<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Content</th>
<th>Ex</th>
<th>#</th>
<th>Date</th>
<th>Content</th>
<th>Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.04.</td>
<td>Introduction</td>
<td>1</td>
<td>14</td>
<td>09.06.</td>
<td>Generalized Linear Models</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21.04.</td>
<td>Reasoning under Uncertainty</td>
<td>2</td>
<td>15</td>
<td>15.06.</td>
<td>Exponential Families</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>27.04.</td>
<td>Continuous Variables</td>
<td>2</td>
<td>16</td>
<td>16.06.</td>
<td>Graphical Models</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>28.04.</td>
<td>Monte Carlo</td>
<td>7</td>
<td>17</td>
<td>22.06.</td>
<td>Factor Graphs</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>04.05.</td>
<td>Markov Chain Monte Carlo</td>
<td>3</td>
<td>18</td>
<td>23.06.</td>
<td>The Sum-Product Algorithm</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>05.05.</td>
<td>Gaussian Distributions</td>
<td>4</td>
<td>19</td>
<td>29.06.</td>
<td>Example: Topic Models</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>11.05.</td>
<td>Parametric Regression</td>
<td>5</td>
<td>20</td>
<td>30.06.</td>
<td>Mixture Models</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12.05.</td>
<td>Learning Representations</td>
<td>6</td>
<td>21</td>
<td>06.07.</td>
<td>EM</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>18.05.</td>
<td>Gaussian Processes</td>
<td>7</td>
<td>22</td>
<td>07.07.</td>
<td>Variational Inference</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19.05.</td>
<td>Understanding Kernels</td>
<td>8</td>
<td>23</td>
<td>13.07.</td>
<td>Topics</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25.05.</td>
<td>An Example for GP Regression</td>
<td>10</td>
<td>25</td>
<td>14.07.</td>
<td>Example: Inferringevision</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>08.06.</td>
<td>GP Classification</td>
<td>11</td>
<td>26</td>
<td>21.07.</td>
<td>Revision</td>
<td></td>
</tr>
</tbody>
</table>
Why is this hard?
The computational challenge in Bayesian Inference

\[p(x \mid y) = \frac{p(y \mid x)p(x)}{\int p(y \mid x)p(x) \, dx} \]

- the integral \(\int p(y \mid x)p(x) \, dx \) may be intractable
- thus, also expectations \(\int f(x)p(x \mid y) \, dx \) are hard

Practical probabilistic inference is chiefly a *computational* task.
The Toolbox

Framework:

\[\int p(x_1, x_2) \, dx_2 = p(x_1) \]
\[p(x_1, x_2) = p(x_1 \mid x_2) p(x_2) \]
\[p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)} \]

Modelling:
- graphical models (conditional independence)
- Gaussian distributions
- Kernels
- Markov Chains
- Exponential Families / Conjugate Priors

Computation:
- Monte Carlo
- Linear algebra / Gaussian inference
- Maximum likelihood / MAP
- Laplace approximations
Hierarchical Bayesian Inference

Recall from GP regression: How to set parameters θ? From marginal likelihood $p(Y \mid \theta)$:

$$\hat{\theta} = \arg \max_\theta \mathcal{N}(\mathbf{y}; \phi_\theta^T \mu + b, \phi_\theta^T \Sigma \phi_\theta + \Lambda)$$

$$= \arg \max_\theta \log \mathcal{N}(\mathbf{y}; \phi_\theta^T \mu + b, \phi_\theta^T \Sigma \phi_\theta + \Lambda)$$

$$= \arg \min_\theta -\log \mathcal{N}(\mathbf{y}; \phi_\theta^T \mu + b, \phi_\theta^T \Sigma \phi_\theta + \Lambda)$$

$$= \arg \min_\theta \frac{1}{2} \left((\mathbf{y} - \phi_\theta^T \mu)^T \left(\phi_\theta^T \Sigma \phi_\theta + \Lambda \right)^{-1} (\mathbf{y} - \phi_\theta^T \mu) + \log \left| \phi_\theta^T \Sigma \phi_\theta + \Lambda \right| \right) + \frac{N}{2} \log 2\pi$$

