
 
 
 
 

Proof, Computation, Complexity PCC 2010 
International Workshop, Proceedings 
 
K. Brünnler and T. Studer (editors) 
 
Technical report IAM-10-001, 18-19 June 2010  
 
 
 
Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch  

 



 

 



 
 

Proof, Computation, Complexity 
 

PCC 2010 
 

International Workshop 
 
 

Bern, 18 – 19 June 2010 
 
 

 

Edited by: 

Kai Brünnler 
Thomas Studer 

Institut für Informatik und angewandte Mathematik 
Universität Bern 

 

 

 

 

The aim of PCC is to stimulate research in proof theory, computation, and complexity, 
focusing on issues which combine logical and computational aspects. Topics may include 
applications of formal inference systems in computer science, as well as new developments in 
proof theory motivated by computer science demands. Specific areas of interest are (non-
exhaustively listed) foundations for specification and programming languages, logical 
methods in specification and program development including program extraction from proofs, 
type theory, new developments in structural proof theory, and implicit computational 
complexity. 
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Provability algebras and scattered topology 

Lev Beklemishev 
 

Abstract: 

Provability algebra of a reasonable arithmetical theory T is its Lindenbaum boolean algebra 
enriched by the operators <n> mapping a sentence A to the Gödelian sentence expressing n-
consistency of A over T. We consider set-theoretic interpretation of propositions as subsets of 
a set X, boolean connectives as boolean operations, and operators <n> as operators on the set 
of all subsets of X. The identities of the provability algebra then impose some restrictions on 
the choice of possible operators which amount to the following ones: 

(1) every operator <n> is a derived set operator w.r.t. some topology T_n, that is, <n>A is the 
set of limit points of A w.r.t. T_n; 

(2) each T_n is scattered, that is, every non-empty subspace A of X has an isolated point; 

(3) each T_{n+1} is finer than T_n; 

(4) <n>A is open in T_{n+1}, for each subset A of X. 

We study the properties of such spaces and their connections with the questions of proof 
theory and set theory. In particular, the problem of completeness of the system of identities of 
provability algebras w.r.t. GLP-spaces has unexpected relationships with the axioms of large 
cardinals and stationary reflection. 

 

  



Systematic (and algebraic) proof theory for substructural logics 

Agata Ciabattoni 
 

Abstract: 

I will outline an algebraic and systematic approach to proof theory for substructural logics, 
which is being developed together with N. Galatos, K. Terui and L. Strassburger. 



Unification in nonclassical theories

Rosalie Iemhoff

There are many problems in mathematics that can be cast in terms of unifi-
cation, meaning that a solution of the problem is a substitution that identifies
two terms, either literally, or against a background theory of equivalence. If the
theory has a term for “true”, then a substitution which applied to a term makes
it true, is called a unifier of that term. Thus in the context of formulas, a unifier
is a substitution under which the formula becomes derivable in the theory. This
form of unification plays an important role in automated theorem proving, and
it is this kind of unification that is considered in this talk.
In many classical theories, all unifiable formulas have a most general unifier,
which is a unifier that generates all other unifiers of a formula. Nonclassical
theories in general do not have this useful property. But sometimes something
weaker holds: every formula has a finite set of maximal unifiers. Many well-
known modal and intermediate logics have this property.
The study of unification in nonclassical logics mainly uses semantical techniques.
Even though there exist algorithms to find maximal unifiers, proofs of correct-
ness again use semantics. In this talk a purely syntactic treatment of unification
is presented, and it is shown how most known results follow easily from this ap-
proach. The talk will start with a general introduction to unification.
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On positive fragments of polymodal provability

logic

Evgenij Dashkov

There is not much literature concerning positive modal logics, i.e., logics in
languages without negation and implication. Dunn [3] has pioneered the �eld
with a study of bimodal minimal normal logic K>⊥+ in the language with �, ♦,
∨, ∧, >, ⊥. However, as far as we know, there have not been any special studies
of positive provability logics. We begin such a study and argue that it could be
fruitful for proof-theoretic applications.

Lev Beklemishev has suggested an algebraical approach to proof-theoretic
analysis based on the notion of graded provability algebra, i.e., a theory's Linden-
baum algebra augmented with provability operators. Unlike bare Lindenbaum
boolean algebras, which are pairwise isomorphic for all reasonable theories, the
structure can capture some proof-theoretical properties of the theory. In [1], the
method is applied to Peano arithmetic and it is shown how an ordinal notation
system up to ε0 can be canonically recovered from the corresponding algebra.
Terms of the graded provability algebra are put in correspondence with formulas
of the polymodal provability logic GLP.

We notice that the principal results of [1] and [2] (including ordinal analysis
of PA, characterization of PA Πn-consequences in terms of iterated re�ection
schemes, and independence of PA for the combinatorial Worm Principle) only
rely on a special fragment of GLP. Namely, it is su�cient to consider equiv-
alences of formulas built from the truth constant >, propositional variables,
conjunction and modalities 〈n〉 for all n < ω. We call such polymodal formulas
positive. There arises a natural question how to axiomatize the fragment of
GLP in this positive language.

For the positive fragment, we suggest two calculi: sequential Gentzen-style
GLPG

+ and equational GLPe
+ (see the tables below). We establish the following

conservation theorems.

Theorem 1. Let Γ and ∆ be �nite sets of positive formulas. Then GLP `∧
Γ →

∨
∆ i� GLPG

+ ` Γ ⇒ ∆.

Theorem 2. For any positive formulas φ and ψ, GLP ` φ ↔ ψ i� GLPe
+ `

φ = ψ.

The restriction of GLPe
+ calculus to the language with one modality yields an

axiomatization for the positive fragments of both K4 and GL. Thus, curiously,
we obtain that the positive fragments of K4 and GL are the same.

