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Disclosure Risk from Factor Scores

Gerd Ronning1 and Philipp Bleninger2

Abstract

Remote access as well as remote analysis solve many problems arising from granting
researchers access to sensitive data. Both allow to run analyses without actually see-
ing the data. Therefore none of them demand either substantively altering the data or
strictly restricting the access to it. Still remote access and remote analysis bear the risk
to disclose sensitive information though the actual data is not directly available. An
intruder has nothing to do but to apply standard procedures in a sophisticated way to
exploit certain features enabling disclosure. Even usual and unsuspicious multivariate
analyses bear great potential for data snoopers.
We will illustrate how an intruder could employ commonly used factor analysis to dis-
close sensitive variables in a data set. We will derive the approach and evaluate it using
the IAB Establishment Panel. There is theoretical and empirical evidence for the high
risk for violation of confidentiality from all variants of factor analysis.

Keywords
Remote Access, Remote Analysis, Data Privacy, Disclosure Limitation, Factor Analy-
sis, Principal Component Analysis

1 Introduction

The scientific community needs high quality data for testing single hypotheses or even
whole theories empirically. But mostly data collection is expensive and laborious, so it
is self-evident to go for data already surveyed appropriately by others. Public admin-
istrations, governmental agencies and other state institutions collect and produce much
sought-after data. The crucial point is how to grant access to these data under legal
restrictions. Most micro data sets are confidential and therefore cannot be released un-
restrictedly. Statistical analyses via remote access or remote analysis seem to offer both
preservation of confidentiality and unlimited use of the data. However, some precau-
tions have to be taken in order to minimize disclosure risk. There are many sources for
disclosure from statistical analysis, especially from inference.
The most obvious example is from regression where provision of both predicted val-
ues and residuals would allow to reconstruct the vector of the dependent variable. See

1Faculty of Economics, University of Tuebingen, Nauklerstr. 48, D-72074 Tuebingen
2IAB Institute for Employment Research, Regensburger Str. 104, D-90478 Nuremberg
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Gomatam et al. (2005) for an overview of various scenarios involving disclosure risk.
However, their paper does not include a discussion of possible disclosure from multi-
variate analysis, and this is typical for the entire literature related to this topic. In our
short paper we demonstrate that factor analysis implies a severe risk of disclosing the
micro data if factor scores are called for. These may be generated in our case either
from the factormodel or from principal components which may be seen as itsempirical
counterpart. As in the case of regression analysis we concentrate on the reconstruction
of the whole data vector of a variable revealing the values of all subjects in the data
set from which individual values can be extracted in a second step. The latter may be
received from further background knowledge about the individual of interest.
Factor analysis is very popular in the social sciences serving to a wide range of explo-
rative and confirmatory tasks. It might also be worth pointing out that factor scores
played an important role in econometrics already for a long time. Kendall (1957) and
McCallum (1970) suggested that factor scores (generated from principal components)
should be used in regression analysis in order to alleviate the problem of multicollinear-
ity in regression when the number of regressors is large. Modern time series economet-
rics have resumed this idea after having established desirable stochastic properties in
case of time series data (Stock and Watson, 2002).
However, since the aim was to forecast macroeconomic variables, no micro data were
involved in these studies. Moreover, disclosure risk from factor scores occurs (as will
be demonstrated below) if some variable is uncorrelated with all others which may not
be typical for macroeconomic data sets. Most recently, however, Buch et al. (2010)
have used the micro data from a set of 1512 banks in their factor-augmented vector-
autoregression (FAVAR) approach.
After a brief description of the respective method, we give a short overview on differ-
ent estimation procedures for factor scores. Section 4 demonstrates that for all these
approaches a severe disclosure risk exists if a single variable is uncorrelated with all
others. The empirical example in section 5 shows that such correlation structure can be
generated by selecting the ”appropriate” set of variables and that on this basis it is pos-
sible to disclose a data vector. The data are taken from the IAB Establishment Panel, a
survey collected by the Institute for Employment Research of the Federal Employment
Agency.

2 Some basic facts on factor analysis

Consider a set ofm random variables

η = (η1, η2 . . . , ηm)′

with
E[η] = µη , cov[η] = Σηη
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for which n observations are available leading to the (n × m) data matrix

Y =













































y11 y12 . . . y1m

y21 y22 . . . y2m

y31 y32 . . . y3m
...

...
...

yn1 yn2 . . . ynm













































=
(

y1, y2, . . . , ym

)

.

