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David Binder and Thomas Piecha

1.1 Introduction

Karl Popper developed a new approach to mathematical logic with foundational
aspirations in the 1940s, which was published in a series of articles between 1946
and 1949. This new system of logic did not have the influence that he had hoped
for, despite being original, and despite anticipating problems which were discussed
in the logic community only much later. In a previous article (Binder and Piecha,
2017) we explored in technical detail his approach to propositional logic, modal logic
and various sub-classical systems like intuitionistic, dual-intuitionistic and minimal
logic. A detailed discussion of his theory of quantification (i.e., of first-order logic)
has, with the exception of an appendix to an article by Schroeder-Heister (1984),
been lacking so far. We first present the main ideas of Popper’s approach and the
core of the propositional system. We then provide a concise introduction to his
theory of quantification and identity, accessible to non-specialists. Popper’s theory of
quantification underwent significant modifications over the course of his published
articles, subsequent corrections to those articles, and in unpublished correspondence
with other logicians. We present what we consider to be his most mature view on
these matters, taking unpublished material into account.

Popper’s approach to logic is original, philosophically interesting, and also
severely underappreciated. There are only a few detailed expositions and discussions
of Popper’s works on logic (cf. Schroeder-Heister, 1984, 2006; Binder and Piecha,
2017). Moreover, Popper’s ideas on quantification have not yet received an extensive
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discussion, and in this article we would like to provide one. We first give a brief sketch
of the genesis of Popper’s ideas on logic in § 1.2. In § 1.3 we introduce the central
philosophical ideas of Popper’s approach to logic, namely to define logical constants
by inferential definitions that are based on a deducibility relation. These ideas are
exemplified by inferential definitions of connectives of propositional logic. In § 1.4
we show how Popper intended to extend the propositional system to first-order logic
(Popper uses the terms “theory of quantification” or “quantification theory” instead of
“first-order logic”). At first, he extends his concept of object language to include open
statements and his deducibility relation to range over open statements. He then adds a
substitution operation which replaces free variables by other free variables, and gives
rules and postulates which characterize this substitution operation. We discuss his
definitions of the auxiliary concepts of identity and non-free-occurrence of a variable
in a statement and, finally, his definitions of the quantifiers. We conclude in § 1.5.

1.2 The genesis of Popper’s ideas on logic

In January 1937 Karl Popper arrived in New Zealand and settled down in Christchurch,
where he had found employment as a lecturer of philosophy at Canterbury University
College. It is in Christchurch where he worked on, and finished, what he considered
to be his contribution to the war, “The Open Society and Its Enemies” (Popper, 1945).
Combining teaching and research proved to be very difficult, and in his autobiography
(Popper, 1974) he complains about how the leadership of the university actively
discouraged research which was not directly related to his teaching activities. But, as
he also writes in his autobiography, he found the time to work on logic (Popper, 1974,
§ 25). While he only started to publish his work once he had returned to Europe and
worked at the London School of Economics, it is clear that most of the genesis of his
novel ideas on logic can be traced back to his time in Christchurch.

Since the university library in Christchurch was poorly equipped, Popper also
relied on the personal library of Henry George Forder, who taught mathematics at
Auckland University College and who lent him journal articles and monographs that
Popper needed for his logical and mathematical research. Popper started an extensive
correspondence with Forder in 1943 which mostly turned around questions of the
foundations of physics, mathematics and logic. The correspondence with his pre-war
contacts from Europe, on the other hand, proved to be difficult and slow. One of
his pre-war contacts that he did keep in contact with was Carnap, who taught at the
University of Chicago and who sent Popper his latest publications in logic. Popper
writes to Carnap to tell him that he received the “Introduction to Semantics” (Carnap,
1942) in October 1942 and “The Formalization of Logic” (Carnap, 1943) at the end
of June or beginning of July 1943.

A significant part of his time was spent on preparing the courses that he taught, one
of them being the introduction to formal logic. Popper was always keen on expressing
his opinions as clearly as he could, and this attitude also applied to formal logic. We
think that it is likely that the teaching of logic to his Christchurch students was the
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occasion which prompted Popper to write down his thoughts on the foundations of
logic. This is evidenced by the fact that he explicitly mentions discussions that he
had with his student Peter Munz during one of his logic lectures in Christchurch
(Popper, 1974, § 27 and endnote 194). After moving to England and taking up his
new position at the London School of Economics he published the results obtained
in New Zealand in a series of articles (Popper, 1947c,a,d, 1948b,c, 1949). At the
same time he also thought about writing a textbook on logic that he could use in his
lectures. He writes about this plan in a draft of a letter to Alexander Carr-Saunders,
the director of the London School of Economics at the time:

I may say that I am at present preparing a textbook on formal logic, not
because I like writing a textbook (it interferes, on the contrary, badly with
my own research programme) but because I find it necessary for my students.
The existing textbooks have aims totally different from what I consider to be
the aim of a modern introductory course in Logic. (Popper, 1946)

Indeed, already in 1939/41 Popper had prepared lecture notes on logic (Popper, 1941),
and a table of contents for a textbook on logic can be found in Popper’s estate (Popper,
n.d.b). Moreover, together with Paul Bernays he wrote a manuscript “On Systems
of Rules of Inference” (Popper and Bernays, n.d.) which contains an exposition of
Popper’s original approach to logic. The jointly written manuscript was not published,
however.