For positive formulas, we generalize the usual interpretation of polymodal
formulas so that a set of arithmetical sentences, rather than a single sentence is
assigned to a modal formula. These sets of sentences have to be arithmetically
de�nable, i.e., we consider each with an arithmetical formula de�ning the set of
Gödel numbers for those sentences.
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Let us �x a sound arithmetical theory S. Assign a set p∗ of arithmetical
sentences with its arithmetical de�nition to each propositional variable p. Then
de�ne >∗ = ∅, (φ ∧ ψ)∗ = φ∗ ∪ ψ∗, and (〈n〉φ)∗ = {RFNΠn+1(S + φ∗)} along-
side with their natural arithmetical de�nitions. Combining the arithmetical
completeness theorem for GLP [4] with our conservation result, we obtain

Corollary 3. For any positive formulas φ and ψ, GLPe
+ ` φ = ψ i� φ∗ and ψ∗

are equivalent over S.

This interpretation has an advantage for studying provability algebras of
theories stronger than PA. For example, the full re�ection scheme RFN(S) is
not �nitely axiomatizable. Therefore a modal formula representing the scheme
cannot be interpreted as one arithmetical formula. However, it can be treated
within positive modal logic.

Let us introduce a new modality: (〈ω〉φ)∗ = RFN(S + φ∗). The axioms of
GLPe

+ are also meaningful for the extended language. We obtain the following
arithmetical completeness theorem.

Theorem 4. For any positive formulas φ and ψ in the language enriched with

〈ω〉, GLPe
+ ` φ = ψ i� φ∗ and ψ∗ are equivalent over S.

We plan to extend this technique to develop provability algebras for systems
of predicative analysis.

System GLPe
+

1. The usual rules of equational logic and identities for ∧;

2. 〈n〉(φ ∧ ψ) 6 〈n〉φ ∧ 〈n〉ψ; (By φ 6 ψ, denote φ ∧ ψ = φ)

3. 〈n〉〈n〉φ 6 〈n〉φ;

4. 〈n〉φ ∧ 〈m〉ψ = 〈n〉(φ ∧ 〈m〉ψ), where m < n;

5. 〈n〉φ 6 〈m〉φ, where m < n.

System GLPG
+

(Suppose Γ = {γi}. Then denote by ♦>nΓ any set {〈ki〉γi}, where ki > n for all i.

De�ne ♦<nΓ similarly and put 〈n〉Γ = {〈n〉γi}.)

The axioms are φ ⇒ φ and ⇒ >. The rules are weakening, cut, left and right

conjunction introductions, as well as the following two:

Γ, 〈m〉φ ⇒ ∆
(M)

Γ, 〈n〉φ ⇒ ∆
Σ, φ ⇒ Π,♦>nΘ,Θ, 〈n〉φ

(J)
Σ, 〈n〉φ ⇒ Π, 〈n〉Θ

where m < n, Σ = ♦<nΓ and Π = ♦<n∆ for some sets Γ and ∆.

References

[1] L. Beklemishev. Provability algebras and proof-theoretic ordinals, I. An-
nals of Pure and Applied Logic, 128:103�123, 2004.
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Cut elimination, substitution and normalisation

Abstract
PCC Bern, June 2010

Roy Dyckhoff
St Andrews University
rd@cs.st-andrews.ac.uk

It is well-known that, in intuitionistic logic, sequent calculus derivations (with or without
Cut) are recipes for constructing natural deductions, and that, by the Curry-Howard correspon-
dence, with care about variable discharge conventions, one can represent both the former and
the latter using terms of a typed lambda calculus. Natural deduction terms may, by various
standard reductions, be normalised; there are however many sequent calculi S, reduction sys-
tems R for S and reduction strategies for R, including but not limited to those given by Gentzen.
We present a complete single-succedent sequent calculus (essentially the Ketonen-Kleene sys-
tem G3ip from [4], including all the usual zero-order connectives, including disjunction and
absurdity) and a (we believe) novel reduction system for eliminating cuts, with the virtues that
(a) it is strongly normalising (b) it is confluent and (c) allows a surjective homomorphism (as
described below) from cut-elimination to normalisation: in other words, a homomorphism from
G3ip derivations to NJ natural deductions with the property that each cut reduction step
translates into a sequence of zero or more reductions in the natural deduction setting.

Kreisel asked [1] about the relation between cut-elimination and normalisation. Zucker [6],
using Gentzen’s cut-elimination steps and an innermost-first strategy, gave a partial answer,
but had difficulties with disjunction, including a failure of strong normalisation. Pottinger [3]
gave a positive answer covering disjunction; but, as pointed out by Urban [5], the notion of
normality for the sequent calculus proof terms does not coincide with cut-freedom, and this
renders Pottinger’s answer (we believe) defective, despite Pottinger’s claim that the difference
is “trivial”. (Moreover, the closest system in [3] to a conventional sequent calculus is his HL;
but, although it is complete for derivability of formulae, it does not admit Contraction; it does
not derive, for example, the sequent p ⇒ p ∧ p. Nor does it admit Weakening or derive the
sequent p ∧ p ⇒ p ∧ p. There is a section explaining what one might do if contraction is added
as a primitive rule, with no explanation of how the cut-reduction rules might change—one is
reminded of Gentzen’s difficulties with Contraction and his avoidance thereof with his Mix rule.)
The calculi we present are designed to avoid these difficulties.