The factor model seeks to explain them variables by a set ofp < m ”common factors”

f =
(

f1, f2, . . . , fp

)′

by the linear model
η − µη = Λ f + u (1)

where the (m × p) factor loading matrix is given by

Λ =



































λ11 λ12 . . . λ1p

λ21 λ22 . . . λ2p
...

... . . .
...

λm1 λm2 . . . λmp



































andu is anm-dimensional vector of ”specific factors” with

E[u] = 0 , cov[u] = Ψ =
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ψm−1

ψm













































.

Oftenψ j is also called ”uniqueness” as it measures the degree to which the variablej is
unique in the sense of not being part of a common factor. Since the factors are assumed
to be orthogonal withcov[f ] = I as well as independent fromu, we obtain the so-called
”fundamental equation”

Σηη = ΛΛ
′
+Ψ .

Note that for each observationi we have ap-dimensional vectorfi of ”factor scores”
from (1) so that for alln observations we arrive at the (n × p)-matrix

F =













































f11 f12 . . . f1p

f21 f22 . . . f2p

f31 f32 . . . f3p
...

...
...

fn1 fn2 . . . fnp
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of realized factor scores which is related to the data matrixY by the equation (McDon-
ald and Burr, 1967, p. 384)

Y −M = FΛ′ + U (2)

or more explicitly by

yi j − µ j =

p
∑

k=1

λ jk fik + ui j , i = 1, . . . , n ; j = 1, . . . ,m ,

which implicitly defines the (n × m) matrixM by

M = ιn ⊗ µ′η .

Hereιn is ann-vector of ones and⊗ denotes the Kronecker product. We will call (2) the
”empirical factor model” whereas (1) will be called the ”theoretical factor model”.
Usually only model (1) is presented and discussed since the estimated matrix of factor
loadings is the only measure of interest. If the estimated matrixΛ has a block-diagonal
structure, particular factors can be related to a subset of the vectorη which helps to
interpret these factors. In addition, it is possible to rotate the factors to attach factors
more clearly to certain variables and to facilitate their interpretation with regards to
contents.

3 Estimation of factor scores

In the following we assume that the factor loading matrixΛ is known or rather has been
estimated. The ˜. indicates that the matrixΛ has been estimated in an earlier step. Hence
the resulting estimates off depend on the method by which the factor loading matrix
was determined. In all casesΛ, resp. its estimatẽΛ, represents the original or the rotated
factor loadings. There are four approaches to determine the matrixF of factor scores
which will be described in the following subsections.

3.1 Least squares solution

If one considers the theoretical factor model (1) under the above assumptions, it can be
seen as a regression model with unknown vectorf which should be estimated by least
squares. The resulting estimator is

f̂LS = (Λ̃
′
Λ̃)−1Λ̃ (η − µη) . (3)

Horst (1965) seems to have been one of the first using this formula (McDonald and
Burr, 1967, p. 386). If we apply the same estimation principle to the empirical factor
model (2) we obtain

F̂LS = (Y −M) Λ̃ (Λ̃
′
Λ̃)−1 . (4)
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3.2 Bartlett’s method

If one considers the non-scalar structure of the covariance matrixΨ, a generalized least
squares formula seems more appropriate:

f̂BA = (Λ̃
′
Ψ̃−1Λ̃)−1Λ̃Ψ̃−1 (η − µη) . (5)

Note that now also the matrixΨ has to be determined in advance. Again, the ˜. indicates
that it has been estimated. This formula has been proposed by Bartlett (1937). The
corresponding result from the empirical factor model is

F̂BA = (Y −M) Ψ̃−1 Λ̃ (Λ̃
′
Ψ̃−1Λ̃)−1 . (6)

Fahrmeir et al. (1996, p. 648 and 690) remark that (5) can be regarded as a Maximum
Likelihood estimator when normality forη is assumed. Non-normal distributed vari-
ables inη lead to Quasi-Maximum Likelihood estimation of loadings and scores, being
still asymptotically normal distributed and consistent.

