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Abstract: Atomic systems, that is, sets of rules containing only atomic
formulas, play an important role in proof-theoretic notions of logical validity.
We consider a view of atomic systems as definitions that allows us to discuss
a proposal made by Prawitz (2016). The implementation of this view in
the base case of an inductive definition of validity leads to the problem that
derivability of atomic formulas in an atomic system does not coincide with the
validity of these formulas. This is due to the fact that, on the definitional view
of atomic systems, there are not just production rules, but both introduction
and elimination rules for atoms, which may even generate non-normalizable
atomic derivations. This shows that the way atomic systems are handled is a
fundamental issue of proof-theoretic semantics.
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1 Introduction

The proof-theoretic semantics of logical constants can be given by an induc-
tive definition of a notion of validity for logical formulas. Such an inductive
definition contains a semantic clause for each logical constant under consid-
eration. In its base case the validity of atomic formulas (in short: atoms) is
defined in terms of derivability of these formulas in atomic systems. Atomic
systems can be sets of atoms or sets of atomic rules, that is, sets of rules
that contain only atoms. Atomic rules can be production rules, but one may
also consider atomic rules that can discharge atomic assumptions, or even
generalize further and consider higher-level atomic rules that can discharge
assumed atomic rules (see Section 2).

1This work was supported by the French-German ANR-DFG project “Beyond Logic: Hypo-
thetical Reasoning in Philosophy of Science, Informatics, and Law”, DFG grant Schr 275/17-1.
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Atomic systems can be given different interpretations. One possibility is
to view atomic systems as knowledge bases that are invariant with respect to
extensions with further knowledge. Propositions that are valid for a given
knowledge base should remain valid if this knowledge base is extended.
Under this view, consequence with respect to atomic systems S can be
explained by making reference to such extensions of atomic systems: A
proposition B is a consequence of a proposition A with respect to an atomic
system S (in short: B is an S-consequence of A) if, and only if, for all
extensions S′ of S, it holds that whenever A is valid w.r.t. S′, then B is valid
w.r.t. S′. Thus S-consequence is monotone with respect to extensions of
atomic systems, if they are understood as knowledge bases.

Another interpretation of atomic systems is given by the definitional view,
where atomic systems are understood as definitions of certain atoms. Under
this view we do not expect monotonicity of S-consequence with respect to
extensions, since extending a definition will in general change the meaning of
the defined atoms. An explanation of S-consequence should then no longer
refer to extensions of atomic systems.

The definitional view of atomic systems is preferred by Prawitz (2016),
who sees an atomic system (which he calls a base) “as determining the mean-
ings of the atomic sentences” (ibid., p. 15). According to him, extensions
should not be considered in the definitional view: “To consider extensions of
the given base [. . .] is natural when a base is seen as representing a state of
knowledge, but is in conflict with the view adopted here that a base is to be
understood as giving the meanings of the atomic sentences.” (ibid., fn. 12,
p. 18).

We implement the definitional view by using a theory of definitions based
on the principle of definitional reflection2 (see Section 3). What we consider
to be essential for the definitional interpretation of atomic systems is that the
atomic rules for a specific atom completely determine its meaning. This does
not exclude partial or non-wellfounded definitions. Complete determination
of meaning consists rather in the fact that once we write down an atomic
system as a definition of certain atoms it is assumed that the atomic system
is complete in the sense that nothing else defines these atoms. Under this
assumption (which corresponds to the extremality condition in standard
inductive definitions) the principle of definitional reflection is justified, and a
certain kind of derivability relation for atoms is induced.

Based on this kind of derivability we then inductively define a proof-

2See Hallnäs (1991) and Schroeder-Heister (1993).
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theoretic notion of validity (see Section 4). The base case in this inductive
definition defines the validity of an atom with respect to an atomic system by
its derivability in that atomic system; inductive clauses for logical constants
are given and logical validity is defined. We then show that for atoms validity
does not coincide with derivability. This indicates that the definitional view
of atomic systems might not be the proper foundation for proof-theoretic
validity.