In general, hierarchical inference is not analytically tractable. However, there are special cases...
Analytic Hierarchical Bayesian Inference
Inferring the Mean of a Gaussian

\[p(x \mid \mu) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu, \Sigma) \quad \text{and} \quad p(\mu \mid \mu_0, \Sigma_0) = \mathcal{N}(\mu; \mu_0, \Sigma_0) \]

\[p(\mu \mid x) = \frac{p(x \mid \mu)p(\mu \mid \mu_0, \Sigma_0)}{p(x)} = \mathcal{N}\left(\mu; \left(\Sigma_0^{-1} + n\Sigma^{-1}\right)^{-1}\left(\Sigma_0^{-1}\mu_0 + \Sigma^{-1}\sum_i x_i\right), \left(\Sigma_0^{-1} + n\Sigma^{-1}\right)^{-1}\right) \]
Analytic Hierarchical Bayesian Inference

Inferring a Binary Distribution

\[p(x \mid f) = \prod_{i=1}^{n} f^x \cdot (1 - f)^{1-x} \quad x \in \{0, 1\} \]

\[= f^{n_1} \cdot (1 - f)^{n_0} \quad n_0 := n - n_1 \]

\[p(f \mid \alpha, \beta) = \mathcal{B}(\alpha, \beta) = \frac{1}{B(\alpha, \beta)} f^{\alpha-1} (1 - f)^{\beta-1} \]

\[p(f \mid x) = \mathcal{B}(\alpha + n_1, \beta + n_0) = \frac{1}{B(\alpha + n_1, \beta + n_0)} f^{\alpha+n_1-1} (1 - f)^{\beta+n_0-1} \]

Pierre Simon, marquis de Laplace, 1749–1827
Analytic Hierarchical Bayesian Inference
Inferring a Categorical Distribution

\[p(x) = \prod_{i=1}^{n} f_{x_i} \quad x \in \{0; \ldots, K\} \]
\[= \prod_{k=1}^{K} f_{n_k}^{n_k} \quad n_k := |\{x_i \mid x_i = k\}| \]

\[p(f \mid \alpha) = D(\alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} f_{\alpha_k}^{\alpha_k - 1} \]

\[p(f \mid x) = D(\alpha + n) \]

Peter Gustav Lejeune Dirichlet (1805–1859)
Analytic Hierarchical Bayesian Inference
Inferring the (Co-) Variance of a Gaussian

\[p(x \mid \sigma) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu, \sigma^2) \]

\[p(\sigma) = ? \]
Analytic Hierarchical Bayesian Inference
Inferring the (Co-) Variance of a Gaussian

\[
p(x \mid \sigma) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu, \sigma^2)
\]

\[
p(\sigma) = ?
\]

\[
\log p(x \mid \sigma) = -\frac{1}{2} \log \sigma^2 - \frac{1}{2} (x - \mu)^2 \cdot \frac{1}{\sigma^2} - \frac{1}{2} \log 2\pi
\]
Analytic Hierarchical Bayesian Inference

Inferring the (Co-) Variance of a Gaussian

\[
p(x \mid \sigma) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu, \sigma^2)
\]

\[
p(\sigma) = ?
\]

\[
\log p(x \mid \sigma) = -\frac{1}{2} \log \sigma^2 - \frac{1}{2} (x - \mu)^2 \cdot \frac{1}{\sigma^2} - \frac{1}{2} \log 2\pi
\]

\[
\log p(\sigma \mid \alpha, \beta) = (\alpha + 1) \log \sigma^{-2} - \beta \cdot \frac{1}{\sigma^2} - Z(\alpha, \beta)
\]

\[
p(\sigma \mid \alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} (\sigma^{-2})^{\alpha+1} e^{-\beta \sigma^{-2}} =: \mathcal{G}(\sigma^{-2}; \alpha, \beta)
\]

\[
p(\sigma \mid \alpha, \beta, x) = \mathcal{G} \left(\sigma^{-2}; \alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i} (x_i - \mu)^2 \right)
\]
Analytic Hierarchical Bayesian Inference