The sequent calculus typing rules are rather standard (various freshness constraints are
omitted):
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x : ⊥,Γ ⇒ X(x) : θ L⊥ x : φ,Γ ⇒ x : φ Ax

z : φ⊃ψ,Γ ⇒ L : φ y : ψ, z : φ⊃ψ,Γ ⇒ L′ : θ
z : φ⊃ψ,Γ ⇒ A(z, L, y.L′) : θ

L⊃ x : φ,Γ ⇒ L : ψ
Γ ⇒ λx.L : φ⊃ψ R⊃

x : φi, z : φ1 ∧ φ2,Γ ⇒ L : θ
z : φ1 ∧ φ2,Γ ⇒ Ei(z, x.L) : θ

L∧i
Γ ⇒ L : φ Γ ⇒ L′ : ψ

Γ ⇒ (L,L′) : φ ∧ ψ R∧

x : φ, z : φ ∨ ψ,Γ ⇒ L : θ x′ : ψ, z : φ ∨ ψ,Γ ⇒ L′ : θ
z : φ ∨ ψ,Γ ⇒ W (z, x.L, x′.L′) : θ

L∨
Γ ⇒ L : φi

Γ ⇒ ini(L) : φ1 ∨ φ2
R∨i

Γ ⇒ L : φ x : φ,Γ ⇒ L′ : θ
Γ ⇒ C(L, x.L′) : θ

Cut

and we give here one, and for lack of space just one, of the 32 cut-reduction rules:

C(W (w,w1.L1, w2.L2), x.W (x, x′.L′, x′′.L′′))  W (w,w1.C(L1, x.W (x, x′.C(W (w,w1.L1, w2.L2), x.L′),
x′′.C(W (w,w1.L1, w2.L2), x.L′′))),

w2.C(L2, x.W (x, x′.C(W (w,w1.L1, w2.L2), x.L′),
x′′.C(W (w,w1.L1, w2.L2), x.L′′))))

The subject reduction property is routine. Strong normalisation is proved using a lexico-
graphic path ordering. The system of cut-reduction rules is a left-linear orthogonal pattern-
rewrite system, without critical pairs; by the results of [2], confluence is immediate.

Thanks are due to Peter Chapman, Jacob Howe, Stéphane Lengrand and Christian Urban
for helpful comments and (to the last of these) for a copy of [5] prior to its publication, albeit
many years after its presentation in Rio. Chapman’s formalisation in Nominal Isabelle of the
results (along lines started by Urban) was most helpful in identifying some minor errors.

References

[1] Georg Kreisel. A Survey of Proof Theory II, Proceedings of Second Scandinavian Logic Symposium,
pp 109–170, 1971.

[2] Richard Mayr and Tobias Nipkow, Higher-Order Rewrite Systems and their Confluence, Theoretical
Computer Science 192, pp 3–29, 1998.

[3] Garrel Pottinger. Normalisation as a homomorphic image of cut-elimination, Annals of Mathemat-
ical Logic 12, pp 323–357, 1977.

[4] Anne Troelstra and Helmut Schwichtenberg. Basic Proof Theory, 2nd ed, Cambridge, 2000.

[5] Christian Urban. Revisiting Zucker’s work on the correspondence between cut-elimination and nor-
malisation, Proceedings of Conference on Natural Deduction 2001, Rio de Janeiro, (eds: Edward
Hermann Haeusler, Luiz Carlos Pereira and Valeria de Paiva), Advances in Natural Deduction,
Kluwer 2010 (to appear), 21 pp.

[6] Jeff Zucker. The correspondence between cut-elimination and normalisation, Annals of Mathematical
Logic 7, pp 1–112, 1974. 2000.

2



Normalisation by Interaction and
Computational Interpretations

Nicolas Guenot
Laboratoire d’Informatique (LIX), École Polytechnique

rue de Saclay, 91128 Palaiseau cedex, France
nguenot@lix.polytechnique.fr

We will present a work in progress aiming at the definition of normalisation
procedures for proof systems using the deep inference methodology, based only
on permutations and interaction of rules instances, and establishing a framework
for investigations into the extension of the Curry-Howard correspondence to the
calculus of structures [Gug07]. The starting point is a system for purely implicative
intuitionistic linear logic, for which we provide a normalisation result, that can be
used in a fine-grain analysis of β-reduction in the linear λ-calculus.

We have devised for this system a new technique for proving cut elimination,
different from the usual procedures in deep inference, often based on the splitting
lemma, involving complex transformations of proofs. It is closer to the substitution
technique [Brü03], which could not be used here because it relies on a non-linear
setting, just as the proof based on atomic flows [GG08]. However, the basic idea is
the same: as it is done in natural deduction, we eliminate detours until no needless
cut remains, as can be illustrated using atomic flows:

ā

a

a

−→
a

This procedure is purely internal to the syntax of the calculus of structures, and can
be implemented in a modular way, by picking any cut, reducing it to the atomic
form, and then eliminate it by interaction with a matching identity. Moreover, it
works on open derivations so that cut elimination is a corollary — while other
systems in an intuitionistic setting, e.g. [Tiu06], have no such internal proof.

This work started as an attempt to reconcile the deep inference approach with
the traditional understanding of computation through cut elimination, based on the
idea that there exists a strong link between intuitionistic logic and the λ-calculus,
whatever formalism is used. It was accepted that the calculus of structures should
allow for an analysis at a lower level, since it generates interesting decompositions
on the logical side. As usual in this setting, a correspondence is obtained by typing
λ-terms using derivations of the logic. We provide a nested type system for a variant
of the purely linear λ-calculus, where typing rules are in one-to-one correpondence
with inference rules in our proof system.
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Our typing system is non-deterministic, so that it requires to choose a strategy,
which has an interesting relation to evaluation strategies in the λ-calculus. Indeed,
there are more proofs in the calculus of structures than in the sequent calculus, so
that each typing derivation can be seen as an execution trace of a λ-term, following
a strategy induced by the typing strategy. Then, the normalisation procedure can
be applied on typing derivations and thus to λ-terms, yielding an alternative set
of rewriting rules, that decomposes the usual β-reduction, using η-expansion and
β-reduction on variables:

x −→ λy.x y
(λx .x)y −→ y

along with a more complex rule, that can be summarised by simplifying it into its
shallow variant, moving virtual redexes out to make them explicit:

(λx .x M)(λy.N) −→ (λx .x)((λy.N)M)

This analysis of the λ-calculus through the glasses of deep inference provides an
interesting notion of nested execution, and is more intuitive than the only existing
algorithmic interpretation of a proof system in the calculus of structures [BM08],
which induces a very abstract view of computation. It could also yield interesting
insights on evaluation strategies for the λ-calculus.

