1}{S} \sum_{s=1}^{S} f(x_s)p(x_s) \, dx_s = \frac{1}{S} \sum_{s=1}^{S} \int f(x_s)p(x_s) \, dx_s \]

\[= \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}(f(x_s)) = \phi \quad \leftarrow \text{... an unbiased estimator!} \]

- the only requirement for this is that \(\int f(x)p(x) \, dx \text{ exists} \) (i.e. \(f \) must be Lebesgue-integrable relative to \(p \)). Monte Carlo integration can even work on discontinuous functions.
Sampling converges slowly

The expected square error (variance) drops as $O(S^{-1})$

$$\mathbb{E}(\hat{\phi} - \mathbb{E}(\hat{\phi}))^2 = \mathbb{E}\left[\frac{1}{S} \sum_{s=1}^{S} (f(x_s) - \phi)\right]^2$$

$$= \frac{1}{S^2} \sum_{s=1}^{S} \sum_{r=1}^{S} \mathbb{E}(f(x_s)f(x_r)) - \phi \mathbb{E}(f(x_s)) - \mathbb{E}(f(x_r))\phi + \phi^2$$

$$= \frac{1}{S^2} \sum_{s=1}^{S} \left(\sum_{r \neq s}^{S} \phi^2 - 2\phi^2 + \phi^2\right) + \mathbb{E}(f^2) - \phi^2$$

$$= \frac{1}{S} \text{var}(f) = O(S^{-1})$$

Thus, the expected error (the square-root of the expected square error) drops as $O(S^{-1/2})$
sampling is for rough guesses

recall example computation for π

▶ need only ~ 9 samples to get order of magnitude right ($\text{std}(\phi)/3$)
▶ need 10^{14} samples for single-precision ($\sim 10^{-7}$) calculations!
▶ sampling is good for rough estimates, not for precise calculations
▶ Always think of other options before trying to sample!
samples from a probability distribution can be used to estimate expectations, roughly, without having to design an elaborate integration algorithm

The error of the estimate is independent of the dimensionality of the input domain!

How do we generate random samples from $p(x)$?
Theorem (Change of Variable for Probability Density Functions)

Let X be a continuous random variable with PDF $p_X(x)$ over $c_1 < x < c_2$. And, let $Y = u(X)$ be a monotonic differentiable function with inverse $X = v(Y)$. Then the PDF of Y is

$$p_Y(y) = p_X(v(y)) \cdot \left| \frac{dv(y)}{dy} \right| = p_X(v(y)) \cdot \left| \frac{du(x)}{dx} \right|^{-1}.$$

Let $X = (X_1, \ldots, X_d)$ have a joint density p_X. Let $g : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be continuously differentiable and injective, with non-vanishing Jacobian J_g. Then $Y = g(X)$ has density

$$p_Y(y) = \begin{cases} p_X(g^{-1}(y)) \cdot |J_{g^{-1}}(y)| & \text{if } y \text{ is in the range of } g, \\ 0 & \text{otherwise.} \end{cases}$$

The Jacobian J_g is the $d \times d$ matrix with $[J_g(x)]_{ij} = \frac{\partial g_i(x)}{\partial x_j}$.

Reminder: Change of Measure

The transformation law
Some special cases

sampling from an exponential distribution is analytic

\[p(x) = \frac{1}{\lambda} e^{-x/\lambda} \]

\[1 - u = 1 - e^{-x/\lambda} \]

\[\int p(x) \, dx = 1 - e^{-x/\lambda} \]

\[x = -\lambda \log(u) \]
Consider \(u \sim U[0, 1] \) (i.e. \(u \in [0, 1] \), and \(p(u) = 1 \)). The variable \(x = u^{1/\alpha} \) has the Beta density

\[
p_x(x) = p_u(u(x)) \cdot \left| \frac{\partial u(x)}{\partial x} \right| = \alpha \cdot x^{\alpha - 1} = \mathcal{B}(x; \alpha, 1).
\]
Example: Sampling from a Beta Distribution

Consider \(u \sim U[0, 1] \) (i.e. \(u \in [0, 1] \), and \(p(u) = 1 \)). The variable \(x = u^{1/\alpha} \) has the Beta density

\[
p_x(x) = p_u(u(x)) \cdot \left| \frac{\partial u(x)}{\partial x} \right| = \alpha \cdot x^{\alpha - 1} = \mathcal{B}(x; \alpha, 1).
\]

Homework:

Consider two independent variables

\[
X \sim \mathcal{G}(\alpha, \theta) \quad Y \sim \mathcal{G}(\beta, \theta)
\]

where \(\Gamma(\xi; \alpha, \theta) = \frac{1}{\Gamma(\alpha)\theta^\xi} \xi^{\alpha - 1} e^{-\xi/\theta} \) is the Gamma distribution. Show that the random variable

\[
Z = \frac{X}{X + Y}
\]

is Beta distributed, with the density

\[
p(Z = z) = \mathcal{B}(z; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} z^{\alpha - 1} (1 - z)^{\beta - 1}.
\]
samples from a probability distribution can be used to estimate expectations, roughly

‘random numbers’ don’t really need to be unpredictable, as long as they have as little structure as possible

uniformly distributed random numbers can be transformed into other distributions. This can be done numerically efficiently in some cases, and it is worth thinking about doing so

What do we do if we don’t know a good transformation?
Why is sampling hard?