3.3 Thomson’s method

3.3.1 The theoretical factor model

The method is attributed to both Thomson (1939) and Thurstone (1935). For the follow-
ing see also the slightly different derivation in Fahrmeir et al. (1996). Thurstone (1935)
has derived factor scores from the requirement that the estimated factor scoref̂ j is as
close to the ”true” factor scoref j as possible for j= 1 ,...,p. He considers the linear
estimator

f̂ j = a′j (η − µ)
for which the mean-squared error

MSj = E
[

( f̂ j − f j)
2
]

= E
[

((η − µ)′ aj − f j)
2
]

= a′j Σηη aj − 2 a′j cov[η, f j] + var[ f j]

should be minimized with respect to the vectoraj. For the first derivative we obtain

∂MSj

∂ aj
= 2

{

Σηη aj − cov[η, f j]
}

= 2
{

(ΛΛ′ + Ψ) aj − λ j

}

whereλ j is anm-dimensional vector representing thej-th column of the matrixΛ. Here
we have used

cov[η, f j] = E
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k=1 λmk fk + um
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= λ j

(7)
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and the assumption of the orthogonal factor model that allp factors f j (with unit vari-
ance) are uncorrelated.
Setting the vector of partial derivatives equal to zero results in

aj =
(

ΛΛ′ + Ψ
)−1
λ j

which leads to the following estimator of scores of thej-th factor:

f̂ j = λ̃
′
j

(

Λ̃Λ̃
′
+ Ψ̃

)−1
(η − µη) (8)

For all p factors jointly we arrive at

f̂T H = Λ̃′
(

Λ̃Λ̃′ + Ψ̃
)−1

(η − µη) (9)

3.3.2 The empirical factor model

The corresponding formula for the empirical factor model (2) is not so straightforward
and to our best knowledge it has not been discussed in the literature. We therefore here
present a detailed derivation.
We consider a linear estimator

F̂ = (Y −M) A

whereA is a (m×p) unknown matrix. We want the estimator to minimize the expression

φ = E
[

tr
{

(F̂ − F)′(F̂ − F)
}]

= E
[

tr {((Y −M) A − F)′((Y −M) A − F)}
]

= E
[

tr {A′(Y −M )′(Y −M)A − 2A′(Y −M)F + F′F}
]

= n tr
{

A′ΣηηA − 2A′Ση f + Σ f f

}

with respect toA whereΣη f is the (m × p) matrix of covariances (7) ofη andf andΣ f f

is the (p × p) covariance matrix of the vectorf . Differentiating this expression with
respect toA gives

∂φ

∂A
= 2n

(

ΣηηA − Ση f

)

where we have used results for matrix differentiation (Lütkepohl, 1996). Recalling the
results from (7) we note that

Ση f = Λ .

Hence from setting the partial derivatives equal to zero we obtain

A = Σ−1
ηη Λ =

(

Λ′ + Ψ
)−1
Λ
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which leads to the so-called ’Thomson estimator’ of factor scores:

F̂T H = (Y −M)
(

Λ̃Λ̃
′
+ Ψ̃

)−1
Λ̃ . (10)

Using well-known results for inverting the sum of matrices (see Lütkepohl, 1996, p.29)
and the so-called ”binomial inverse theorem” (see Press, 1972, p.23) we obtain

(

Λ̃Λ̃
′
+ Ψ̃

)−1
Λ̃ =

{

Ψ̃−1 − Ψ̃−1Λ̃
(

Λ̃
′
Ψ̃−1Λ̃ + I p

)−1
Λ̃
′
Ψ̃−1

}

Λ̃

= Ψ̃−1 Λ̃

{

I −
(

Λ̃
′
Ψ̃−1Λ̃ + I p

)−1
Λ̃
′
Ψ̃−1 Λ̃

}

= Ψ̃−1 Λ̃

{

(

Λ̃
′
Ψ̃−1Λ̃ + I p

)−1 (

Λ̃
′
Ψ̃−1Λ̃ + I p

)

−
(

Λ̃
′
Ψ̃−1Λ̃ + I p

)−1
Λ̃
′
Ψ̃−1 Λ̃

}

= Ψ̃−1 Λ̃

{

(

Λ̃
′
Ψ̃−1Λ̃ + I p

)−1 (

Λ̃
′
Ψ̃−1Λ̃ + I p − Λ̃

′
Ψ̃−1 Λ̃

)

}

= Ψ̃−1 Λ̃

{

(

Λ̃
′
Ψ̃−1Λ̃ + I p

)−1 (

I p

)

}

.

Therefore Thomson’s estimator can also be written as

F̂T H = (Y −M) Ψ̃−1 Λ̃
(

Λ̃
′
Ψ̃Λ̃ + I p

)−1
, (11)

In this form the estimator is usually cited, for example by Bartholomew et al. (2009, p.
574) who refer to the empirical factor model whereas Fahrmeir et al. (1996, p. 691) give
the corresponding result for the theoretical factor model.