1.3 Inferential definitions

In his approach to logic, Popper considers pairs of an object language L and a
deducibility relation (also called derivability relation), written /, defined on L. A
given object language need not be a formal language but can also be a natural language.
The deducibility relation between statements a1, . . . , an and b is written as

a1, . . . , an/b

and is characterized by a so-called basis. Popper uses different bases. For clarity, we
will use the following simple basis from Popper (1948b):

a1, . . . , an/ai (1 ≤ i ≤ n) (Refl)
a1, . . . , an/b→ (b, a1, . . . , an/c→ a1, . . . , an/c) (Trans)

The basis is formulated in a symbolic metalanguage, where→ stands for “if-then”.
Further metalinguistic symbols are used, with the following meanings:

Symbol → ↔ & (a)

Meaning if-then if and only if and for all a
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Note that the axioms (Refl) and (Trans) are thus metalinguistic statements about
the deducibility relation. They express that the deducibility relation / is reflexive
and transitive. Besides these two structural properties nothing else characterizes the
primitive notion of deducibility.

Popper distinguishes between a general theory of derivation, which deals with
deducibility and related notions, and a special theory of derivation, in which logical
constants are defined in terms of deducibility.

For example, in the general theory the relation of mutual deducibility // is defined
in terms of deducibility / as follows:

a//b ↔ (a/b & b/a) (mutual deducibility)

This is an equivalence relation, and two mutually deducible statements a and b are
said to have the same logical force. Thus, the equivalence classes induced by // are
logical forces. Another important defined relation is relative demonstrability, written
a1, . . . , an ` b1, . . . , bm:

a1, . . . , an ` b1, . . . , bm ↔ (c)((b1/c & . . . & bm/c) → a1, . . . , an/c)
(relative demonstrability)

In words: The statements b1, . . . , bm are demonstrable relative to statements a1, . . . , an
(by definition) if, and only if, for all statements c: if c is deducible from each of
the statements b1, . . . , bm, then c is deducible from the statements a1, . . . , an taken
together. The notion of relative demonstrability is especially useful in cases where the
object language contains conjunction ∧ and disjunction ∨, since one can then show

a1, . . . , an ` b1, . . . , bm ↔ a1 ∧ . . . ∧ an ` b1 ∨ . . . ∨ bm

which gives us an interpretation of Gentzen’s sequents (cf. Gentzen, 1935a). From
this point of view, Popper’s basis characterizes commas on the left side of ` as
conjunction and commas on the right side of ` as disjunction. Furthermore, the notion
of relative demonstrability contains as special cases the concepts of complementarity,
demonstrability, contradictoriness and refutability, which Popper defines as well (cf.
Binder and Piecha, 2017 for details).

The primitive notion of deducibility (and the notions defined in terms of it) is the
foundation of Popper’s special theory of derivation. In this theory, logical constants
are defined in terms of deducibility alone. That is, a sign of a given object language
is a logical constant, if, and only if, the sign can be defined by deducibility. Such
definitions of logical constants (or formative signs, as Popper also calls them) are
called inferential definitions by Popper:

[. . .] inferential definitions [. . .] are characterized by the fact that they define
a formative sign by its logical force which is defined, in turn, by a definition
in terms of inference (i.e., of “/”). (Popper, 1947a, p. 286)

Inferential definitions of logical constants have the following form (where we use
◦ as a placeholder for an arbitrary binary connective):
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a//a1 ◦ a2 ↔ R(a, a1, a2) (D◦)

In words: The object language statement a has the same logical force as the complex
object language statement a1 ◦ a2 if, and only if, the condition R(a, a1, a2) holds.
ConditionR(a, a1, a2) is a formula of the (symbolic) metalanguage containing (among
others) the statements a, a1, a2 and the deducibility relation / (or maybe relations like
` , which are defined in terms of /). Popper calls a definition of the form (D◦) an
explicit definition of the connective ◦. To simplify the presentation one can consider
only the right part of such definitions, replacing a by a1 ◦ a2 in R:

R(a1 ◦ a2, a1, a2) (C◦)

This is called the characterizing rule (C◦); it corresponds to the definition (D◦).
As examples, we show some inferential definitions of connectives given by Popper:

Conjunction ∧:

a//b ∧ c ↔ (d)(a ` d ↔ b, c ` d) (D∧)
b ∧ c ` d ↔ b, c ` d (C∧)

Disjunction ∨:

a//b ∨ c ↔ (d)(d ` a ↔ d ` b, c) (D∨)
d ` b ∨ c ↔ d ` b, c (C∨)

Conditional >:

a//b > c ↔ (d)(d ` a ↔ d, b ` c) (D>)
d ` b > c ↔ d, b ` c (C>)

Popper also considers several definitions for classical negation (¬k), among them
the following two, which are equivalent:

a//¬k b ↔ (a, b ` & ` a, b) (D¬k1)
a//¬k b ↔ (c)(d)(d, a ` c ↔ d ` b, c) (D¬k2)

The characterizing rules are the following:

¬k b, b ` & ` ¬k b, b (C¬k1)
(c)(d)(d,¬k b ` c ↔ d ` b, c) (C¬k2)

Other examples of unary connectives are the following:

Tautology t:

a//t(b) ↔ (c)(b/a ↔ c/a) (D t)
(c)(b/t(b) ↔ c/t(b)) (C t)
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Contradiction f :

a// f (b) ↔ (c)(a/b ↔ a/c) (D f )
(c)( f (b)/b ↔ f (b)/c) (C f )

We have for all statements b: ` t(b) and f (b) ` . In other words, t is a unary verum,
and f is a unary falsum.