Inferring Mean and Co-Variance of a Gaussian

\[p(x \mid \mu, \sigma) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu, \sigma^2) \]

\[p(\mu, \sigma \mid \mu_0, \nu, \alpha, \beta) = \mathcal{N} \left(\mu; \mu_0, \frac{\sigma^2}{\nu} \right) \mathcal{G}(\sigma^{-2}; \alpha, \beta) \]

\[p(\mu, \sigma \mid x, \mu_0, \nu, \alpha, \beta) = \mathcal{N} \left(\mu; \frac{\nu \mu_0 + n \bar{x}}{\nu + n}, \frac{\sigma^2}{\nu + n} \right). \]

\[\mathcal{G} \left(\sigma^{-2}; \alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{n\nu}{2(n + \nu)} (\bar{x} - \mu_0)^2 \right) \]

where \(\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \)
Analytic Hierarchical Bayesian Inference

Inferring Mean and Co-Variance of a Gaussian

\[
p(x \mid \mu, \sigma) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu, \sigma^2)
\]

\[
p(\mu, \sigma \mid \mu_0, \nu, \alpha, \beta) = \mathcal{N} \left(\mu; \mu_0, \frac{\sigma^2}{\nu} \right) \mathcal{G} \left(\sigma^{-2}; \alpha, \beta \right)
\]

\[
p(\mu, \sigma \mid x, \mu_0, \nu, \alpha, \beta) = \mathcal{N} \left(\mu; \frac{\nu \mu_0 + n\bar{x}}{\nu + n}, \frac{\sigma^2}{\nu + n} \right)
\]

\[
\mathcal{G} \left(\sigma^{-2}; \alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{n\nu}{2(n + \nu)}(\bar{x} - \mu_0)^2 \right)
\]

where \(\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i\)

\[

Probabilistic ML — P. Hennig, SS 2021 — Lecture 15: Exponential Families — © Philipp Hennig, 2021 CC BY-NC-SA 3.0
Conjugate Prior Inference

a beautiful idea, not to be underestimated

Definition (Conjugate Prior)

Let D and x be a data-set and a variable to be inferred, respectively, connected by the likelihood $p(D \mid x) = \ell(D; x)$. A **conjugate prior to ℓ for x** is a probability measure with pdf $p(x) = \pi(x; \theta)$ of functional form π, such that

$$p(x \mid D) = \frac{\ell(D; x)\pi(x; \theta)}{\int \ell(D; x)\pi(x; \theta) \, dx} = \pi(x; \theta').$$

That is, such that the posterior arising from ℓ is of the same functional form as the prior, with updated parameters.

Conjugate priors allow analytic Bayesian inference
How can we construct them in general?
Exponential Families

Exponentials of a Linear Form

Definition (Exponential Family, simplified form)

Consider a random variable X taking values $x \in X \subset \mathbb{R}^n$. A probability distribution for X with pdf of the functional form

$$p_w(x) = h(x) \exp \left[\phi(x)^\top w - \log Z(w) \right] = \frac{h(x)}{Z(w)} e^{\phi(x)^\top w} = p(x \mid w)$$

is called an **exponential family** of probability measures. The function $\phi : X \to \mathbb{R}^d$ is called the **sufficient statistics**. The parameters $w \in \mathbb{R}^d$ are the **natural parameters** of p_w. The normalization constant $Z(w) : \mathbb{R}^d \to \mathbb{R}$ is the **partition function**. The function $h(x) : X \to \mathbb{R}_+$ is the **base measure**.
The Bernoulli Distribution

a quick tour of exponential families

\[p(k \mid q) = \binom{n}{k} q^k \cdot (1 - q)^{n-k} \quad \text{(nb: treating } n \text{ as fixed)} \]

\[= \binom{n}{k} \exp(k \log q + (n - k) \log(1 - q)) \]