Finally, we will discuss the extension of this work to larger logics, and classical
intuitionistic logic in the first place. The normalisation by interaction technique
seems quite general, and could apply in many cases if we overcome the problem of
handling duplications in logics equipped with a form of contraction.

References
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via atomic flows. Logical Methods in Computer Science, 4(1):1–36, 2008.
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Breaking Paths in Atomic Flows for Classical Logic

Alessio Guglielmi
INRIA Nancy – Grand Est, LORIA and

University of Bath
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Tom Gundersen
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Lutz Straßburger
INRIA Saclay – Île-de-France and

École Polytechnique, LIX

lutz AT lix.polytechnique.fr

Abstract

This work belongs to a wider effort aimed at eliminating syntactic bureaucracy from proof systems. We present a novel
cut elimination procedure for classical propositional logic. It is based on the recently introducedatomic flows: they are
purely graphical devices that abstract away from much of thetypical bureaucracy of proofs. We make crucial use of thepath
breaker, an atomic-flow construction that avoids some nasty termination problems, and that can be used in any proof system
with sufficient symmetry.

The investigation of the cut elimination property of logical systems is a central topic in current proof theory, and, as
pointed out by Girard [Gir87b], thelack of modularityis one of its main technical limitations. More precisely, the argument
for showing cut elimination is usually based on heavy syntactic arguments and a tedious case analysis depending on the shape
of the inference rules. A slight change in design makes the whole proof break down, and if one wishes to add some rules,
one usually has to redo the whole cut elimination proof from scratch.

This work suggests that the source of this “lack of modularity” might not be in the nature of the cut elimination property,
but in the method that is used for proving it. We present here acut elimination procedure for classical propositional logic that
is independent from the shape of the logical rules. It is not based on the permutation of inference rules but on the manipulation
of atomic flows[GG08].

Atomic flows capture the structural skeleton of a proof and ignore the logical content. Due to their “graphical nature”,
atomic flows can be seen as relatives of Girard’sproof nets[Gir87a, DR89] and Buss’logical flow graphs[Bus91]. Proof nets
have originally been proposed only for linear logic, but there have been various proposals for proof nets for classical logic
with different purpose and design, e.g., by Laurent [Lau99], by Robinson [Rob03] and by Lamarche and Straßburger [LS05].
Logical flow graphs have only been defined for classical logic, but their definition for linear logic would be literally thesame.
In fact, for the multiplicative fragment of linear logic (MLL) the two notions essentially coincide. This, however, is no longer
the case for classical logic, which can be obtained from MLL by adding the rules for contraction and weakening. Atomic
flows can be seen as a development that takes the best out of both worlds. Like proof nets they simplify proof normalization
because they avoid unnecessary bureaucracy due to trivial rule permutations, and like logical flow graphs they precisely
capture the information flow inside the proof. In this respect, they are very similar to the variant of proof nets discussed
in [Str09]. Since atomic flows contain for each atom occurrence every contraction and weakening that is applied to it, they
can be used for controlling the size of proofs, and thus can also play a role in proof complexity (see [BGGP10]).

Atomic flows are also very similar tostring diagramsfor representing morphisms in monoidal categories (see [Sel09] for
a survey). However, in (classical) logic one usually finds two dual monoidal structures and not just one. Thus, atomic flows
are, in spirit, more closely related tocoherence graphsin monoidal closed categories [KM71]. Nonetheless, it should be
stressed that atomic flows do not form a monoidal closed category. The following two flows arenot the same

and (1)

although, during the normalization process, we wish to reduce the atomic flow on the left (a cut connected to an identity)
to the atomic flow on the right (a single edge). In linear logicone can simply "pull the edges" and directly reduce the left
atomic flow in (1) to the right one, whereas in classical logicthis step might involve duplication of large parts of the proof.
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The main insight coming from atomic flows is that this duplication and the whole normalization process is independent from
the logical content of the proof and independent from the design of the logical rules in use, as is discussed in [GG08].

This work is structured in two parts:� We define local transformations on atomic flows that are similar to the reduction steps in linear logic proof nets or in
interaction nets [Laf90], and that have the goal to normalize the proof. However, due to the presence of contractions,
the atomic flows can contain cycles that prevent these local reductions from terminating. To solve this problem, we
define a global transformation on the atomic flows, called thepath breaker, that treats the proof as a black box; it simply
duplicates the whole proof and combines the copies. Note that this is conceptually different from the cut elimination in
standard proof nets [Gir87a, Lau99, Rob03], where cut reduction steps are mixed local/global: A single step involves
a local cut reduction and some duplication of a part of a proof(a box or an empire). In our case the procedure consists
of two phases, a purely global one followed by a purely local one. However it remains an important research objective
to investigate the computational meaning of these reductions.� We show how formal proofs in a deductive system are mapped to atomic flows, and how the operations on atomic
flows that we defined before can be lifted to the deductive system, and thus can be used to provide a cut elimination
procedure. This can be done because the symmetry of the deductive system we use allows to reduce the cut to its
atomic form, in the same way as it is done for the identity rulein traditional systems.
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Proof Nets for Free Sum-Product Categories

Willem Heijltjes

LFCS
University of Edinburgh

Extended abstract

The categoryΣΠ(C) is the free completion with finite products and coproducts ofa base categoryC.1 Such free
sum-product completions are the discrete, finite version ofthe bicompletions described by Joyal in [4], the free
completion with all limits and colimits.