Popper’s approach is not restricted to classical logic. For example, he inferentially
defines several kinds of non-classical negations, such as

Intuitionistic negation ¬i:

a//¬i b ↔ (c)(c ` a ↔ c, b `) (D¬i)
c ` ¬i b ↔ c, b ` (C¬i)

Popper does not only consider the availability of a characterizing rule like
R(c, a1, . . . , an) as a criterion for the logicality of the constant characterized by it.
Thus an inferential definition of this form need not define a logical constant in all
cases. As a stronger criterion for logicality, Popper considers the existence of so-called
fully characterizing rules, which are characterizing rules satisfying uniqueness in the
sense that one can show that any two statements satisfying such a rule are mutually
deducible (i.e., have the same logical force). In other words, a rule R(c, a1, . . . , an) is
called fully characterizing if, and only if,

R(a, a1, . . . , an) & R(b, a1, . . . , an) → a//b.

The existence of fully characterizing rules is then used to distinguish between logical
and non-logical constants (cf. the discussion in Schroeder-Heister, 1984, 2006 and
Binder and Piecha, 2017, § 4.3).

1.4 Substitution, identity and quantification

We cannot say precisely when Popper’s ideas about propositional logic took shape.
In the introduction to “New Foundations for Logic” (Popper, 1947d) he writes that
he obtained the results “during the last ten years”, that is, between 1937 and 1947,
roughly corresponding to the time he spent in New Zealand. On the other hand, we
can give the exact date when he extended his inferential definitions to quantifiers. In
a letter to Paul Bernays dated October 19th 1947 (Popper, 1947f) he writes:

The first important result which I had finished about one week after I saw you,
was the extension of the method of a/b ∧ c ↔ a/b & a/c to quantification.
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The meeting that Popper refers to probably took place in Zürich on April 11th or 12th
19471, where Popper met Bernays in order to discuss the possibility of publishing a
joint article on logic. The manuscript (Popper and Bernays, n.d.) for this unpublished
article does not have a title; in a letter to Bernays dated March 3rd 1947 (Popper,
1947e), Popper suggests the title “On Systems of Rules of Inference”, noting that
“[t]he title is not very good, but so far I could not think of a better one”.

Although they did not publish this manuscript, Popper’s results found their way into
several of his published articles. The most extensive discussion of these results can be
found in §§ 7-8 of “New Foundations for Logic” (Popper, 1947d). Additionally, there
is an important footnote in Popper (1948c), an alternative axiomatization in Popper
(1947a), and a very short but clear summary of his treatment of quantification in Popper
(1949). We follow the presentation of “New Foundations” (Popper, 1947d) but refer to
somemodifications which can be found in his other articles. Somemodifications of his
view on quantification were only discussed in hitherto unpublished correspondence2,
which we will discuss in § 1.4.4.

1.4.1 Formulas, name-variables and substitution

For propositional logic, as we saw in § 1.3, Popper considered pairs

(L; a1, . . . , an/b)

of an object languageL and a deducibility relation /, axiomatized by a basis consisting
of the rules (Refl) and (Trans). Each element of the object language L was presumed
to be a statement, that is, something which has a truth value.

The first modification Popper makes in order to treat quantification is to consider
4-tuples

(L;P; a1, . . . , an/b; a
(x
y

)
)

consisting of a set L of formulas, a set P of name-variables (or pronouns), a
deducibility relation on L and a substitution operation

a
(x
y

)
which substitutes the name-variable y for the name-variable x in the formula a.
Variables a, b, . . . now range over formulas in L, and variables x, y, . . . range over
name-variables in P.

Formulas can either be open statements (also called statement-functions) or closed
statements (also called statements):

1 Bernays writes to Popper: “[. . .] nothing stands, as far as I can see, in the way of us seeing each
other on April 11th in Zurich; I will certainly also be available in the midmorning of the 12th. I’m
looking forward to the receipt of the concept you promised me, – also with regards to the possible
joint publication.” (Bernays, 1947)
2 To be published in (Binder, Piecha, and Schroeder-Heister, 2021b).
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formula

open statement,
statement-function

closed statement,
statement

An example of an open statement given by Popper is “He is a charming fellow”,
which can be turned into a closed statement by replacing the name-variable “He” by
the name “Ernest’s best friend”. Popper explicitly remarks that open statements do
not have a truth value on their own; an open statement cannot be considered to be
true or false.

The deducibility relation is axiomatized by the same rules (Refl) and (Trans) as in
the case of propositional logic, but it now ranges over arbitrary formulas, not just
closed statements. For example, Popper says that one can validly deduce the open
statement “He is an excellent physician” from the open statement “He is not only a
charming fellow but an excellent physician”.

The new substitution operation is characterized by the four postulates (PF1) to
(PF4) and the six primitive rules of derivation (6.1) to (6.6), which we present in a
slightly simplified form in the following.

L ∩ P = ∅ (PF1)
If a ∈ L and x, y ∈ P, then a

(x
y

)
∈ L (PF2)

For all a ∈ L there exists an x ∈ P such that for all y ∈ P: a
(x
y

)
//a (PF3)

There exist a ∈ L and x, y ∈ P: a/a
(x
y

)
→ t/ f (PF4)

Note that two kinds of metalinguistic quantifiers are used: There are universal and
existential quantifiers ranging over statements a ∈ L and universal and existential
quantifiers ranging over name-variables x ∈ P. We only use symbols for the respective
metalinguistic universal quantifiers in the following; (a) means “for all statements a”
and (x) means “for all name-variables x”.