\[= \binom{n}{k} \exp \left(\frac{k}{\phi(k)} \log \frac{q}{1 - q} + n \log(1 - q) \right) \]

\[= h(k) \]

\[\log Z(w) = n \log(1 + e^w) \]
The Beta Distribution

a quick tour of exponential families

\[p(q \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} q^{\alpha-1} (1 - q)^{\beta-1} \]

\[= \frac{1}{h(q)} \exp \left(\begin{bmatrix} \log q \\ \log(1 - q) \end{bmatrix}^T \begin{bmatrix} \alpha - 1 \\ \beta - 1 \end{bmatrix} - \log B(\alpha, \beta) \right) \]

\[= \frac{1}{q(1 - q)} \exp \left(\begin{bmatrix} \log q \\ \log(1 - q) \end{bmatrix}^T \begin{bmatrix} \alpha \\ \beta \end{bmatrix} - \log B(\alpha, \beta) \right) \]

sufficient statistics \(\phi \), natural parameters \(w \) and base measure \(h \) are not uniquely defined.
A Family Meeting

Incomplete list of exponential families

<table>
<thead>
<tr>
<th>Name</th>
<th>sufficient stats</th>
<th>domain</th>
<th>use case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>$\phi(x) = [x]$</td>
<td>$X = {0; 1}$</td>
<td>coin toss</td>
</tr>
<tr>
<td>Poisson</td>
<td>$\phi(x) = [x]$</td>
<td>$X = \mathbb{R}_+$</td>
<td>emails per day</td>
</tr>
<tr>
<td>Laplace</td>
<td>$\phi(x) = [1, x]^T$</td>
<td>$X = \mathbb{R}$</td>
<td>floods</td>
</tr>
<tr>
<td>Helmert (χ^2)</td>
<td>$\phi(x) = [x, -\log x]$</td>
<td>$X = \mathbb{R}$</td>
<td>variances</td>
</tr>
<tr>
<td>Dirichlet</td>
<td>$\phi(x) = [\log x]$</td>
<td>$X = \mathbb{R}_+$</td>
<td>class probabilities</td>
</tr>
<tr>
<td>Euler (Γ)</td>
<td>$\phi(x) = [x, \log x]$</td>
<td>$X = \mathbb{R}_+$</td>
<td>variances</td>
</tr>
<tr>
<td>Wishart</td>
<td>$\phi(X) = [X, \log</td>
<td>X</td>
<td>]$</td>
</tr>
<tr>
<td>Gauss</td>
<td>$\phi(X) = [X, XX^T]$</td>
<td>$X = \mathbb{R}^N$</td>
<td>functions</td>
</tr>
<tr>
<td>Boltzmann</td>
<td>$\phi(X) = [X, \text{triag}(XX^T)]$</td>
<td>$X = {0; 1}^N$</td>
<td>thermodynamics</td>
</tr>
</tbody>
</table>
Exponential Families have Conjugate Priors

but the prior’s normalization constant can be tricky

Consider the exponential family

\[p_w(x \mid w) = h(x) \exp \left[\phi(x)^T w - \log Z(w) \right] \]

its conjugate prior is the exponential family

\[F(\alpha, \nu) = \int \exp(\alpha^T w - \nu \log Z(w)) \, dw \]

\[p_\alpha(w \mid \alpha, \nu) = \exp \left[\left(\begin{array}{c} w \\ -\log Z(w) \end{array} \right)^T \left(\begin{array}{c} \alpha \\ \nu \end{array} \right) - \log F(\alpha, \nu) \right] \]

because

\[p_\alpha(w \mid \alpha, \nu) \prod_{i=1}^n p_w(x_i \mid w) \propto p_\alpha \left(w \mid \alpha + \sum_i \phi(x_i), \nu + n \right) \]

and the predictive is

\[p(x) = \int p_w(x \mid w) p_\alpha(w \mid \alpha, \nu) \, dw = h(x) \int e^{(\phi(x) + \alpha)^T w + (\nu + 1) \log Z(w) - \log F(\alpha, \nu)} \, dw \]

\[= h(x) \frac{F(\phi(x) + \alpha, \nu + 1)}{F(\alpha, \nu)} \]