Analogous to the lattice completion of a partial order, Joyal shows that the free bicompletion of a category is
completely characterised by four properties, one of which is softness. A particular consequence of softness is
that any map from a limit to a colimit must factor through one of the limit’s projections or one of the colimit’s
injections. Since a map into a limit can be deconstructed as acollection of maps, one into each component (and
similarly for a map out of a colimit), Joyal’s characterisation is akin to a cut-elimination result: the maps in a free
bicompletion have representations innormal form.

For sum-product categories the connection with cut-elimination has been made explicit by Cockett and Seely in
[2]. In that paper they show that a sequent calculus similar to that in Figure 1 has cut-elimination.

A
a∈C
−→ B

0
?

−→ X

X
!

−→ 1

X
f0

−→ Y0 X
f1

−→ Y1

X
〈f0,f1〉
−→ Y0 × Y1

Xi
f

−→ Y

X0 × X1
f◦πi

−→ Y

X0
f0

−→ Y X1
f1

−→ Y

X0 + X1
[f0,f1]
−→ Y

X
f

−→ Yi

X
ιi◦f
−→ Y0 + Y1

X
f

−→ Y Y
g

−→ Z

X
g◦f
−→ Z

cut

Figure 1. A sequent calculus for ΣΠ(C)-maps

Although the calculus in Figure 1 provides normal forms for term representations of maps, these are not gener-
ally canonical. Rather, a categorical map is represented by a class of terms, related to one another by a range of
permutations induced by the categorical laws. But since theset of normal terms for maps in a given hom-set is
finite—and checking whether two terms are permutations of each other is simple—term equality is at least decid-
able. A recent paper [1] by Cockett and Santocanale shows that the problem of term equality inΣΠ-categories is
also tractable.

One reason why this result is far from obvious is the unpredictable behaviour of the units, the initial object0 and
the terminal object1. This is not surprising: characterising the units is notoriously difficult also in linear logic, of
which sum-product logic is a fragment—that of sequentsX ⊢ Y whereX andY are strictly additive formulae.

1For an introduction to products and coproducts see [5]
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The project that I will talk about, which is ongoing research, uses an elegant notion ofproof nets to approach the
problem of term equality in sum-product categories. These nets can be seen as proof nets for the sequent calculus
in Figure 1. Specifically, in the case without units these proof nets are a fragment of the MALL-nets of Hughes
and Van Glabbeek [3], and provide canonical representations of categorical maps.

For the full sum-product logic these nets are not canonical.However, switching to proof nets provides a clearer
picture of the difficulties surrounding the units, by factoring out the permutations that do not involve them. Al-
though the remaining equational theory is by no means trivial, current investigations suggest that it can be decided
by a remarkably simple algorithm. This suggestion is backedby extensive testing on an implementation of the
algorithm, but unfortunately a conclusive proof is still forthcoming.

The proof nets in this project are interesting, firstly, because they clarify many of the difficulties and peculiarities
encountered in the logic of sum-product categories. Secondly, they provide an interesting take on the problems
posed by the additive units of linear logic, and may well inspire new ways of dealing with them.
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Subrecursive Degrees and Statements

Independent of PA

Lars Kristiansen1

(joint work with Jan-Christoph Schlage-Puchta2 and Andreas Weiermann2)

1 Department of Mathematics, University of Oslo
2 Department of Mathematics, Gent University

An honest function is a monotone increasing function with a Kalmar ele-
mentary graph. We study the structure of honest elementary degrees, that is,
the degree structure induced on the honest functions by the reducibility relation
“being Kalmar elementary in”.

Theorem 1 (The Growth Theorem). An honest function f is elementary

in an honest function g iff there exists a fixed number k such that f(x) ≤ g
k(x).

Theorem 1 makes it possible to abandon classical computability-theoretic
constructions (involving enumerations, diagonalisation, etc.) and investigate the
structure of elementary honest degrees by asymptotic analysis and methods of
number theoretic nature. The structure turns out to be a distributive lattice
with strong density properties. We have a jump operator and canonical degrees
0 < 0′

< 0′′
< . . .. Lown, highn and intermediate degrees exist with respect to

these canonical degrees. For more on elementary honest degrees, see [1] and [2].
Our methods and proof techniques can be generalised to work for weaker

subrecursive reducibility relations, including the relation ≤PA where f ≤PA g iff
f is provably total in the first order theory PA + Tot(g). The degree structure
induced on the honest ordinal recursive functions by ≤PA is expected to be very
similar to the structure of elementary honest degrees. This entails a number of
interesting independence results for PA, e.g. the next theorem.

Theorem 2. There exist two computable functions f0 and f1 not provable total

in PA such that any function provable total in both PA + Tot(f0) and PA +
Tot(f1) also will be provable total in PA.
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A Note on the Abnormality of Realizations of S4LP
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Justification logics [Art08] are essentially refined analogs of modal epistemic logics. Whereas a
modal epistemic logic uses the formula �F to indicate that F is known to be true, a justification
logic uses t :F instead, where t is a term that describes a ‘justification’ or proof of F . The structure
of justification terms t depends on which modal logic needs to be represented in this explicit
format. This structure notwithstanding, the formal correspondence between a modal logic ML and
its justification counterpart JL is given by a realization theorem. It has two directions: first, each
theorem of ML can be turned into a theorem of JL by realizing all occurrences of the modality �
with appropriate justification terms; second and vice versa, if all terms in a theorem of JL are
replaced with �, a process called the forgetful projection, then the resulting modal formula is
provable in ML.