The postulates (PF1) and (PF2) are, in a way, only about the correct grammatical
use of formulas and name-variables. The postulate (PF3) says that for every formula
there is some name-variable not occurring in it. This is obvious if the set of name-
variables is considered to be infinite, and if each formula is a finite object which can
only mention a finite number of name-variables. The postulate (PF4), which Popper
considers to be optional, excludes degenerate systems in which only one object exists.
Take, for example, the open statement a to be “x likes the current weather”. The
deducibility of “y likes the current weather” from “x likes the current weather” only
leads to a contradiction if there are at least two persons to whom x and y can refer.
Postulate (PF4) was also discussed in correspondence between Popper and Carnap
(Carnap, 1947, Popper, 1947b; cf. Appendix A and Appendix B).

The six primitive rules of inference are given below. We will not discuss them in
detail, but the reader may check that they are valid for a concrete formalized object
language and a substitution operation for that language.
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If, for every z, a//a
(y
z

)
and b//b

(y
z

)
, then a//b→ a

(x
y

)
//b

(x
y

)
(6.1)

a//a
(x
x

)
(6.2)

If x , y, then (a
(x
y

)
)
(x
z

)
//a

(x
y

)
(6.3)

(a
(x
y

)
)
(y
z

)
//(a

(x
z

)
)
(y
z

)
(6.4)

(a
(x
y

)
)
(z
y

)
//(a

(z
y

)
)
(x
y

)
(6.5)

If w , x, x , u and u , y, then (a
(x
y

)
)
(u
w

)
//(a

(u
w

)
)
(x
y

)
(6.6)

The rules (6.1) to (6.6) characterize substitution as a structural operation; this is
similar to how the basis characterizes commas in sequences of statements. It is
remarkable that Popper here presents an algebraic treatment of substitution, which
can be compared to the theory of explicit substitution developed much later (cf., e.g.,
Abadi et al., 1991).

As an intriguing sidenote, Popper compares the definition of substitution by the
rules (6.1) to (6.6) to the definition of conjunction via the inferential definition (D∧).
He writes:

These six primitive rules determine the meaning of the symbol “a
(x
y

)
” in a

way precisely analogous to the way in which, say, [rule (D∧) determines]
the meaning of conjunction [. . .] with the help of the concept of derivability
“/”. (Popper, 1947d, p. 226)

However, it has been pointed out by Schroeder-Heister (1984, p. 106) that Popper’s
rules for substitution “cannot be brought into the form of an inferential definition
of an operator of the object language”. Hence, substitution cannot have the status
of a logical constant according to Popper’s criterion for logicality; his rules for
substitution do not have the form of characterizing rules (and, consequently, no fully
characterizing rules can be given either). Indeed, Popper also explains substitution as
follows:

The notation

“a
(x
y

)
”

will be used as a (variable) metalinguistic name of the statement which is
the result of substituting, in the statement a (open or closed), the variable y
for the variable x, wherever it occurs. a

(x
y

)
is identical with a if x does not

occur in a. (Popper, 1947a, p. 1216)

Popper’s rules for substitution may thus be viewed as “an implicit characterization of a
metalinguistic operation” (Schroeder-Heister, 1984, p. 106), and not as an inferential
definition of a logical constant for object languages.

Next we discuss some auxiliary concepts defined with the help of both the
deducibility relation and the substitution operation.
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1.4.2 Non-dependence, identity and difference

If we work with some inductively defined formal object language, then we can easily
specify the set of free variables of a formula by recursion on the structure of that
formula. This possibility is excluded in Popper’s approach, since its generality does
not restrict us to the consideration of formal languages. Popper therefore defines the
concept

ax̀

which can be read as “x does not occur among the free variables in a”. Popper himself
expresses this as “a does not depend on x”, “a-without-x” and “x does not occur
relevantly in a”. The formula a does not depend on x if, and only if, substitution of
some name-variable y for x does not change the logical strength of a. That is:

a//ax̀ ↔ for every y: a//a
(x
y

)
(D ax̀)

The second concept Popper defines with the help of deducibility and substitution
is identity. As Popper (1947d, p. 227f, fn 24) notes, one first has to extend the object
language L to incorporate formulas of the form Idt(x, y); this is achieved by the
postulate

If x and y are name variables, then Idt(x, y) is a formula (P Idt)

In addition, the characterizing rules for substitution have to be extended by rules of
the form

(Idt(x, y))
(x
z

)
//Idt(z, y) (A)

(Idt(x, y))
(y
z

)
//Idt(x, z) (B)

If x , u , y, then Idt(x, y)
(u
z

)
//Idt(x, y) (C)

With these preliminaries, Popper defines identity using the following idea:

The identity statement “Idt(x, y)” can be defined as the weakest statement
strong enough to satisfy the [. . .] formula [. . .]

“Idt(x, y), a(x)/a(y)”

that is to say, the formula corresponding to what Hilbert-Bernays call the
second identity axiom. (Hilbert-Bernays’s first axiom follows from the
demand that the identity statement must be the weakest statement satisfying
this formula.) (Popper, 1949, p. 725f)

The identity axioms Popper refers to are the axioms J1 and J2 of Hilbert and Bernays
(1934, p. 164):

a = a (J1)
a = b→ (A(a) → A(b)) (J2)
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This justifies the following definition of identity Idt(x, y):

a//Idt(x, y) ↔ (for every b and z: ((b//bx̀ & b//bỳ) → a, b
(z
x

)
/b

(z
y

)
) &

((for every c and u: ((c//cx̀ & c//cỳ) → b, c
(u
x

)
/c

(u
y

)
)) → b/a)) (D Idt)

Popper (1948c, p. 323f, fn 11) expands on the definition of identity Idt(x, y) in
order to illustrate his method of obtaining a relatively simple characterizing rule from
an explicit definition that is the weakest (or strongest) statement satisfying a certain
condition or axiom. He first introduces the following abbreviating notation:

a//ax̀ ỳ ↔ (w)(a//a
( x
w

)
& a//a

( y
w

)
).