That the non-definitional view of atomic systems as knowledge bases,
where arbitrary extensions of atomic systems are considered, is problematic,
was already shown in Piecha, de Campos Sanz, and Schroeder-Heister (2015).
Together these results show that the role played by atomic systems in a
definition of validity for complex formulas is far from trivial. This problem
has been widely neglected in proof-theoretic semantics.

2 Atomic systems

We use letters a, b, c, . . . , a1, a2, . . . for atoms. The most simple kind of
atomic systems (besides sets of atoms) are sets of production rules for atoms.
Such a (first-level) atomic system S is a (possibly empty) set of atomic rules
of the form a1 . . . an

b

Such rules are also called first-level rules. The set of premisses {a1, . . . , an}
in a rule can be empty, in which case the rule is called an atomic axiom and
is of level 0.

In the context of proof-theoretic semantics, atomic systems of this kind
were considered, for example, by Prawitz (1971) and Dummett (1991). But
one does not have to stop at first-level atomic systems. We also consider
second-level and arbitrary higher-level atomic systems.

A second-level atomic system S is a (possibly empty) set of atomic rules
of the form

[Γ1]

a1 . . .

[Γn]

an
b

where the ai and b are atoms, and the Γi are finite sets of atoms. Such
a second-level rule expresses that from the premisses a1, . . . , an one may
conclude b, where b need no longer depend on assumptions belonging to Γi

on which the premisses ai might still depend, for each i; that is, assumptions
in Γi may be discharged. If the sets Γ1, . . . ,Γn are empty, then the rule is
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a first-level rule. If the set of premisses {a1, . . . , an} is empty in addition,
then the rule is an axiom.

We now further generalize second-level atomic systems to the higher-
level case by allowing for atomic rules that can discharge not only atoms but
also atomic rules as assumptions.3 We use the following linear notation to
introduce higher-level rules:

1. Every atom a is a rule of level 0.

2. If R1, . . . , Rn are rules (n ≥ 1), whose maximal level is `, and a is an
atom, then (R1, . . . , Rn B a) is a rule of level ` + 1.

In tree notation, higher-level rules have the form

[Γ1]

a1 . . .

[Γn]

an
b

where the ai and b are atoms, and the Γi are finite sets {Ri
1, . . . , R

i
k} of rules,

which may be empty. The set of premisses {a1, . . . , an} of such a rule can
again be empty, in which case the rule is an axiom. A higher-level atomic
system S is a (possibly empty) set of higher-level rules.

We now define the notion of derivation for higher-level atomic systems:

1. For a level-0 rule a,
a

a
is a derivation of a from {a}.

2. Now consider a level-(`+1) rule (Γ1Ba1), . . . , (ΓnBan)Bb. Suppose
that for each i (1 ≤ i ≤ n) a derivation

Σi ∪ Γi

Di

ai

of ai from Σi ∪ Γi is given. Then

Σ1

D1

a1 . . .

Σn

Dn

an (Γ1 B a1), . . . , (Γn B an)B b
b

is a derivation of b from Σ1∪. . .∪Σn∪{(Γ1Ba1), . . . , (ΓnBan)Bb}.
3Atomic rules of this kind are thus a special case of the higher-level rules in Schroeder-Heister

(1984), which are not restricted to atomic formulas.
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An atom b is derivable from Σ in a higher-level atomic system S, if there is
a derivation of b from Σ ∪ S. This is written as follows: Σ`S b.

We give an example derivation for the higher-level atomic system

S?


a

((aB b)B c)B d

((bB c)B f)B g

and the set of assumptions Σ = {e, ((d, e)B f)}:
〈a〉

a
[aB b]1

b
[bB c]2

c
1 〈((aB b)B c)B d〉
d

e
e (d, e)B f

f
2 〈((bB c)B f)B g〉
g

We use angle brackets 〈 〉 to indicate that a rule from the atomic system S?

is applied, and we use square brackets [ ] together with numerals to indicate
the discharge of assumed rules. In the left branch we start by introducing
the premiss a with the 0-level rule a ∈ S?. Assuming the rule a B b we
conclude b, and assuming the rule bB c we obtain c from b. We have thus
derived c under the assumption of rules aB b and bB c. An application of
((aB b)B c)B d ∈ S? yields d and discharges the first assumption aB b (as
indicated by the numeral 1). In the right branch we use the assumption e ∈ Σ
to get e. Now the rule (d, e)B f ∈ Σ can be applied to obtain f , which still
depends on the assumed rule bB c /∈ Σ. This assumption is discharged in the
last step (as indicated by the numeral 2) by applying ((bB c)B f)B g ∈ S?

to conclude g. The derivation thus shows Σ`S? g.