Such correspondences have been established for many normal modal logics between K and S5
(see [Art08]). The first such result was established by Artemov [Art95, Art01] between the modal
logic S4 and the so-called Logic of Proofs LP. The idea behind the realization process is that �F is
interpreted as “there exists a proof of F .” Under this interpretation, each modal formula becomes
a first-order statement with quantifiers over proofs. The realization theorem for a particular jus-
tification logic then states that the logic’s operations on terms are rich enough to represent all
Skolem functions necessary for Skolemizing valid modal statements. It is, therefore, natural to add
a restriction that different negative occurrences of �, which are interpreted as universal quantifiers
over proofs, be realized by distinct justification variables since the Skolemization process replaces
such quantifiers by distinct Skolem variables. This additional property of realization is called nor-
mality, and all justification logics that enjoy a realization theorem do enjoy it in the strong sense
that every modal theorem can be realized normally.

In a series of papers culminating in [AN05], Artemov and Nogina developed a logic S4LP
that combines modal representation of knowledge as in S4 with justification terms of LP. The
connection between implicit modal knowability and explicit evidence terms in this logic is given
by the connection principle t : F → �F that essentially states that “whatever is known for a
reason t must be known.”

In their very first paper on the subject, Artemov and Nogina posed the following question
about the realization theorem for S4LP: Whether [S4LP] enjoys the realization property: given a
derivation D in [S4LP] [...] one could find a realization r of all occurrences of � in D [...] such
that the resulting formula F r is derivable in [LP]? 1 (see [AN04, Problem 2]2).

However, there are reasons to doubt whether this formulation is the right one. Suppose, we want
to realize a theorem t :�F → s :�G. The formulation above suggests that the realization must be of
the form t : t′ :F r → s :s′ :Gr for some terms t′ and s′ (or t :x :F r → s :s′ :Gr for some justification
variable x and some term s′ if the normality condition is imposed). This, however, changes the
meaning of terms t and s: according to the connection principle, the statements justified by them
become stronger; as a result, the assumption is weakened while the conclusion is simultaneously
strengthened. In this note, we formalize this objection by proving that the realization theorem
for S4LP does not hold if the requirement of normality is imposed.

? Supported by Swiss National Science Foundation grant 200021–117699.
1 The original problem is more precise in that it is formulated for particular constant specifications.

However, the phenomenon we are going to describe is completely independent of constant specifications,
hence, we omit them from both the formulation of the problem and from the following discussion. In
fact, our result holds for an arbitrary constant specification.

2 The logic was called LPS4 there.
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Theorem 1. Theorem z :¬�(P ∨Q) → z :¬�(P ∨Q) ∧ ¬�P of S4LP, where z is a justification
variable, P and Q are propositional letters, does not have a normal realization in LP.

This example of a theorem without a normal realization is inspired by work of Ghari [Gha09]. The
proof of the theorem is based on the semantics developed by Mkrtychev [Mkr97] for LP.

Definition 2. An M-model M is a pair (E , V ), where V : Prop → {True,False} is a valuation
function and E : Tm → 2Fm is an evidence function that satisfies several closure conditions that
can be found in [Mkr97] and are omitted here for space considerations. Truth for propositional
letters and for Boolean connectives is defined in the standard way; M 
 t : F iff M 
 F and
F ∈ E(t).

Theorem 3 ([Mkr97]). A justification formula is a theorem of LP iff it is valid in all M-models.

Instead of giving the full definition of closure conditions, we will use the following lemma that
easily follows from them.

Lemma 4. For any requirements Fi ∈ E(ti), i = 1, . . . , n, on the evidence function, there exists
a unique minimal function that satisfies the requirements. Moreover, for this minimal function
E(x) = {Fi |x = ti} for any justification variable x.

Proof (of Theorem 1.). The normality condition requires both negative occurrences of � in the
given theorem of S4LP to be realized by distinct justification variables, say x and y, whereas the
only positive � can be realized by an arbitrary term t:

z :¬t : (P ∨Q) → z :¬x : (P ∨Q) ∧ ¬y :P . (1)

It is easy to refute (1) if t 6= x. Indeed, let V (P ) = V (Q) = False and let E be the minimal
evidence function such that ¬t : (P ∨ Q) ∈ E(z). Then, M 1 t : (P ∨ Q) simply because both P
and Q are false. Therefore, the antecedent of the implication holds. However, for t 6= x, the first
conjunct in the consequent is false since, by Lemma 4, ¬x : (P ∨Q) /∈ E(z).

Thus, t = x, and the only normal realization possible is z :¬x : (P ∨Q) → z :¬x : (P ∨Q)∧¬y :P .
Here is a model that refutes it. Let V (P ) = True and E be the minimal evidence function such
that P ∈ E(y) and ¬x : (P ∨Q) ∈ E(z). Then, by Lemma 4, P ∨Q /∈ E(x), hence, M 1 x : (P ∨Q),
which is sufficient to make the antecedent true. On the other hand, the second conjunct of the
consequent is clearly false. ut

Whether the realization theorem holds for S4LP without the normality condition remains an
open question.
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A framework for expressing sequent proofs

Richard McKinley

IAM, Universität Bern

Abstract. The Curry-Howard isomorphism is most fully developed as a connection between typed
functional programs and proofs in natural deduction. What computational interpretations exist for se-
quent systems are, in most cases, for restricted sequent systems with a distinguished conclusion/premise
(for example, a stoup). The programs corresponding to proofs in these systems are functional programs
together with some additional features, evaluated in some abstract machine. The work I will discuss
is part of a project to give computational interpretations as processes to genuinely multiple-succedent
sequent proofs. We present a system of untyped higher-order sequent-style derivations (the Computa-
tional Sequent Calculus), in which some familiar and not-so-familiar sequent systems can be expressed
as type systems; among them Herbelin’s λ̄ calculus, Linear Logic, and a multiple-conclusioned calculus
for classical logic.