Computing \(F(\alpha, \nu) \) can be tricky. In general, this is the challenge when constructing an EF.
Consider the exponential family

\[p_w(x \mid w) = \exp \left[\phi(x)^\top w - \log Z(w) \right] \]

for iid data:

\[p_w(x_1, x_2, \ldots, x_n \mid w) = \prod_{i} p_w(x_i \mid w) = \exp \left(\sum_{i} \phi^\top(x_i)w - n \log Z(w) \right) \]

to find the maximum likelihood estimate for \(w \), set

\[\nabla_w \log p(x \mid w) = 0 \quad \Rightarrow \quad \nabla_w \log Z(w) = \frac{1}{n} \sum_{i} \phi(x_i) \]

hence, collect statistics of \(\phi \), compute \(\nabla_w \log Z(w) \) and solve the above for \(w \).
Other great properties

 exponential families make many things easy

► Re-phrased from above: because \(\int_X dp_w(x) = 1 \), we have

\[
\nabla_w \int p_w(x \mid w) \, dx = \int \nabla_w p_w(x \mid w) \, dx = \int \phi(x) \, dp_w(x \mid w) - \nabla_w \log Z(w) \int dp_w(x \mid w) \\
= \nabla_w 1 = 0
\]

\[\Rightarrow \mathbb{E}_{p_w}(\phi(x)) = \nabla_w \log Z(w)\]

► hence, if we should need to compute \(\mathbb{E}_{p_w}(\phi(x)) \), we can do so by differentiating \(\log Z \) wrt. \(w \) instead of integrating \(p \) over \(x \). (actually, we’re efficiently re-using someone else’s integral)

► Note that an exponential family forms a Abelian semigroup on \(w \):

\[p_w(x \mid w_1) \cdot p_w(x \mid w_2) \propto p(x \mid w_1 + w_2)\]

► Thus, combining information about \(x \) from independent \(p_w \)-sources can be done by floating point addition. In this sense, exponential families map inference to addition.
Exponential Families

- have conjugate priors
- allow maximum likelihood inference on their parameters from N observations in $O(N)$, because doing so requires only the sufficient statistics ϕ.
- allow computation of the integrals $\mathbb{E}_{p_w}(\phi(x)) = \nabla_w \log Z(w)$

All of this hinges on the fact that $\log Z(w)$ is (analytically) known.

Can we use exponential families $p_w(x) = e^{\phi(x)^T w} / Z(w)$ to learn distributions, just like we used linear forms $f(x) = \phi(x)^T w$ to learn functions?

Yes! In fact, we can even do Bayesian distribution regression. It is called conjugate prior inference.
Recap: Regression on Functions

The ℓ_2 loss

Recall previous lectures: **regression on real functions**:

Given $(y_i, x_i)_{i=1,...,n}$, and assume $p(y_i \mid f(x_i)) = \mathcal{N}(y_i; f(x_i), \sigma^2)$ and $f(x) = \phi(x)^T w$. Notice conjugate Gaussian prior $p(w) = \mathcal{N}(w; \mu, \Sigma)$, get Gaussian posterior $p(w \mid y) = \mathcal{N}(\ldots)$

statistical analysis: interpret negative log posterior as empirical risk $L_2(w) \propto -\log p(w \mid y)$.