3 The definitional view of atomic systems

Atomic systems can be understood as inductive definitions4 of atomic formu-
las. Consider an atomic system

S


Γ1 B a

...
Γk B a

4See Aczel (1977).
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of k higher-level atomic rules. The atomic rules Γi B a can be read as
definitional clauses for the atom a with defining conditions Γi, for 1 ≤ i ≤ k,
and the whole set S of atomic rules can thus be read as a definition of the
atom a.

The defining conditions in definitional clauses can be empty. Clauses of
this form, which we write as ∅Ba, or simply as a, are read as the base clauses
in an inductive definition of a. Clauses of the form Γi B a, for non-empty Γi,
are the inductive clauses of such a definition.

A direct application of a definitional clause Γi B a consists in passing
from the defining condition Γi of a to the defined atom a:

Γi 〈Γi B a〉
a

We refer to rules of this kind as (steps of) definitional closure. They figure as
introduction rules for atoms.

Definitional closure alone is not characteristic for the definitional view of
atomic systems. What distinguishes the definitional view from other views
of atomic systems is the fact that in the case of a definition of an atom
a it is assumed in addition that nothing else defines a. This extremality
condition is usually not stated explicitly in a definition; however, by referring
to something as a definition one always tacitly assumes it.

The extremality condition justifies an additional reasoning principle for
definitions: For an atom a defined by

S


Γ1 B a

...
Γk B a

one can pass from a to an arbitrary atom c whenever c can be obtained from
each of the defining conditions Γi of a (for 1 ≤ i ≤ k). That is, in addition
to definitional closure one can argue by definitional reflection:

a
[Γ1]
c . . .

[Γk]
c

c

(In linear notation: (a, (Γ1B c), . . . , (ΓkB c))B c.) Note that this rule is not
given by any definitional clause in S (as it is the case for definitional closure);
it only becomes available by reflecting on S as a whole. Each instance of
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definitional reflection is an elimination rule for the atom a, where a is the
major premiss of the rule.

In general, the formula c need not even be atomic. If atomic systems are
used in the context of logical rules, or if additional rules are available that
allow to manipulate higher-level rules, then definitional reflection can take
the form

a
[Γ1]
C . . .

[Γk]
C

C

for arbitrary formulas C.5 Definitional reflection can also take this general
form if a is an undefined atom, that is, if S does not contain any clauses
of the form Γ B a. As the set of defining conditions of a is empty in this
case, one can infer any formula C from a by definitional reflection. In other
words, under the definitional view of atomic systems S a principle of ex falso
quodlibet

a`S C

is available if at least one atom a is not defined by S.
To simplify the introduction of the rules of definitional closure and defini-

tional reflection we considered atomic systems S with definitional clauses for
only one atom a. In general, however, a definition can be any finite atomic
system of the following form:

S


Γ1
1 B a1 Γn

1 B an
... . . . ...

Γ1
k1
B a1 Γn

kn
B an

Note that such a definition can in general not be divided into separate defi-
nitions for each ai, since the definitional clauses might be entangled in the
sense that ai occurs in the defining conditions of another atom aj . We also
note that such a definition need not have base clauses ∅B ai, and is therefore
not necessarily well-founded. Moreover, the restriction of definitions to
finite atomic systems guarantees that some atom, for example ⊥, is always
undefined, and that therefore ex falso quodlibet ⊥`S C is available for any
definition S.