3.4 Principal component analysis

Of course, the principal component approach can also be used to estimate the factor
scores: If we consider the the spectral decomposition of the covariance matrix

Σηη = QΘQ′ ,

the principal componentsp j, j = 1, . . . ,m, are given by the matrix
(

p1, p2, . . . , pm−1, pm

)

= P = YQ =
(

Yq1, Yq2, . . . , Yqm−1, Yqm

)

where the columnsq j are the characteristic vectors of the covariance matrix whereas the
diagonal matrixΘ contains the characteristic values. Usually, only the principal com-
ponents corresponding to the largest characteristic values are used since they represent
”maximal variation”. The matrixP can be seen as the matrix of estimated factors, i.e.

F̂PC = P . (12)

To make the results conformable to those given above for factor analysis, the data matrix
Y should be substituted byY −M, i.e. deviations from the means should be considered.
For more details see any textbook on multivariate analysis (Press, 1972, e.g).
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4 Disclosure risk for uncorrelated variables

We now consider a certain variable uncorrelated with all other variables of a data set.
(As we will see later on, in reality correlation which is almost zero will be the relevant
case.) For concreteness let us assume thatη1 is the variable in question so that the
covariance matrix may have the following block diagonal structure:

Σηη =

(

σ11 0′

0 Σ22

)

(13)

whereΣ22 is the (m − 1)× (m − 1) covariance matrix of the remainingm − 1 variables.
Clearly, this leads to a factor loading matrix with a first factor ”loading” only on the first
variable and the remainingp − 1 factors having zero loading weight on this variable.

Λ =























































1 0 0 . . . 0 0
0 λ22 λ23 . . . λ2,p−1 λ2p

0 λ32 λ33 . . . λ3,p−1 λ3p
...

...
... . . .

...
...

0 λm−1,2 λm−1,3 . . . λm−1,p−1 λm−1,p

0 λm2 λm3 . . . λm,p−1 λmp























































=

(

1 0′

0 Λ2

)

.

Note that this implies

Λ′Λ =

(

1 0′

0 Λ′2Λ2

)

and
(

Λ′Λ
)−1

=















1 0′

0
(

Λ′2Λ2

)−1















.

It should also be noted for the following that one of the characteristic values of the
covariance matrix (13) equalsσ11. However, this characteristic value need not to be the
largest one. For example, if all variables are standardized so that the covariance matrix
equals the correlation matrix, we may consider the special correlation matrix

R =























































1 0 0 . . . 0 0
0 1 ̺ . . . ̺ ̺

0 ̺ 1 . . . ̺ ̺
...

...
...

. . .
...

...

0 ̺ ̺ . . . 1 ̺

0 ̺ ̺ . . . ̺ 1























































with −1/(m − 1) < ̺ < 1. Then them − 1 characteristic values of the lower-right block
are given by

1+ (m − 1)̺ , 1− ̺, 1− ̺, . . . , 1− ̺
whereas them-th characteristic value equalsθ j = 1 which follows from the block-
diagonal structure of the matrix. However,θ j = 1 never will be largest.
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4.1 The least-squares solution

For the least-squares solution (4) (disregarding notation indicating estimated quantities)
we obtain in this special case

FLS = (Y −M)

(

1 0′

0 Λ2

)















1 0′

0
(

Λ′2Λ2

)−1















= (Y −M)















1 0′

0 Λ2

(

Λ′2Λ2

)−1
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1 ·













































y11 − µ1

y21 − µ1

y31 − µ1
...

yn1 − µ1













































f2 , f3 , . . . , f p−1, f p













































.

Therefore the first factorf1 is identical (up to an additive constant) to the data vectory1.

4.2 The Bartlett solution

F̂BA = (Y −M) Ψ−1 Λ (Λ′Ψ−1Λ)−1

= (Y −M)

(

ψ−1
1
Ψ−1

2

) (

1 0′

0 Λ2

) ((

1 0′

0 Λ2

)′ (
ψ−1

1
Ψ−1

2

) (

1 0′

0 Λ2

))−1

= (Y −M)

(

ψ−1
1 0′

0 Ψ−1
2 Λ2

) ((

ψ−1
1 0′

0 Λ′2Ψ
−1
2 Λ2

))−1

= (Y −M)





























1 0′

0 Ψ−1
2 Λ2

(

Λ′2Ψ
−1
2 Λ2

)−1
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1 ·













































y11− µ1

y21− µ1

y31− µ1
...

yn1 − µ1













































f2 , f3 , . . . , f p−1, f p













































As in the least-squares solution the first factorf1 is identical (up to an additive constant)
to the data vector describing the variabley1. However, the estimated factors forj =
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2, ..., p differ from the least-squares solution.