Sampling is harder than global optimization

To produce exact samples:

- need to know cumulative density everywhere
- need to know regions of high density (not just local maxima!)
- a global description of the entire function

Practical Monte Carlo Methods aim to construct samples from

\[p(x) = \frac{\tilde{p}(x)}{Z} \]

assuming that it is possible to evaluate the unnormalized density \(\tilde{p} \) (but not \(p \)) at arbitrary points.

Typical example: Compute moments of a posterior

\[p(x \mid D) = \frac{p(D \mid x)p(x)}{\int p(D, x) \, dx} \quad \text{as} \quad \mathbb{E}_{p(x \mid D)}(x^n) \approx \frac{1}{S} \sum_s x_i^n \quad \text{with} \quad x_i \sim p(x \mid D) \]
Rejection Sampling

a simple method [Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

- for any \(p(x) = \tilde{p}(x)/Z \) (normalizer \(Z \) not required)
- choose \(q(x) \) s.t. \(cq(x) \geq \tilde{p}(x) \)
- draw \(s \sim q(x) \), \(u \sim \text{Uniform}[0, cq(s)] \)
- reject if \(u > \tilde{p}(s) \)
The Problem with Rejection Sampling

the curse of dimensionality [MacKay, §29.3]

Example:

\[p(x) = \mathcal{N}(x; 0, \sigma_p^2) \]
\[q(x) = \mathcal{N}(x; 0, \sigma_q^2) \]
\[\sigma_q > \sigma_p \]

optimal \(c \) is given by

\[
c = \left(\frac{2\pi\sigma_q^2}{2\pi\sigma_p^2} \right)^{D/2} = \left(\frac{\sigma_q}{\sigma_p} \right)^D = \exp \left(D \ln \frac{\sigma_q}{\sigma_p} \right)
\]

acceptance rate is ratio of volumes: \(1/c \)
rejection rate rises **exponentially** in \(D \)

for \(\sigma_q/\sigma_p = 1.1, D = 100, 1/c < 10^{-4} \)
Importance Sampling

a slightly less simple method

- computing $\tilde{p}(x), q(x)$, then **throwing them away seems wasteful**
- instead, rewrite (assume $q(x) > 0$ if $p(x) > 0$)

\[
\phi = \int f(x)p(x) \, dx = \int f(x) \frac{p(x)}{q(x)} q(x) \, dx
\]

\[
\approx \frac{1}{S} \sum_s f(x_s) \frac{p(x_s)}{q(x_s)} =: \frac{1}{S} \sum_s f(x_s) w_s \quad \text{if } x_s \sim q(x)
\]

- this is just using a new function $g(x) = f(x)p(x)/q(x)$, so it is an **unbiased** estimator
- w_s is known as the **importance (weight)** of sample s
- if normalization unknown, can also use $\tilde{p}(x) = Zp(x)$

\[
\int f(x)p(x) \, dx = \frac{1}{2} \frac{1}{S} \sum_s f(x_s) \frac{\tilde{p}(x_s)}{q(x_s)}
\]

\[
= \frac{1}{S} \sum_s f(x_s) \frac{\tilde{p}(x_s)/q(x_s)}{\frac{1}{S} \sum_t 1\tilde{p}(x_t)/q(x_t)} =: \sum_s f(x_s) \tilde{w}_s
\]

- this is **consistent**, but **biased**
What’s wrong with Importance Sampling?

the curse of dimensionality, revisited

- recall that \(\text{var} \hat{\phi} = \text{var}(f)/S \) – importance sampling replaces \(\text{var}(f) \) with \(\text{var}(g) = \text{var}\left(\frac{f_p}{q}\right) \)
- \(\text{var}\left(\frac{f_p}{q}\right) \) can be very large if \(q \ll p \) somewhere. In many dimensions, usually all but everywhere!
- if \(p \) has “undiscovered islands”, some samples have \(p(x)/q(x) \rightarrow \infty \)
Sampling (Monte Carlo) Methods
Sampling is a way of performing rough probabilistic computations, in particular for expectations (including marginalization).

- samples from a probability distribution can be used to estimate expectations, roughly
- uniformly distributed random numbers can be transformed into other distributions. This can be done numerically efficiently in some cases, and it is worth thinking about doing so
- Rejection sampling is a primitive but exact method that works with intractable models
- Importance sampling makes more efficient use of samples, but can have high variance (and this may not be obvious)

Next Lecture:
- Markov Chain Monte Carlo methods are more elaborate ways of getting approximate answers to intractable problems.