25 easy pieces in MATHSTAT

"I fear not the man who has practiced 10,000 kicks once, but I fear the man who has practiced one kick 10,000 times."

Bruce Lee

1: Write the expectation of a random variable (r.v.) $Z, \mathbb{E}[Z]$, extensively
a) for a discrete random variable,
b) for a continuous random variable.

2: $\operatorname{Var}(Z)$ can be written as $\mathbb{E}[Y]$. What is Y ?
3: Write $\operatorname{Var}(Z)$ extensively
a) for a discrete random variable,
b) for a continuous random variable.

4: What does the cumulative density function or cumulative distribution function (c.d.f.) tell you?

5: X is a continuous r.v. How are the c.d.f. $F_{X}(x)$ and the density function (d.f.) $f_{X}(x)$ related?

6: $\operatorname{Cov}(X, Y)$ can be written as $\mathbb{E}[Z]$. What is Z ?
7: Write $\operatorname{Cov}(X, Y)$ extensively for X and Y
a) as discrete random variables,
b) as continuous random variables.

8: Express $\mathbb{E}_{X Y}[X Y]$ as a function of $\operatorname{Cov}(X, Y)$.
9: Write $\mathbb{E}_{X Y}[X Y]$ extensively for X and Y
a) as discrete random variables,
b) as continuous random variables.

10: $g(X)$ denotes a measurable function of the r.v. X (like e.g. $X^{2}, \ln (X)$). Write $\mathbb{E}[g(X)]$ extensively for a continuous r.v. X.

11: X and Y are continuous random variables. $Z=g(X, Y)$ is a measurable function. Write $\mathbb{E}[g(X, Y)]$ extensively.

12: X and Y are continuous random variables. What does the joint c.d.f. $F_{X Y}(x, y)$ tell you? Write $F_{X Y}(x, y)$ extensively. What does the joint p.d.f. $f_{X Y}(x, y)$ (discrete case) tell you?

13: X and Y are continuous random variables. How are $F_{X Y}(x, y)$ and $f_{X Y}(x, y)$ related?
14: If X and Y are independent:
a) $F_{X Y}(x, y)=$,
b) $f_{X Y}(x, y)=$.

15: If X and Y are independent:
a) $\mathbb{E}_{X Y}(X Y)=$,
b) $\operatorname{Cov}(X, Y)=$.

16: If X and Y are independent:
$\mathbb{E}_{X Y}[h(X) g(Y)]=$.
17: $\mathbb{E}_{X Y}[X+Y]=$,
$\mathbb{E}_{X Y Z}[X+Y+Z]=$,
$\operatorname{Var}(X+Y)=$.
18: Write extensively for X and Y
a) as discrete random variables,
b) as continuous random variables:
$f_{X \mid Y}(X \mid Y=y)$
$\mathbb{E}_{X \mid Y}[X \mid Y=y]$
$\mathbb{E}_{X \mid Y}\left[X^{2} \mid Y=y\right]$
19: $\mathbb{E}[a X]=$,
$\operatorname{Var}(a X)=$,
(a is non-random scalar).

20: For $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}$
$\mathbb{E}[\underline{X}]=\mu, \mu=$?
$\operatorname{Var}(\underline{X})=\Sigma, \Sigma=?$
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$
(A is a non-random matrix).
$\underline{Z}=A \cdot \underline{X}$,
$\mathbb{E}[\underline{Z}]=$
$\operatorname{Var}(\underline{Z})=$.
21: $Y=a+b \cdot X$
$\mathbb{E}[Y]=$
$\mathbb{E}[Y \mid X=x]=$.
22: Given the joint density $f_{X Y}(x, y)$: how do you get $f_{X}(x)$ and $f_{Y}(y)$?
a) for discrete random variable,
b) for continuous random variable.

23: Under which conditions can $f_{X Y}(x, y)$ be obtained from $f_{X}(x)$ and $f_{Y}(y)$?
24: X and Y are jointly normally distributed

$$
\binom{X}{Y} \sim B V N\left(\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho_{X Y}\right)
$$

What is the relation of parameters and moments? $X \sim$
$Y \sim$
$X \mid(Y=y) \sim$
$Y \mid(X=x) \sim$
$\mathbb{E}[X \mid Y=y]=$
$\operatorname{Var}(X \mid Y=y)=$
25: X, Y and Z are normally distributed.
$W=a \cdot X+b \cdot Y+c \cdot Z$
How is W distributed?