As an example for definitional reasoning using definitional closure and
definitional reflection consider the following definition (the specific form of

5For rules of definitional reflection see Hallnäs (1991, 2006) and Schroeder-Heister (1993).
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the distinct sets of higher-level rules Γ, ∆ and Σ does not matter in what
follows):

S+


ΓB a ΓB b

∆B a ∆B b

ΣB b

The two applications of definitional closure

Γ 〈ΓB b〉
b

and ∆ 〈∆B b〉
b

show that b can be inferred from assumptions Γ as well as from assump-
tions ∆. Since Γ and ∆ are exactly the defining conditions of a this means
that b can be derived from each of the defining conditions of a. Hence
definitional reflection can be applied to a, discharging the assumptions Γ
and ∆:

a

[Γ]1
〈ΓB b〉

b

[∆]1
〈∆B b〉

b
1 (def. reflection on S+)

b

This derivation shows that a`S+ b holds. Note that this cannot be shown by
definitional closure alone; one has to use definitional reflection in addition.

Having explained the definitional view of atomic systems, we now discuss
some consequences of this view in proof-theoretic semantics.6

4 The definitional view in proof-theoretic semantics

Proof-theoretic semantics of logical constants can be given in different ways.
One approach, which is due to Prawitz (1971, 1973, 1974, 2014), is to
define a notion of validity for derivations that are constructed from arbitrary
inference rules.7 Alternatively one can define notions of proof-theoretic
validity for formulas.8 This approach, which we follow here, allows for a
perspicuous formulation of the definition of validity that still captures the
main ideas of the derivations-based approach.

6It should be mentioned that definitional reflection develops its full power, in particular from
the computational point of view (see Hallnäs & Schroeder-Heister, 1990, 1991), when clauses
for atoms with (free) variables are considered. We have here confined ourselves to atoms as
sentence letters without any internal structure, as this suffices to make our point.

7See Schroeder-Heister (2006, 2012a).
8See Kreisel (1961), Gabbay (1976, 1981), Piecha et al. (2015) and Piecha (2016).
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We consider a notion of validity for formulas A,B,C, . . . that are con-
structed from atoms with the logical constants→, ∨ and ∧. It is intended
to be a notion of validity for minimal propositional logic. In the following
we first inductively define the relation of S-validity (�S), which is a relation
relative to atomic systems S, by clauses (S1)-(S5). Logical validity, in short:
validity (�), is then defined in clause (S6) as S-validity for all atomic sys-
tems S; for Γ being a set of formulas we write �S Γ for {�S Ai | Ai ∈ Γ}:

(S1) �S a :⇐⇒ `S a,

(S2) �S A→B :⇐⇒ A �S B,

(S3) Γ �S A :⇐⇒ (�S Γ =⇒ �S A),

(S4) �S A ∨B :⇐⇒ �S A or �S B,

(S5) �S A ∧B :⇐⇒ �S A and �S B,

(S6) Γ � A :⇐⇒ ∀S : Γ �S A.

The S-validity of atoms a is defined by clause (S1) as derivability of a
in an atomic system S. For the definitional view considered here this means
that an atom a is S-valid if, and only if, a is derivable in S by definitional
closure and definitional reflection.

Clause (S2) defines S-validity of implications A→B, that is, �S A→B,
by S-consequence A �S B. The latter is defined by clause (S3). By
combining clauses (S2) and (S3) we see that implication is explained as
follows:

�S A→B :⇐⇒ (�S A =⇒ �S B)

Clauses (S4) and (S5) are straightforward, and clause (S6) then gives us a
proof-theoretic notion of logical validity based on atomic systems understood
as definitions.

In the given notion of validity we have not considered extensions S′ ⊇ S
of atomic systems, where an atomic system S′ is an extension of an atomic
system S if S′ = S or if S′ results from S by adding atomic rules. In doing
so we follow Prawitz’s suggestion9 that considering extensions is in conflict
with the definitional view of atomic systems. Alternatively, one could define
S-consequence using extensions by the following clause:

Γ �S A :⇐⇒ ∀S′ ⊇ S : (�S′ Γ =⇒ �S′ A) (S3ext)

9Cf. Prawitz (2016), fn. 12, p. 18.
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This would prevent that an S-consequence Γ �S A holds just because some
atom on which Γ depends is not valid in S. Without extensions, that is, for
clause (S3), this is not the case: Consider the empty definition S = ∅. It is
2S a, since 0S a; hence �S a implies �S b trivially, and therefore a �S b
by clause (S3). In general, clause (S3ext) guarantees monotonicity of validity
in the sense that, if a is S-valid, it is S′-valid for any extension S′ of S. This
makes a conceptual difference depending on whether atomic systems are
viewed as knowledge bases or as definitions. A knowledge base, unlike a
definition, is supposed to be monotone. In fact, under the definitional view of
atomic systems already atomic derivability fails to be monotone with respect
to extensions of atomic systems. For example, for definition S+ we had
a`S+ b. Extending S+ by ΘB a to

S++


ΓB a ΓB b

∆B a ∆B b

ΘB a ΣB b

would block definitional reflection for a, since b cannot be derived from Θ,
which, however, is an additional defining condition of a in S++. Hence
a0S++ b, although a`S+ b.