Using this abbreviation, he defines Idt(x, y) as the weakest statement strong enough
to imply the axiom J2:

a//Idt(x, y) ↔
(b)(z)((b//bx̀ ỳ → a, b

(z
x

)
/b

(z
y

)
) & (((c)(u)(c//cx̀ ỳ → b, c

(u
x

)
/c

(u
y

)
)) → b/a))

(D Idt†)

This explicit definition, which is an abbreviated version of (D Idt), can be replaced by
a definition that corresponds to the following characterizing rule:

a/Idt(x, y) ↔ (b)(z)(b//bx̀ ỳ → a, b
(z
x

)
/b

(z
y

)
) (C Idt‡)

This can be seen by instantiating a in (D Idt†) with Idt(x, y) in order to obtain

(b)(z)((b//bx̀ ỳ → Idt(x, y), b
(z
x

)
/b

(z
y

)
) &

(((c)(u)(c//cx̀ ỳ → b, c
(u
x

)
/c

(u
y

)
)) → b/Idt(x, y))).

The left conjunct gives the direction from left to right in (C Idt‡), and the right
conjunct gives the direction from right to left.

Finally, difference Dff (x, y) is simply defined as the classical negation of identity:

a//Dff (x, y) ↔ a//¬k Idt(x, y) (DDff )

It is interesting to see that Popper chose to treat occurrence of free variables and
identity as defined notions, rather than to class them with substitution and deducibility
among the primitive notions characterized by the basis. We will see further on
(cf. § 1.4.4) that Popper probably revised this position later.
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1.4.3 Quantification

Inferential definitions of universal and existential quantification are introduced in
(Popper, 1947d), to which he later published a list of corrections and additions (Popper,
1948a), which we take into account here. Popper’s aim is not to develop and analyze
the theory of quantification, that is, first-order logic, but to show that his approach to
quantification is at least on a par with other proposed treatments of quantification.
He therefore restricts himself to stating his definitions of the quantifiers and to
deriving some simple conclusions, but he does not formally develop a meta-theory
of quantification. He does not, for example, discuss the completeness of his rules,
the difference between classical and constructive interpretations of the existential
quantifier, or the relation to models of his system.

Later, Popper (1949) gives the clearest explanation of what intuition his inferential
definition of universal quantification is supposed to capture. He writes:

The result of universal quantification of a statement a can be defined as the
weakest statement strong enough to satisfy the law of specification, that is
to say, the law “what is valid for all instances is valid for every single one”.
(Popper, 1949, p. 725)

Presupposing his rules of substitution, and writing Ax for the universal quantifier,
Popper’s inferential definition and the characterizing rule for universal quantification
are the following:

aỳ//Axbỳ ↔ (for every cỳ : cỳ/aỳ ↔ cỳ/bỳ
(x
y

)
) (D7.1)

For every cỳ : cỳ/Axbỳ ↔ cỳ/bỳ
(x
y

)
(C7.1)

In order to see how more ordinary presentations of the rules for universal
quantification follow from these inferential definitions, we can compare them to the
more familiar rules of the (intuitionistic) sequent calculus (writing ϕ[x/y] for the
result of substituting y for x in the formula ϕ):

Γ, ϕ[x/t] ` ψ
(∀ `)

Γ, ∀xϕ ` ψ
Γ ` ϕ[x/y]

(` ∀)
Γ ` ∀xϕ

Γ, ϕ[x/y] ` ψ
(∃ `)

Γ, ∃xϕ ` ψ
Γ ` ϕ[x/t]

(` ∃)
Γ ` ∃xϕ

with the variable condition that y does not occur free in the conclusion of (` ∀) and
(∃ `).

For example, by instantiating (C7.1) with Axbỳ and by using the rules (Trans) and
(Refl) from the basis, we obtain the following rule

a, bỳ
(x
y

)
/c→ a, Axbỳ/c

which can easily be seen to be a variant of the rule (∀ `) where the name-variable y
takes the role of the term t. Similarly, by instantiating (C7.1) with cỳ and reading the
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biimplication from right to left we obtain the following rule, which corresponds to
the rule (` ∀) with the variable condition that y does not occur relevantly in c:

cỳ/bỳ
(x
y

)
→ cỳ/Axbỳ .

As was the case for universal quantification, Popper gives the clearest explanation
of the inferential definition of existential quantification not in (Popper, 1947d), but in
(Popper, 1949, p. 725):

The result of existential quantification of the statement a can be defined as
the strongest statement weak enough to follow from every instance of a.

The inferential definition and the characterizing rule for the existential quantifier E x
are

aỳ//E xbỳ ↔ (for every cỳ : aỳ/cỳ ↔ bỳ
(x
y

)
/cỳ) (D7.2)

For every cỳ : E xbỳ/cỳ ↔ bỳ
(x
y

)
/cỳ (C7.2)

To elucidate, we derive some more familiar rules for the existential quantifier from its
characterizing rule. Instantiating (C7.2) with E xbỳ and using the rules of the basis
we can obtain the rule

a/bỳ
(x
y

)
→ a/E xbỳ

which corresponds to the sequent calculus rule (` ∃); and by instantiating (C7.2)
with cỳ and reading the biimplication from right to left, we obtain the following rule,
which corresponds to (∃ `):

bỳ
(x
y

)
/cỳ → E x ỳ/cỳ .