Monotone schemes within FPSPACE

Isabel Oitavem

(joint work with Amir Ben-Amram and Bruno Loff)

Abstract

An algorithm working in polynomial space is allowed to reuse space, and if
we look at known algorithms for PSPACE-complete problems, they always
seem to rely heavily on this possibility. Our intuition then indicates that
this is a crucial point concerning the problem PTIME versus PSPACE. A
rigorous formulation of this intuition is the known fact that a “write-once”
Turing machine, given polynomial space, decides exactly PTIME. A write-
once machine is one which is not allowed to erase (or rewrite) cells which
have been previously written on.

Since the write-once restriction can, in some sense, be seen as a mono-
tonicity constraint on the contents of the storage, this suggests investigat-
ing how sensitive characterisations of PSPACE are to “monotonicity con-
straints”.

One explores, in particular, the interplay between recursion and iter-
ation. We take as starting point a recursion-theoretic characterisation of
FPSPACE, and we show that substituting predicative primitive iteration
for predicative primitive recursion also leads to FPSPACE

We show that imposing a monotonicity constraint on the above recursion
and iteration operators leads, in the case of primitive iteration, to FPTIME,
and, in the case of primitive recursion, to the polynomial hierarchy FPH.
We form a hierarchy based on the nesting-level of the restricted primitive
recursion operator, and this provides a new implicit characterisation of all
levels of the polynomial hierarchy.



Inversion of Logical Rules by Definitional Reflection
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The inversion principle expresses a relationship between left and right introduction rules for logical
constants. Hallnäs & Schroeder-Heister [2] have been presenting the principle of definitional reflection
as ameans of capturing the idea embodied in the inversion principle. Using the principle of definitional
reflection, we show for minimal propositional logic that the left introduction rules are admissible
when the right introduction rules are given as the definition of logical constants, and vice versa (cf.
de Campos Sanz & Piecha [1]).
Following Schroeder-Heister [3], the inversion principle is based on the idea that if we have certain

defining rules α⇐ â11 , . . . , â
1
n1
, . . . , α⇐ âk1 , . . . , â

k
nk
for some atom α, then a rule ã⇐α with premiss α

and conclusion ã is justified if ã is consequence of each defining conditionΓi ofα, whereΓi = â i1, . . . , â
i
ni ;

that is, if ã is derivable from each Γi , then ã is derivable from α.
This principle can be stated by means of a sequent calculus inference (cf. Hallnäs & Schroeder-

Heister [2]) and is then called the principle of definitional reflection (D`):

∆1,Γ1 ` ã . . . ∆k ,Γk ` ã
(D`)

∆1, . . . ,∆k , α ` ã
(definitional reflection)

where for the set D(α) of the defining conditions of α and for substitutions ó of vaiables by terms
the condition D(αó) ⊆ (D(α))ó has to be obeyed. It has the form of a left introduction rule for
atoms α defined by definitional clauses with bodies Γ1, . . . ,Γk , and it is thus a way of stating the
inversion principle for definitions. It complements the principle of definitional closure (`D) for the
corresponding right introduction of defined atoms.
When both principles are added as inference principles for atoms to a given logical system L , we

obtain an extended systemL (D), which is a definitional logic based on definition D. The definitional
clauses are then the basis for sequent style right and left introduction inferences. A natural candidate
for an underlying systemL consists of the structural inferences identity (Id), thinning (Thin) and cut
(Cut):

(Id)
A`A

∆`A
(Thin)

B,∆`A
∆`C C,Σ`A

(Cut)
∆,Σ`A

Concerning a given ruleR and a given definitionD, ruleR is admissible inD, if for everyα the impli-
cation “if 
D+R α, then 
D α” holds. The principles of definitional reflection and definitional closure
can be interpreted as principles for admissibility (cf. Schroeder-Heister [3]) if sequents â1, . . . , ân `α
are interpreted as stating the admissibility of rules α⇐ â1, . . . , ân relative to a given definition D. For
the principle of definitional reflection (D`) consider the rule ã⇐α,∆1, . . . ,∆k which corresponds
to the conclusion of definitional reflection. Then α was derived by a rule α⇐ â i1, . . . , â

i
ni , for some

i , in the last step and â i1, . . . , â
i
ni were derived in previous steps (likewise for ∆1, . . . ,∆k). Thus, if

the rules ã⇐ â i1, . . . , â
i
ni ,∆i (corresponding to the premisses of definitional reflection) are admissible,

then the rule corresponding to the conclusion of definitional reflection is admissible as well since all
consequences ã following from â i1, . . . , â

i
ni ,∆i should be consequences of α.

Sequent calculus rules can be understood as definitions for logical constants. For the right and left
introduction rules we use the following representation for object language sequents s, called o-sequents:
Ω5
A
(“A follows from Ω”). The o-sequents are to be distinguished from the sequents in the framework

L (D), which are called f-sequents and are expressed with the turnstile ‘`’. Finite sets of o-sequents
are denoted by S. Our aim is to represent sequent style minimal propositional logic. This is why
o-sequents have exactly one formula at the bottom; it corresponds to the succedent of sequents. What
is written on top (corresponding to the antecedent of sequents) is either a (possibly empty) finite
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multiset of formulas or a comma-separated list of such sets, the comma representing multiset union.
The sequent symbol ‘5’ represents the relation of deductive consequence. Hence, the logical constants
will be defined in the context of deductive consequence.
The properties of the usual deductive consequence relation are captured in sequent calculus by the

inferences identity, thinning and cut. These inferences for o-sequents are combined in the axiom (Ax)
(which incorporates also (Id) and (Thin) for f-sequents) of the following frameworkF (D):

(Ax)

S,
Ψ15
A1
,
Ψ2, A15
A2

, . . . ,
Ψn, An−15

An

`
Ω,Ψ1,Ψ2, . . . ,Ψn5

An

S,
A5
A

` s

(CutId) S ` s

together with the principles of definitional reflection (D`) and definitional closure (`D). Instead of

(Cut) the inference rule (CutId) is used, which allows only for cuts on o-sequents of the form
A5
A
.