We can now pose the question how derivability of atoms in a definition
S from assumed rules relates to S-consequence between a set of assumed
formulas and atoms. First we observe that atomic rules R can be represented
by formulas R∗ over {→,∧} by using a translation ∗ defined as follows:

1. a∗ := a, for atoms a.

2. (R1, . . . , Rn B a)∗ := R∗1 ∧ . . .∧R∗n→ a, for a rule R1, . . . , Rn B a.

We write S∗ for the set of formulas representing the rules in a given atomic
system S. This device is only needed because S-consequence is defined as
a relation between sets of formulas and formulas, whereas derivability is a
relation between sets of rules and atoms.

Let now ∆∗ be some set of formulas representing a set of rules ∆,
and let S be an arbitrary atomic system. We can then ask whether under
the definitional view S-validity is stable in the sense that the following
biconditional holds for any atomic system S:

∆∗ �S a ⇐⇒ ∆`S a
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That atomic completeness

∆∗ �S a =⇒ ∆`S a

does not hold was shown in Piecha and Schroeder-Heister (2016). The atomic
system S = {aB a} gives a simple counterexample: Obviously 0S a, and
hence 2S a by clause (S1). Therefore a �S b by clause (S3). However, we
have a0S b. This is because any application of definitional reflection on this
atomic system S with major premiss a has the form

a

[a]1

C
1

C

and is therefore useless, since the minor premiss C already contains what is
to be established.

For atomic soundness

∆`S a =⇒ ∆∗ �S a

the situation is a bit more complicated. If one considered S-validity with
extensions by having S-consequence defined by clause (S3ext) instead of
clause (S3), then already the empty atomic system S = ∅ gives a counterex-
ample:10 Since, for example, a is not defined, we have a`S b for any atom b
by definitional reflection. Now we can extend S to S′ = S ∪ {a} for which
we have `S′ a and, by clause (S1), also �S′ a. But clearly 0S′ b, and thus
2S′ b by clause (S1). Therefore ∀S′ ⊇ S : (�S′ a =⇒ �S′ b) does not
hold; hence a 2S b by clause (S3ext).

However, for the notion of S-validity that is under scrutiny here, we do
not consider extensions of atomic systems. In this case, a possible counterex-
ample for atomic soundness is given by the atomic system

S = {(aB b)B a}

The derivation

D

 a

a
a

[aB b]1
b

1 (def. reflection on S)
b

10Cf. Piecha and Schroeder-Heister (2016).

195



Thomas Piecha and Peter Schroeder-Heister

shows a`S b, and the derivation

D ′

 [a]2

[a]2
a

[aB b]1
b

1 (def. reflection on S)
b

2 (def. closure) 〈(aB b)B a〉
a

which introduces the atom a in the last step by definitional closure shows
`S a. Thus by the latter also �S a, by clause (S1). Now, if one allowed for
derivations that are not normalizable, then the non-normal derivation

D†


[a]2

[a]2
a

[aB b]1
b

D ′

 1 (def. refl. on S)
b

2 (def. closure)
a

[a]2

[a]2
a

[aB b]1
b

D ′

 1 (def. refl. on S)
b

2 (def. closure)
a

[aB b]3
b

3 (def. refl. on S)
b

would show `S b. This derivation results from substituting the closed deriva-
tion D ′ for the two open assumptions a in derivation D . By clause (S1) we
would then have �S b, and therefore a �S b by clause (S3). Hence S does
not give us a counterexample to atomic soundness.