Popper does not consider the explicit definitions (D7.1) and (D7.2) to be improve-
ments compared to the characterizing rules. They are given to show that universal
and existential quantification can be defined using only his basis and the rules (6.1)
to (6.6). He notices that these rules are not as simple as the rules of his basis, for
example. But he points out that the concept of “ax̀” can be avoided in these definitions
(Popper, 1947d, p. 230, fn 26, added in the corrections and additions Popper, 1948a).
Assuming x , y, one can use instead:

a
(y
x

)
/Ax(b

(y
x

)
) ↔ a

(y
x

)
/b

(x
y

)
(7.1∗)

E x(a
(y
x

)
)/b

(y
x

)
↔ a

(x
y

)
/b

(y
x

)
(7.2∗)

a
(y
x

)
//Ax(b

(y
x

)
) ↔ (for every c: c

(y
x

)
/a

(y
x

)
↔ c

(y
x

)
/b

(x
y

)
) (D7.1∗)

a
(y
x

)
//E x(b

(y
x

)
) ↔ (for every c: a

(y
x

)
/c

(y
x

)
↔ b

(x
y

)
/c

(y
x

)
) (D7.2∗)

He conceives his rules of quantification to be less complicated than those given
by Hilbert and Ackermann (1928) or those given by Quine (1940, § 15), and he
emphasizes that his rules in the end make use of only one logical concept, namely
that of deducibility / as characterized by his basis.
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1.4.4 An unfortunate misunderstanding

Popper (1947d, § 8) introduces a distinction which he considered to be very important:
the distinction between rules of derivation and rules of proof. If he had not stopped
publishing in logic, then it is very likely that he would have developed these ideas in
more detail. For example, among his unpublished manuscripts there are two which
are entitled “Derivation and Demonstration in Propositional and Functional Logic”
(Popper, n.d.a) and “The Propositional and Functional Logic of Derivation and of
Demonstration” (Popper, n.d.c), as well as another untitled manuscript (Popper,
n.d.d), which also deals with the distinction between derivation and demonstration.

In order to illustrate this distinction we have to make use of the concept of relative
demonstrability ` , which was introduced in § 1.3. If we specialize this concept to
no formula on the left hand side and exactly one formula on the right hand side, we
obtain the definition of a provable formula a: ` a. Consider now the following two
formulas of the metalanguage:

a/b→ (` a→ ` b)

(` a→ ` b) → a/b.

Popper correctly remarks that while the first formula is valid, the second is not. This
can be seen by instantiating a by a consistent formula and b by a contradictory one.
Now Popper correctly observes that the rules of a system like Principia Mathematica
(Whitehead and Russell, 1927) are rules of proof and not rules of derivation. For
example, the rule of modus ponens takes the form

` a→ (` a > b→ ` b)

rather than the form
a, a > b/b.

What Popper intends to formulate here, and in particular in his definition of a
purely derivational system of primitive rules (cf. Popper, 1947d, definition (D8.1)),
is, in our opinion, a criterion that allows to distinguish between formulations of logic
based on axioms and rules of proof, such as Hilbert and Bernays’s (1934; 1939) or
Whitehead and Russell’s (1927) on the one hand, and formulations of logic based on
derivation alone, such as Gentzen’s (1935a; 1935b) and his own, on the other hand.

Unfortunately, he applied this analysis of rules of derivation and rules of proof to
the systems of Carnap as well as of Hilbert and Bernays in a way that does not take
account of an important difference between his system and theirs. Popper (1947d, p.
232) warns that there are rules of proof such as

` aỳ ↔ ` aỳ
(x
y

)
(8.5)

which are valid, whereas the corresponding rule of derivation

aỳ/aỳ
(x
y

)
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is invalid. He continues:

Now all the mistakes here warned against do actually vitiate some otherwise
very excellent books on modern logic – an indication that the distinction
between (conditional) rules of proof or rules of demonstration on the one side
and rules of derivation on the other cannot be neglected without involving
oneself in contradictions. (Popper, 1947d, p. 233)

Both Carnap and Bernays responded to Popper’s criticism of their respective system
in correspondence. We have reproduced Carnap’s letter and Popper’s response in
Appendix A and Appendix B, respectively. Bernays (1948) writes:

Now I have to comment upon your critique of the formulation of the all-
schema, as it is given in the “Grundlagen der Math.” [Hilbert and Bernays
(1934)]. I think of the passage p. 232–233 of your New Foundations. [. . .] The
contradiction that you derive, starting with the schema ax̀ > b/ax̀ > Axb
which you criticize, does not arise in the formalism of the “Grundl. derMath.”,
because the implication plays another role here than the “hypothetical” in
your formalism.

We note that Popper’s letter to Carnap (cf. Appendix B) is also interesting for the
fact that it contains an expansion of his theory of quantification by presenting several
logical laws of classical first-order logic.

Popper later revised his understanding of the interaction of substitution and
deducibility. While his definitions are formulated using the weaker notion of interde-
ducibility, he then considered it necessary to use the stronger notion of identity of
statements (Popper, 1974, p. 171, endnote 198; reproduced in Appendix C).

Concerning possible future work on logic, Popper states in his reply (Popper,
1948d) to Bernays’s letter (Bernays, 1948):

I have also a number of new results – but I do not believe that I will ever
dare again to publish something (except, maybe, an infinite sequence of
corrections to my old publications)!