MAP estimate at

$$\hat{f}(x) = \arg \min_{w \in \mathbb{R}^d} \sum_{i=1}^n \| y_i - \phi(x_i)^T w \|^2 + \frac{\sigma^2}{n} \| w \|_\Sigma^2 =: \arg \min_{w \in \mathbb{R}^d} L_2(w)$$

assume $x_i \sim p(x)$, then the Loss approximates an expected log posterior

$$\hat{f} \approx \arg \min_{w \in \mathbb{R}^d} \int \| f(x) - \phi(x)^T w \|^2 dp(x) + \frac{\sigma^2}{n} \| w \|_\Sigma^2$$

thus, for $n \rightarrow \infty$, find function \hat{f} that minimizes the expected square risk to f in $\mathcal{H}_\phi = \{ f : \mathbb{X} \rightarrow \mathbb{R} \mid f(x) = \phi(x)^T w \}$.

```
Interlude: KL divergence
The most mis-spelled names in statistics

Definition (Kullback-Leibler divergence)

Let $P$ and $Q$ be probability distributions over $\mathbb{X}$ with pdf’s $p(x)$ and $q(x)$, respectively. The **KL-divergence from $Q$ to $P$** is defined as

$$D_{KL}(P\|Q) := \int \log \left( \frac{p(x)}{q(x)} \right) dp(x)$$

(I will often write $D_{KL}(p\|q)$ instead)

Some properties:

- $D_{KL}(P\|Q) \neq D_{KL}(Q\|P)$
- $D_{KL}(P\|Q) \geq 0$, $\forall P, Q$ (Gibbs’ inequality), and
- $D_{KL}(P\|Q) = 0 \iff p \equiv q$ almost everywhere
Maximum Likelihood Regression on Distributions!

Fitting distributions with exponential families

Given \([x_i]_{i=1,...,n}\) with \(x_i \sim p(x)\), assume

\[
p(x) \approx \hat{p}(x \mid w) = \exp(\phi(x)^T w - \log Z(w))
\]

to find \(\hat{w}\), consider

\[
\hat{w} = \arg \min_{w \in \mathbb{R}^d} D_{KL}(p(x) \parallel \hat{p}(x \mid w)) = \arg \min_{w \in \mathbb{R}^d} \int [\log p(x) - \log \hat{p}(x \mid w)] dp(x)
\]

\[
= \arg \min_{w \in \mathbb{R}^d} \int \log p(x) dp(x) - \mathbb{E}_p(\phi(x))^T w - \log Z(w) = \arg \min_{w \in \mathbb{R}^d} \mathcal{L}_{\text{log}}(w)
\]

Find minimum at \(\nabla_w \mathcal{L}_{\text{log}}(w) = 0\), where

\[
\mathbb{E}_p(\phi(x)) \approx \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) = \nabla_w \log Z(w) = \mathbb{E}_{\hat{p}}(\phi(x))
\]
MAP Regression on Distributions!

Fitting distributions with exponential families

- Given \([x_i]_{i=1,...,n}\) with \(x_i \sim p(x)\), assume

\[
p(x) \approx \hat{p}(x \mid w) = \exp(\phi(x)^T w - \log Z(w))
\]

- to find \(\hat{w}\), consider (to regularize, include the conjugate prior. No need to know its normalizer!)

\[
\hat{w} = \arg \min_{w \in \mathbb{R}^d} D_{KL}(p(x) || \hat{p}(x, w)) = \arg \min_{w \in \mathbb{R}^d} \int [\log p(x) - \log \hat{p}(x \mid w)] dp(x) + \alpha^T w - \nu \log Z(w)
\]

\[
= \arg \min_{w \in \mathbb{R}^d} \int \log p(x) dp(x) + \mathbb{E}_p(\phi(x))^T w - \log Z(w) + \alpha^T w - \nu \log Z(w) = \arg \min_{w \in \mathbb{R}^d} \hat{L}_{\log}(w)
\]

- Find minimum at \(\nabla_w \hat{L}_{\log}(w) = 0\), where

\[
\mathbb{E}_p(\phi(x)) \approx \frac{1}{n} \sum_{i=1}^n \phi(x_i) = \frac{n + \nu}{n} \nabla_w \log Z(w) - \frac{1}{n} \alpha
\]
Given \([x_i]_{i=1,...,n}\) with \(x_i \sim p(x)\), assume

\[
p(x) \approx p_w(x \mid w) = \exp(\phi(x)^T w - \log Z(w)) \quad \text{and} \quad p_F(w \mid \alpha, \nu) = \exp(w^T \alpha - \nu \log Z(w) - \log F(\alpha, \nu))
\]