4.3 The solution of Thomson/Thurstone

FT H = (Y −M)
(

Λ̂Λ̂
′
+ Ψ̂

)−1
Λ̂

= (Y −M)

((

1 0′

0 Λ2Λ
′
2

)

+

(

ψ1

Ψ2

) )−1 (

1 0′

0 Λ2

)

= (Y −M)















(1+ ψ1)−1 0′

0
(

Λ2Λ
′
2 + Ψ2

)−1
Λ2
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1
1+ψ1
·













































y11 − µ1

y21 − µ1

y31 − µ1
...

yn1 − µ1













































f2 , f3 , . . . , f p−1, f p













































The results show that in this case the estimated factorf1 differs not only by an additive
constant; additionally the multiplicative factor 1/(1+ ψ1) has to be taken into account.
If ψ is small or the estimate ofψ used in the computation is available, disclosure risk
again is high!

4.4 Factors from the principal component approach

In case of the special covariance matrix (13) one of the characteristic values, sayθ j,
equalsσ11which, of course, is not necessarily the largest characteristic value. The cor-
responding characteristic vectorq1 then must satisfy

q j =























































1
0
0
...

0
0























































.

Therefore, the corresponding principal component is given by

p j = Yq j = y1

so that in this case the data vectory1 is exactly reproduced by the principal component.
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5 Empirical Evidence

5.1 Data

The IAB Establishment Panel is a nationwide annual survey of enterprises in Germany
representing all kinds of business conducted by the Institute for Employment Research
(IAB). It includes establishments with at least one employee covered by social security.
It contains a lot of business-related facts (e.g. management, business policy, innova-
tions), a large number of employment policy-related subjects (e.g. personnel structure,
recruitment, wages and salaries) and various background information (e.g. regional lo-
cation, industrial sector). For further description see Fischer et al. (2008) and Kölling
(2000).
Of course, establishments attending the survey do not want their sensitive information to
be available. Additionally, German law restricts the release of data from public admin-
istrations (which the IAB actually is part of) to secure privacy and preserve at least de
facto anonymity. Therefore the IAB Establishment Panel is maintained by a Research
Data Center (FDZ) granting access, running requested analyses and controlling the out-
put. Remote analysis and even more remote access is seen to be the gold standard for
data providers. In the following we assume that the FDZ would have already imple-
mented a remote access to the data set or at least developed a remote analysis server
under regular conditions.
To make our point we try to intrude the cross-section from the year 2007. All missing
values in this data set are replaced by single imputation and treated like observed val-
ues. See Drechsler (2010) for a description of the imputation of the missing values in
the survey. The sensitive variable to be disclosed is the turnover from an establishment’s
sales after taxes. Thus we exclude all non-industrial organizations, regional and local
authorities and administrations, financial institutions, and insurance companies. The
remaining data set includes 12,814 completely observed enterprises.

5.2 Estimation of factor loadings

Since in empirical analysis often the data are transformed by the logarithmic function
in order to reduce skewness and kurtosis, instead of turnover we will use

y∗1,i = log(turnoveri + 1)

in the factor analysis. Note that the transformation leads to a variable which is approx-
imately normal distributed, leading to Maximum Likelihood estimation of the corre-
sponding loadings and scores. However, it should be noted, too, that the intruder finally
wants to know turnover itself so that we have to identify the estimated turnovers by using
the exponential function. As will become clear from our example, even these additional
transformations will not offer security against disclosure of the original turnovers. To

11



obtain the actual values we re-compute the estimated turnovers by the exponential func-
tion.
The other auxiliary variables are chosen strategically according to the modelling de-
scribed above, without regards to content. They are all more or less uncorrelated with
the turnover and its logarithm. Therefore the empirical correlation matrixR (see Table
1) approximates the assumption of zero correlation in section 4 very well. Altogether
we are using the following eight variables which we will refer to by their abbreviation.

1. turnover (turn.) from sales after taxes, resp. its logarithm (lgturn.)

2. investments in EDP, information and communication technology equipment (inv.)

3. total number of civil servant aspirants (asp.)

4. total number of vacant positions for unskilled, low-, semi-, and skilled workers
(vac.w.1)

5. number of vacancies notified to employment office for unskilled, low-, semi-, and
skilled workers (vac.w.2)

6. number of vacancies notified to employment office for qualified employees (vac.em.)

7. employees with wage subsidies (sub.)

8. employees older than 50 with wage subsidies (sub.50)

As we can see from the first column of Table 1 the logturnover is more or less indepen-
dent from the other variables. The latter have any interrelations we actually do not care
about.