1.5 Conclusion

Popper’s works on logic in the 1940s had no real influence on the further development
of logic. This is despite the fact that he anticipated and had results on several issues
in the area of philosophical logic which are still discussed today. We mention his
inferentialist approach to logic, his analysis of logicality, and his results on combining
logical systems (cf. Binder and Piecha, 2017; Schroeder-Heister, 1984, 2006 for
details). In his inferentialist approach to logic, Popper anticipated many ideas of
proof-theoretic semantics (Schroeder-Heister, 2018; Piecha and Schroeder-Heister,
2016; cf. Binder, Piecha, and Schroeder-Heister, 2021a).

At the time, his works were reviewed by several prominent logicians, including
Ackermann (1948, 1949a,b), Beth (1948), Curry (1948a,b,c,d, 1949), Hasenjaeger
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(1949), Kleene (1948, 1949) and McKinsey (1948). While the reviews by Ackermann
and Beth are summarizing, Curry, Hasenjaeger, Kleene and McKinsey are critical
about certain aspects of Popper’s approach and point out some technical issues (for
a discussion of these criticisms cf. Schroeder-Heister, 1984). Concerning Popper’s
treatment of quantification in particular, Curry (1948a) raised some doubts (which
were also discussed by Seldin, 2008), although without going into details and
while maintaining that “[p]resumably [Popper’s] ideas can be carried through, at
least in principle”. Popper also disseminated his ideas in correspondence with
Carnap, for example, who saw the importance of Popper’s work on logic (Carnap,
1947; cf. Appendix A). Brouwer (1947) reacted positively as well and presented
Popper’s articles (1947a; 1948b; 1948c) to the Koninklijke Nederlandse Akademie
van Wetenschappen for publication. However, although Popper’s approach to logic is
original and philosophically quite interesting, it did not receive the wider appreciation
it deserves.
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Appendix A Letter from Carnap to Popper, October 9th 1947
(Carnap, 1947)

Santa Fe, N.M.,
P.O.B. 1214
Oct. 9, 1947

Dear Popper,
My best thanks for your letter of August & your kind judgement on my book.
I just read your “New Found.” in “Mind”. It is very interesting & contains a

number of new & important results. It is an essential improvement in comparison
with my previous attempts of defining the connection in terms of “consequence”
(first in “Syntax” § 57, & later in “Formalization”). Among other things, your clear
& simple analysis of the three kinds of negation is very valuable.

Your discussion on pp. 232f. is, unfortunately, so short that I am unable to
understand it. I should like to understand it, especially since it is the basis of your
objections against my rules. You say that the last formula on p. 232 leads to that on
top of p. 233. How does it? Is the restriction ax̀ in the former but not in the latter no
impediment? Further, you say that a//a

(x
y

)
violates PF2. How does it? (I say that it

violates your interpretation.) This is only a question, not an objection; I assume that
your assertions concerning your system are correct.
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However, I doubt very much whether your assertions (in the footnotes p. 232) of
the non-validity of my rules 10 & 11 in D28-2 are correct. Note that rule 11, because
of its restriction, does not lead to a proof of “Px ⊃ (x)(Px)” (which would indeed be
wrong), although “(x)(Px)” is derivable from “Px”, in distinction to your system.
You have probably made the mistake of inadvertently transforming the interpretation
& the rules of your system to mine (+ Hilbert’s, etc.) Perhaps you have overlooked
the following essential distinction. In my system (& Hilbert’s, etc. but perhaps not in
Princ. Math., & certainly not in your system), “Px” (as a separate formula) is
interpreted (see, e.g., “Syntax”, p. 22, par. 2) as meaning the same as “Py” & as
“(x)(Px)”. Therefore my rules are valid, if you doubt it, please give a
counter-example, by using only my rules, not yours.

Feigl & Hempel (& his new wife) were here for a few weeks, & we had a very
nice time together, with many interesting discussions, mostly on inductive logic.

We shall stay here until Xmas.
With best regards,
yours,
Rudolf Carnap

(Please, let’s forget about titles.)

Appendix B Letter from Popper to Carnap, November 24th 1947
(Popper, 1947b)

November 24th, 1947.
Dear Carnap,

I am sending you to-day an offprint of my “Logic without Assumptions”, referred
to in my “New Foundations” (note 1 on p. 203). Two more papers are on the way; I
have been promised the offprints of one of them for next week, and I shall send you a
copy at once.

I am overworked (8 hours lecturing a week is too much if one does research – I
wish I could get some time off for research, but I don’t know how), and really quite
exhausted.

You asked me in your last letter for a fuller explanation of my pp. 232f. (of my
“New Foundations”). I suppose that it is the misprint on p. 233 (“PF2” should
properly read “PF4”) which created the difficulty, and that you will have found
meanwhile what I meant. Still, here is a fuller explanation.

My contention is this.
Your statement (Formalization, p. 136) “that there exists a one-one correlation

between the individuals and the natural numbers” indicates that it is your intention to
construct a calculus which is consistent with my (much weaker) postulate PF4, i.e.,
with the demand that there exists more than one individual.

But with the assumption that there exists more than one individual, each of the
following rules of your Formalization contradict:
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C10 (i.e., D28-2, rule 10, on p. 137)
C11 (i.e., D28-2, rule 11, on p. 138)
C12 (i.e., D28-2, rule 12, on p. 138)
Cb (i.e., T28-4, case b, on p. 139).

For the proof of this contention, I shall make use of my own formalism. But the
proof holds for your formalism as well; for your C-implication satisfies, on the basis
of your Introduction, p. 64, P14-5; P14-8; and P14-11, all the rules which define my
“. . . /. . .”, i.e., the rules which I shall call “generalized reflexivity principle” and
“generalized transitivity principle”. To the latter, I shall refer as “Tg”.