compute the posterior on \(w\), using the conjugate prior

\[
p(w \mid x, \alpha, \nu) = \frac{\prod_{i=1}^{n} p_w(x_i \mid w)p_F(w \mid \alpha, \nu)}{\int p(x \mid w)p(w \mid \alpha, \nu) \, dx} = p_F \left( w \mid \alpha + \sum_i \phi(x_i), \nu + n \right)
\]

note that \(\nabla \nabla p_F(w \mid \alpha, \nu) |_{w_*} = \arg \max \rho(w \mid \alpha, \nu) = -\nu \rho(w_* \mid \alpha, \nu) \nabla_w \nabla_w^T \log Z(w_*)\)

In the limit \(n \to \infty\), posterior concentrates at \(w_*\) with

\[
\nabla_w \log Z(w_*) = \frac{\alpha}{n} + \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) = \mathbb{E}_p(\phi(x)) \quad \text{thus} \quad p_w(x \mid w_*) = \arg \min_w D_{KL}(p(x) || p_w(x \mid w))
\]
Learning probability distributions with exponential families

- Given data $x_1, \ldots, x_N$ drawn iid. from unknown $p(x)$, consider approximating $p(x) \approx p_w(x \mid w)$ with an EF
- The maximum likelihood and MAP estimates for $w$ can be computed in $O(N)$
- If the conjugate prior to $p_w$ (which is an EF) is tractable, it allows full Bayesian inference
- Asymptotically, the posterior concentrates around the maximum likelihood estimate, which is the minimizer of the KL-divergence $D_{KL}(p \parallel p_w)$ within the exponential family.
Wouldn’t you want to join this club?

Build your own exponential family!
Building our own Exponential Family
just for fun

1. choose features (come up with grand motivation: attraction/repulsion)
   \[ \phi(x) = \begin{bmatrix} -x^2 \\ -x^{-2} \end{bmatrix} \]

2. solve integral (the hard bit)
   \[ Z(w) = \int_0^\infty \exp(-w_1 x^2 - w_2/x^2) \, dx = \sqrt{\frac{\pi}{w_1}} e^{-2\sqrt{w_1 w_2}} \]

3. profit! The bagel-distribution!
   \[ \mathcal{H}(x; w) = \sqrt{\frac{w_1}{\pi}} e^{2\sqrt{w_1 w_2}} e^{-w_1 x^2 - w_2/x^2} \]

4. don’t know the conjugate prior, though. :(
Let’s fit a distribution!
collecting sufficient statistics

We need

\[
\log Z(w) = -2(w_1 w_2)^{1/2} - \frac{1}{2} \log w_1 + \frac{1}{2} \log \pi \\
-\nabla_w \log Z(w) = \begin{bmatrix}
\sqrt{\frac{w_2}{w_1} + \frac{1}{2w_1}} \\
\sqrt{\frac{w_1}{w_2}}
\end{bmatrix} = -\frac{1}{n} \sum_i \begin{bmatrix} x_i^2 \\ x_i^{-2} \end{bmatrix} =: \begin{bmatrix} \bar{\mu} \\ \bar{\omega} \end{bmatrix}
\]

\[
\therefore \hat{w}_1 = \frac{1}{2(\bar{\mu} - \bar{\omega})} \quad \hat{w}_2 = \frac{\hat{w}_1}{\bar{\omega}^2}
\]
Summary:

- Conjugate Priors allow analytic inference of “nuisance parameters” in probabilistic models
- Exponential Families
  - guarantee the existence of conjugate priors, although not always tractable ones
  - allow analytic MAP inference from only a finite set of *sufficient statistics*

Conjugate prior inference with exponential families is a form of Bayesian *regression on distributions*. Gaussian process inference, in this sense, is inference on the unknown mean of a Gaussian distribution.

- The hardest part is finding the normalization constant. In fact, finding the normalization constant is *the only* hard part.
- Exponential families are a way to turn someone else's integral into an inference algorithm!