In a real data setting zero correlation will hardly occur and hence exact results as

Table 1: Empirical correlation matrixR of the logarithmic turnover and the auxiliary
variables

lgturn. inv. asp. vac.w.1 vac.w.2 vac.em. sub. sub.50
lgturn. 1.0000 0.0587 0.0082 0.0536 0.0374 0.1193 0.0984 0.0513
inv. 0.0587 1.0000 -0.0075 0.0057 0.0083 0.0440 0.0020 0.0111
asp. 0.0082 -0.0075 1.0000 -0.0003 -0.0004 -0.0011 0.0015 0.0045
vac.w.1 0.0536 0.0057 -0.0003 1.0000 0.9249 0.0925 0.0285 0.0199
vac.w.2 0.0374 0.0083 -0.0004 0.9249 1.0000 0.0905 0.0222 0.0160
vac.em. 0.1193 0.0440 -0.0011 0.0925 0.0905 1.0000 0.0641 0.0853
sub. 0.0984 0.0020 0.0015 0.0285 0.0222 0.0641 1.0000 0.7901
sub.50 0.0513 0.0111 0.0045 0.0199 0.0160 0.0853 0.7901 1.0000

given in section 4 are unelikely. In fact, there is an interrelation between the number

12



of vacancies notified to the employment office for qualified employees and the turnover
(̺1,5 = 0.10) resp. its logarithm (̺1,5 = 0.12), but it is low, especially in comparison to
the other correlations in the matrix (e.g.̺6,7 and̺3,4), and in the end it will turn out to
be almost negligible.
All data manipulations and analyses are done using the procedurefactanal of the sta-
tistical software packageR 2.9.0 (R Development Core Team, 2008). It offers Maxi-
mum Likelihood estimation of the loadings using starting values for the variances of the
specific factors, i.e. the uniquenessesψ j, according to Jöreskog (Lawley and Maxwell
(1971), p. 31) for the quasi-Newton-method of maximization.
Usually the numberp of factors is evaluated using Bartlett’s test of sphericity (Tobias
and Carlson, 1969) or using screeplots (Fahrmeir et al., 1996). This would lead to ex-
traction of only two factors. However, here we choosep = 4 arbitrarily considering
only its purpose of disclosure.
As in the initial matrix of estimated loadings both wage subsidies load too high on the

Table 2: Rotated Matrix̃Λ of estimated loadings
factor 1 factor 2 factor 3 factor 4

lgturn. 0.0202 0.0360 0.9867 0.1406
inv. -0.0046 0.0019 0.0326 0.1888
asp. 0.0002 0.0051 0.0105 -0.0167
vac.w.1 0.9879 0.0134 0.0267 0.0487
vac.w.2 0.9325 0.0090 0.0089 0.0673
vac.em. 0.0796 0.0742 0.0853 0.2194
sub. 0.0166 0.7933 0.0719 -0.0100
sub.50 0.0041 0.9958 0.0088 0.0471

third factor disturbing its relation with the turnover and diminishing its desired usability
for disclosure, we rotate the factors. Rotation is done according to the Varimax-criterion
(Kaiser, 1958). We choose this criterion for two reasons: First, high loadings of each
variable should only result for a few factors and the rest should be near zero. Second, it
rotates the factors orthogonally, so we maintain the structure of the loadings. Third, it
is the most common criterion and therefore it is unsuspicious. In our case the resulting
loading matrixΛ̃ of rotated factors is just as we want it to be, i.e. it supports disclosure
(see Table 2).
The loadings̃λ j,k, j = 1, . . . , 8 ;k = 1, . . . , 4 given in Table 2 come very close to the
loadings matrix required for a disclosure. Obviously we are able to extract one single
factor (the third factor), almost perfectly loading (λ̃1,3 = 0.9867) solely on the sensitive
turnover and therefore almost perfectly correlated only with the target variable. The
scores of the third factor will almost equal the true logarithmic values of the variable.
Looking at the uniqueness (variance of specific factors)cov[u] = Ψ̃ j in Table 3 we rec-
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ognize that the logturnover is very well explained by its factor and that there is almost
no varianceψ̃1 left for its specific factoru1 (Note that the statistical software packageR
turns all near-zero values iñΨ to a default value of 0.005 to avoid problems with opti-
mization. Anyway, in our case we get the desired, very smallψ̃1.). This factor model
obviously serves our purpose of disclosure very well.