I shall also refer to the following principles (“ak” is the classical negation of a):

a/b→ ` a > b(1.1)
a/b→ (` a→ ` b)(1.2)

` a > b ↔ ` bk > ak(1.3)

(a ∧ ak) ∨ b//b(1.4)

a//akk(1.5)

(Ax(ak))k//E xa (cp. your d and e, p. 139)(1.6)

I begin with C10, which I write

a/a
(x
y

)
, provided y is not bound in a

(x
y

)
.(C10)

We obtain, always assuming that y is not bound in a
(x
y

)
:

` a > a
(x
y

)
(C10;1.1)(C10.1)

` (a
(x
y

)
)k > ak (C10;1;1.3)(C10.2)

(a
(x
y

)
)k/ak (C10.2;1.1)(C10.3)

` (a
(x
y

)
)k → ` ak (C10.3;1.2)(C10.4)

Now we take “a” to be the name of an open statement (such as “x + 1 = y”)
which is satisfiable but not universally true. We obtain

` “y + 1 , y”→ ` “x + 1 , y” (C10.4)(C10.5)

and, substituting further “x + 1” for “y” (we may confine this to the right hand side,
but I shall do it throughout) we obtain

` “(x + 1) + 1 , x + 1”→ ` “x + 1 , x + 1” (C10.5)(C10.6)

If there exists only one individual, then every statement of the form “. . . ,—” is
false, and C10.6 is innocuous. But if there are more individuals than one, C10.6
gives rise to
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“x + 1 , x + 1”(C10.7)

which is contradictory.

I now proceed to C11. This may be written:

a ∨ b/a ∨ Axb, provided x is not free in a.(C11)

We obtain, substituting “Axc ∧ (Axc)k” for “a”:

(Axc ∧ (Axc)k) ∨ b/(Axc ∧ (Axc)k) ∨ Axb (C11)(C11.1)
b/Axb (C11.1;1.4;Tg.)(C11.2)
` b > Axb (C11.2;1.1)(C11.3)

` (Axb)k > bk (C11.3;1.3)(C11.4)

` (Ax(ak))k > (ak)k (C11.4)(C11.5)

(Ax(ak))k/akk (C11.5;1.1)(C11.6)
E xa/a (C11.6;1.5;1.6;Tg.)(C11.7)
E xa/Axa (C11.7;C11.2;Tg.)(C11.8)

But C11.8 is, clearly, satisfied only if there is not more than one individual.

I proceed to rule C12. This may be written

ak ∨ b/(E xa)k ∨ b, provided x is not free in b.(C12)

Substituting “Axc ∧ (Axc)k” for “b” (as before under C11), we obtain:

ak/(E xa)k (C12)(C12.1)

bkk/(E x(bk))k (C12.1)(C12.2)
b/Axb (C12.2;1.5;1.6;Tg.)(C12.3)

But C12.3 is the same as C11.2, and has the same fatal consequences.

Rule Cb, of course, is also the same as C11.2 and C12.3.
The result of all this is:
(1) Rule Cb can be dropped altogether.
(2) The rules of derivation C10; C11; and C12 must be replaced by the

corresponding conditional rules of proof, C′10’; C′11; C′12:

` a→ ` a
(x
y

)
, provided y is not bound in a

(x
y

)
.(C′10)
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` a ∨ b→ ` a ∨ Axb, provided x is not free in a.(C′11)

` ak ∨ b→ ` (E xa)k ∨ b, provided x is not free in b.(C′12)

The last two rules may be replaced by C′′11 and C′′12:

a
(x
y

)
/b→ a

(x
y

)
/Axb, provided x , y(C′′11)

a/b
(x
y

)
→ E xa/b

(x
y

)
, provided x , y.(C′′12)

These two rules, in turn, can be replaced by:

a
(y
x

)
/b

(x
y

)
→ a

(y
x

)
/Axb

(y
x

)
(x , y)(C′′′11)

a
(x
y

)
/b

(y
x

)
→ E xa

(y
x

)
/b

(y
x

)
(x , y)(C′′′12)

If we replace here “→” by “↔”, we obtain the rules which define the quantifiers,
and from which, in the presence of the six rules defining “a

(x
y

)
”, everything else can

be obtained:

a
(y
x

)
/Axb

(y
x

)
↔ a

(y
x

)
/b

(x
y

)
(x , y)(C′′′′)

E xa
(y
x

)
/b

(y
x

)
↔ a

(x
y

)
/b

(y
x

)
(x , y)(C′′′′)

Appendix C Popper (1974, p. 171, endnote 198)

Themistakewas connectedwith the rules of substitution or replacement of expressions:
I had mistakenly thought that it was sufficient to formulate these rules in terms of
interdeducibility, while in fact what was needed was identity (of expressions). To
explain this remark: I postulated, for example, that if in a statement a, two (disjoint)
subexpressions x and y are both, wherever they occur, replaced by an expression z,
then the resulting expression (provided it is a statement) is interdeducible with the
result of replacing first x wherever it occurs by y and then y wherever it occurs by z.
What I should have postulated was that the first result is identical with the second
result. I realized that this was stronger, but I mistakenly thought that the weaker rule
would suffice. The interesting (and so far unpublished) conclusion to which I was
led later by repairing this mistake was that there was an essential difference between
propositional and functional logic: while propositional logic can be constructed as a
theory of sets of statements, whose elements are partially ordered by the relation of
deducibility, functional logic needs in addition a specifically morphological approach
since it must refer to the subexpression of an expression, using a concept like identity
(with respect to expressions). But no more is needed than the ideas of identity and
subexpression; no further description especially of the shape of the expressions.
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