That derivation D† is not in normal form is due to the fact that the major
premiss a in the final application of definitional reflection is a maximal
formula: it is introduced by an application of definitional closure in the last
step of D ′, and is immediately eliminated in the last step of D†. Moreover,
D† is not normalizable, since b cannot be introduced by definitional closure
(since there is no definitional clause for b in S).

If, on the other hand, we require that all derivations be normal, then D
and D ′ cannot be combined into D†. In this case there cannot be a closed
derivation of b in S, that is, 0S b. Hence 2S b by clause (S1), while �S a.
Therefore a 2S b, which means that S is in this case a counterexample to
atomic soundness.

This points to a deeper problem of S-validity under the definitional view
of atomic systems. In the non-atomic realm of logically complex formulas or
statements one usually imposes Dummett’s fundamental assumption “that, if
we have a valid argument for a complex statement, we can construct a valid
argument for it which finishes with an application of one of the introduction
rules governing its principal operator” (Dummett, 1991, p. 254; cf. also
ch. 12). For the atomic realm, where applications of definitional closure are
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the introduction rules for defined atoms, this means that the base clause (S1)
in the definition of S-validity has to be replaced by the following clause:

�S a :⇐⇒ `S a, where a is derived by
definitional closure in the last step. (S1′)

This enforces that the fundamental assumption holds for S-validity. Al-
ternatively, the same effect can be achieved by demanding for definitional
reflection

a
[Γ1]
c . . .

[Γk]
c

c

that is, for the elimination rule for atoms a, that the major premiss a must
always be the conclusion of an assumed rule; this includes the case that the
major premiss is an assumed formula.11 This forces all derivations to be in
normal form, and consequently ensures that S-validity complies with the
fundamental assumption.

What this tells us about the definitional view of atomic systems in proof-
theoretic semantics is the following: If we impose the same assumption that
we make for the validity of complex formulas also on the validity of atomic
formulas, which is a natural thing to do, then S-validity is not stable on
the atomic level, that is, neither atomic completeness nor atomic soundness
holds. A restriction from higher-level to first-level atomic systems might rule
out counterexamples to atomic soundness, but atomic completeness would
still fail, as the given first-level counterexample shows.

An objection one might raise against the clause (a B b) B a is that it
is circular in that it defines a in terms of a (as is the case also with the
clause aB a) and moreover paradoxical, by defining a by ¬a. The latter is
easily seen if we write the undefined atom b as absurdity ⊥ and a B ⊥ as
¬a, so that the clause becomes ¬a B a. However, we do not consider this
a problem here, as we do not want to put restrictions on the form clauses
are allowed to take. We prefer to claim definitional freedom in that respect.
Apart from the fact that in logic programming clauses such as ¬aB a have
always been considered and are thus not unusual at all, it gives us a most
welcome tool with considerable expressive power. By means of clauses of

11This corresponds to the feature that major premisses of elimination rules for logical constants
only occur as assumptions. It is sometimes considered in discussions of general elimination
rules; for example, according to Tennant (2015, p. 746) “all major premises for eliminations
stand proud, with no proof-work above them (that is to say, they occupy leaf-nodes of the
proof-tree)”.

197



Thomas Piecha and Peter Schroeder-Heister

this kind and the principle of definitional reflection we can develop a natural
theory of semantical and set-theoretical paradoxes, which are characterized
by non-normalizing atomic derivations.12 The idea of a ‘partial’ assignment
of meaning as present in self-referential definitions is at the core of the theory
of definitional reasoning and its principle of definitional reflection. It is
analogous to the consideration of partial recursive functions in recursive
function theory (see Hallnäs, 1991).

It is important to note that the failure of stability on the atomic level says
nothing about the soundness and completeness of a calculus for minimal or
intuitionistic logic with respect to logical validity. Our results apply only
to S-validity, that is, to validity with respect to a chosen atomic system.
The fact that stability on the atomic level is lacking for approaches based
on definitional reasoning shows that a satisfactory theory of proof-theoretic
validity based on definitional reasoning with atoms is still a desideratum. It
might be the case that a hybrid theory incorporating both a knowledge-base
view and a definitional view of atomic systems might be an option, but at
the present stage of research this is not much more than a speculation. In
any case the theory of atomic reasoning deserves much more attention in
proof-theoretic semantics than devoted to it so far.
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