Tables 2 and 3 show that under usual circumstances this factor analysis would be

Table 3: MatrixΨ̃ of uniquenesses
lgturn. inv. asp. vac.w.1 vac.w.2 vac.em. sub. sub.50

lgturn. 0.0050
inv. 0.9633
asp. 0.9996
vac.w.1 0.0208
vac.w.2 0.1257
vac.em. 0.9327
sub. 0.3652
sub.50 0.0061

rejected instantly by a serious researcher looking for relevant results and not for dis-
closure. There are three variables, namely the investments in EDP, information and
communication technology equipment, the total number of civil servant aspirants and
finally the number of vacancies notified to employment office for qualified employees,
not sufficiently loading on any common factor, but being characterized by very high
uniquenesses pointing at major specific factors.

5.3 Estimation of factor scores

In the next step, we estimate the matrixF̂ of scores of the factors with the rotated load-
ings from Table 2. We use Bartlett’s solutions (5) as well as Thomson’s solution (9)
as outlined above. Having estimated the score values, we solve the empirical model
for the estimated logturnoverŷ∗1 using its meanµ∗1 under the assumption that the mean
of a (transformed) variable is available in remote access. Of course an intruder is not
interested in logarithms of turnovers. As already mentioned we re-compute the esti-
mated turnovers to obtain estimations ˆy1,i of the actual values of every establishment
i = 1, . . . , n in the data set by

ŷ1,i = exp
{

ŷ∗1,i
}

− 1 .

Obviously this is a crude method leading to biased results (especially as the expectation
is biased), but as we will see its actual effect on the disclosure is very small: Despite
the log-transformation and exp-retransformation we are able to disclose the true values
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almost perfectly.
For ŷ1 being only an approximation of the truey1 we need a criterion for the reliability
of the disclosure. To asses the actual degree of disclosure we use the difference between
real and approximated turnover relative to the real turnover

δi =
ŷ1,i − y1,i

y1,i
, i = 1, . . . , n .

For illustration we will show scatter plots of these differences including a Locally
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Figure 1: Relative differencesδi for Bartlett’s factor scores (with LOWESS)

Weighted Scatter plot Smoother (Cleveland, 1979, LOWESS). It illustrates the differ-
ences over all establishments very well without further assumptions. The LOWESS is
based on a local polynomial fitted into the 10% nearest neighbours weighted tricubi-
cally. The scatter plots are interpreted in the manner that the disclosure is good if the
differencesδi are dispersed narrowly around zero. The smoothers are interpreted in the
manner that in the case of disclosure the LOWESS is a straight horizontal line on zero.
In any other cases it shows the bias in the estimated values regarding disclosure.
First we present the disclosure using Bartlett’s method to estimate factor scores. The

solution in section 4.2 shows that the factor scores approximate the data vector very
well. Of course, here the factor is not exactly equal to the variable as there are empirical
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Figure 2: Relative differencesδi for Thomson’s factor scores (with LOWESS)

correlations greater zero disturbing the disclosure. However, both the average relative
differenceδ̄ = 2.781e − 06 and the variance of the differencess2

δ
= 2.913e − 06 are

almost zero resulting in a nearly perfect disclosure of virtually all the establishments’
turnover. The disclosure is illustrated in Figure 1. The left panel shows the results for
the whole Establishment Panel and the right panel shows the result specifically for the
1000 largest establishments as they may be of special interest to an intruder. Please note
that the enterprises are ordered from the largest to the smallest, i.e. in the figures the
size of establishments decreases from the left to the right. In the left panel the leftmost
enterpises already contain the 1000 largest establishments from the right panel, but a a
more detailed view can be insightful. As one can see the relative differences between the
true turnovers and the turnovers approximated from the factor scores are very low with-
out relevant dispersion.The LOWESS is almost a straight line on zero though a small
window (of only 10 %) was chosen which usually leads to wiggliness of the smoother.
We also estimate the factor scores using Thomson’s method. Again the scores have to

be re-scaled and re-computed. The vectorδ of relative differences again mirrors the de-
gree of disclosure of the true turnover of the establishments. Figure 2 shows the results
the same way as above. As we can see the factors scores estimated with Thomson’s
method also disclose the true values with an average ofδ̄ = 0.0001 (s2

δ
= 0.0002). As
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Figure 3: Relative differencesδi for Thomson’sψ-corrected factor scores (with
LOWESS)

we stated in section 4.3 Thomson’s solution leads to estimates biased by the variance
of the turnover not explained by its factor, namely by the multiplicator1