For the right introduction rules, that is, rules for the introduction of a logical constant in the bottom
of an o-sequent, we can derive f-sequents of the form S ` s representing the left introduction rules,
that is, rules for the introduction of a logical constant in the top of an o-sequent, inside the framework
F (D) by using the corresponding definitional reflections (cf. de Campos Sanz & Piecha [1]).
Definitional clauses can be given also for the left introduction rules. Then for each left introduction

rule the admissibility of the corresponding right introduction rule can be shown withinF (D). As an
example we show for the given definitional clauseD→ of left implication introduction the admissibility
of the right implication introduction rule by deriving the corresponding f-sequent in F (D→). The
definitional clause D→ for the left implication introduction rule and the corresponding definitional
reflection (D→ `) are as follows:

D→
Ω, A→B5

C
⇐
Ω5
A
,
Ω, B5
C

S,
Ω5
A
,
Ω, B5
C

` s

(D→ `)

S,
Ω, A→B5

C
` s

The derivation showing the admissibility of the right implication introduction rule is then:

(Ax)
Θ, A5
B

, 5
A
,

B5
A→B

`
Θ5

A→B
(D→ `)

Θ, A5
B

,
A→B5
A→B

`
Θ5

A→B
(CutId)

Θ, A5
B

`
Θ5

A→B
The logical constants of minimal propositional logic can be defined by right introduction rules

as well as by left introduction rules. If the right introduction rules are given as definitions, then the
left introduction rules are consequences of them in the sense of being admissible relative to the given
definitions, and if the left introduction rules are given as definitions, then the right introduction rules
are consequences of them in the same sense of being admissible.

References

[1] deCampos Sanz,W.&Piecha, T. (2009). Inversion byDefinitionalReflection and theAdmissibility
of Logical Rules. The Review of Symbolic Logic, 2, 550–569.

[2] Hallnäs, L. & Schroeder-Heister, P. (1990/91). A Proof-Theoretic Approach to Logic Program-
ming. I. Clauses as Rules. Journal of Logic and Computation, 1, 261–283 (1990); II. Programs as
Definitions. Ibid., 635–660 (1991).

[3] Schroeder-Heister, P. (2007). Generalized Definitional Reflection and the Inversion Principle.
Logica Universalis, 1, 355–376.

2



Strong normalization and confluence for
reflexive combinatory logic

Daniyar S. Shamkanov
daniyar.shamkanov@gmail.com

The story of reflexive combinatory logic RCL [2, 3] started with the
invention of proof carrying formulas and the logic of proofs LP [1]. Proof
carrying formulas seemingly bring into a system of types the possibility to
operate simultaneously with objects of different abstraction level: functions,
high level programs, low level codes, etc. In addition, the internalization
property of LP and Hurry-Howard isomorphism provoked the idea to design
a typed system capable to represent its own derivations by its own typed
terms. RCL was introduced to meet these expectations.

Reflexive combinatory logic RCL extends typed combinatory logic CL by
a new type constuctor t : F with the intended interpretation ’t has type F ’.
Any type of the form t : F has a canonical element !t which represents the
high level description of t or the term t supplied with additional metadata(for
example, this can be data about types for all subterms of t). Futhermore,
RCL contains new combinators:

du:F→F , ou:(F→G)→(v:F→uv:G), cu:F→!u:u:F

The combinator du:F→F maps the high level description of an object u into
u itself. The combinator ou:(F→G)→(v:F→uv:G) implements application on high
level descriptions(or terms with metadata). cu:F→!u:u:F maps the description
into the higher description.

Reflexive combinatory logic was designed as a system capable to iterate
the type assignment but its operational aspects remained to be clarified.
Consider the following reduction rules:

kuv 7→ u, suvw 7→ (uw)(vw), d!u 7→ u, c!u 7→!!u, o(!u)(!v) 7→!(uv)
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The unrestricted application of the reduction rules may transform a well
formed expression into the illegal one, thereby we will use the simultaneous
contraction. The application of a reduction a 7→ b to an expression e will be
denoted by e[a 7→ b] and means simultaneous replacement of all occurrences
of a in e by b. This definition secures well formedness preservation under
the reductions for expressions without the combinator oF . To provide the
preservation for all expressions, V. N. Krupski proposed to extend RCL to
RCL+ with the following conditions:

- if oF is a combinator and a 7→ b is a reduction, then oF [a 7→b] is also a
combinator,

- if a 7→ b and c 7→ d are reductions and a is not graphically equal to c,
then a[c 7→ d] 7→ b[c 7→ d] is also a reduction.

Theorem 0.1. RCL+ has strong normalization and confluence properties.
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Abstract. Since the work of Cook, Reckhow, Kraj́ıcek, and Pudlák,
it is known that Frege systems with extension and Frege systems with
substitution p-simulate each other. Bruscoli and Guglielmi studied the
concepts of extension and substitution also in framework of deep infer-
ence. However, for showing the p-equivalence between the two, they rely
on the result by Kraj́ıcek and Pudlák. Furthermore, substitution in deep
inference is weaker than substitution in Frege systems. In this talk I will
give an alternative way of presenting extension and substitution in a
deep inference setting, and then use deep inference to give a new proof
of the Kraj́ıcek-Pudlák result on the p-equivalence of substitution and
extension for Frege systems.
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