1+ψ1
. Indeed,

according to Figure 2 we underestimate the true turnovers, as the relative differences
deviate systematically from zero towards negative values. For the largest enterprises in
the data which we consider to be of main interest to an intruder the true values are even
more underestimated. We can see the systematic bias especially from the LOWESS in
Figure 2.
To obtain disclosure we have to correct the estimations by the multiplicator 1+ψ̃1. Table
3 reports a uniqueness̃ψ1 = 0.005 of the logturnover. Indeed, according to Figure 3,
the estimations ˆy1,i from the corrected Thomson-scores are generally much closer to the
real turnovers. In particular, we do not underestimate the turnovers anymore and conse-
quently the relative differences are not only diminished but also there is no systematic
deviation below zero (see especially the right panel of Figure 3).
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6 Conclusions

There is an increasing demand from researchers for micro data from varying sources
underlying restrictions preserving confidentiality and privacy. We address this problem
in a remote analysis and remote access setting. We restrict to the risk of disclosure from
factor analysis. We choose factor analysis for being a widely used technique, incorpo-
rated in every standard statistical package. In addition, it is usually based on micro data
instead of covariance. On first sight you would not expect it to bear the risk of disclosure
for micro data as it is usually used for dimension reduction and feature extraction, i.e.
for the compression of detailed information.
Disclosure risk from factor scores arises if a single variable is almost uncorrelated with
all other variables in the data set. An intruder may choose the target and the set of
other variables strategically as we illustrate quite drastically in our empirical example.
Though we do not have optimal circumstances with uncorrelated variables and though
we perform profound transformations and re-transformations of the target variable, the
risk of disclosure remains serious. Most important, our paper shows that disclosure risk
is not limited to a certain variant of factor analysis but it exists in all alternative ap-
proaches for estimating factor scores. Although the principal components method is the
most common method of factor extraction and score estimation, we do not give empir-
ical evidence. However, we provide theoretical considerations about the disclosure risk
which the principal components method bears. In the end this method is as risky as the
others.
The usual definition of confidentiality aims at individual privacy and the disclosure of
single values. Through factor analysis whole data vectors are revealed and you cannot
assign the values to individuals immediately. Anyhow we want this approach to be seen
as the first step towards violation of individual privacy. In our view you cannot ignore
the risk of an intruder revealing whole data vectors.
Of course, once discovered, this kind of attacks can be easily prevented by suppressing
estimation methods, detailed parameter and score estimations and model diagnostics
(e.g. the uniquenesses). Even the output of the factor scores could be suppressed and
instead the researcher is only allowed to use them for further analyses (e.g. Principal
Component Regression). However, we want to emphasize that this abuse of factor anal-
ysis is only a showcase. Data providers granting access to sensitive data need to be
sensitized to statistical disclosure. There are many ways to obtain sensitive information
using standard analyses and not all of them are that obvious.
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A Equicorrelation

We assume that pairwise correlation of random variablesX1, . . . , Xr is equal to̺ with

1
r − 1

> ̺ > 1.

The correlation matrixR can then be written as

R = (1− ̺) I r + ̺ ιrι
′
r .

whereI r is the (r × r) identity matrix andιr is anr dimensional vector of ones.
Characteristic valuesλ j of this matrix are given by

λ1 = 1− (r − 1)̺

λ j = 1− ̺ , j = 2, . . . , r , (14)

and the corresponding characteristic vectorsx j satisfy the following conditions:

x1 =
1
√

r
ιr

ι′r x j = 0 , j = 2, . . . , r , (15)

Proof of (14):Using theorem 8.4.3 or 8.4.4 of Graybill (1969) we can write the
characteristic equation as

det(R − λ I r) = (1 + (r − 1)̺ − λ) (1− ̺ − λ)(r−1)
= 0

from which the above results follow.

Proof of (15):The characteristic vector corresponding to the first characteristic value
λ1 must satisfy

(R − (1+ (r − 1)̺ )I ) x1 = 0

or
(

(1− ̺) I r + ̺ ιrι
′
r − (1+ (r − 1)̺ )I

)

x1 = 0

leading to

x1 =
ι′r x1

r
ιr .

Since the characteristic vectors are normalized,x1 must satisfy

1 = x′1x1 =
1
r

( ι′r x1 )2 .
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Taking into account that all elements ofx1 must be equal, we arrive at

x1 =
1
√

r
ιr .

Using the same approach again forλ2, . . . , λr the corresponding characteristic vec-
torsx j must satisfy

(

(1− ̺) I r + ̺ ιrι
′
r − (1 − ̺)I

)

x j = 0

leading to
̺ ιrι

′
r x j = 0

from which
ι′r x j = 0

follows.
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