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Introduction

With his Introduction to Operative Logic and Mathematics1, which first appeared in

1955, Paul Lorenzen became an exponent of an approach to the foundations of logic

and mathematics, which is both formalistic and intuitionistic in spirit. Formalistic be-

cause its basis is the purely syntactical handling of symbols — or “figures”, as Lorenzen

preferred to say —, and intuitionistic because the insight into the validity of admissi-

bility statements justifies the laws of logic. It is also intuitionistic with respect to its

result, as Heyting’s formalism of intuitionistic logic is legitimatised this way. Along

with taking formal calculi as its basis, the notion of an inductive definition becomes

fundamental. Together with a theory of abstraction and the idea of transfinitely iterat-

ing inductive definitions, Lorenzen devised a novel foundation for mathematics, many

aspects of which still deserve attention. When he wrote his Operative Logic, neither

a full-fledged theory of inductive definitions nor a proof-theoretic semantics for logi-

cal constants was available. A decade later, Lorenzen’s inversion principle was used

and extended by Prawitz (1965) in his theory of natural deduction, and in the 1970s,

the idea of inversion was used for a logical semantics in terms of proofs by Dummett,

Martin-Löf, Prawitz and others. Another aspect which makes Lorenzen’s theory in-

teresting from a modern point of view, is that in his protologic he anticipated certain

views of rule-based reasoning and free equality which much later became central to

the theory of resolution and logic programming. Lorenzen’s inversion principle in its

general form — that is, not in its restricted application in logic — is closely related

to principles of definitional reflection in logic programming (Schroeder-Heister 2007).

The idea that logical introduction rules are but a special case of rules defining (atomic)

propositions was used in a different form in Martin-Löf’s (1971) theory of iterated in-

ductive definitions. Thus there are various interesting points from which we might take

a closer look at Operative Logic.

Unfortunately, Lorenzen had already lost interest in the subject when issues such as

proof-theoretic semantics and resolution-based reasoning became more popular in logic.

Within the narrower realm of logic, he had already given up the operative approach

in favour of dialogical logic by the end of the 1950s, perhaps motivated by discussions

1“Einführung in die operative Logik und Mathematik”, henceforth quoted as ”OL”. A major

earlier paper propagating the operative approach is Lorenzen (1950). For a biography of Lorenzen see

Thiel(1996), for a bibliography of his work see [Lorenzen] (1996).
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with Tarski in 1957-58 at the Institute for Advanced Study at Princeton (Lorenz 2001,

p. 257). From the early 1960s on, he broadened his approach from the philosophy

of logic and mathematics to geometry, the philosophy of science, and ethics, partly

in collaboration with Wilhelm Kamlah, after having taken the philosophical chair in

Erlangen in 1962. He became the head of a philosophical school in Germany which,

as it favoured a normative and anti-empiricist foundation of science, was opposed to

the analytic philosophy of science represented in Germany by Wolfgang Stegmüller,

who was strongly influenced by Carnap, and for whom the rational reconstruction of

science was the primary goal. Stegmüller once even criticized the Erlangen school for

developing a “metascience of science fiction” (Stegmüller 1973, p. 26). The fact that

Lorenzen found philosophical allies even within hermeneutics and Habermas’ critical

theory of society further contributed to the split in German philosophy of science.

By the end of the 1970s, when the proof-theoretic foundation of logic had become

a topic within the philosophy of language, Lorenzen had begun to make completely

different issues his main agenda, including the philosophy of politics. Correspondingly,

he did not take notice of the rising interest in rule-based theories and proof-theoretic

approaches within the realm of computer science.

In this paper we concentrate on the logical aspects of the Operative Logic, i.e.,

on Lorenzen’s attempt to base intuitionistic logic on admissibility principles, leaving

aside his general theory of rule-based reasoning and his foundation of mathematics.

In particular, we compare his approach to the theories of Dummett and Prawitz, who

consider introduction rules as the defining properties of logical constants and derive

valid logical laws by using ideas closely related to Lorenzen’s inversion principle. In

the first section, we discuss those aspects of Lorenzen’s protologic, i.e. of his general

theory of calculi and admissible rules which are most relevant to the foundation of

deductive logic. In the second section, we reconstruct his theory of iterated implications

and meta-calculi, and extract from his remarks a validity concept for sentences alias

higher-level rules. We show that Lorenzen’s theory of meta-calculi can be given a

rendering that makes it a sensible theory of implication, and of logical constants in

general. In the third section we compare (our reconstruction of) Lorenzen’s approach

with proof-theoretic semantics in the tradition of Dummett and Prawitz. Although, as

shown in the appendix, Lorenzen’s and Prawitz’s validity concepts can be translated

into one another, Lorenzen’s theory has certain deficiencies when looked at from an

epistemological point of view. Unlike Dummett and Prawitz, Lorenzen does not pay

sufficient attention to the manifestation aspect of meaning, which for constants such

as conjunction and disjunction is embodied in their introduction rules, but is absent

in the crucial case of implication, for which in Lorenzen’s framework no structural

introduction rule is defined.
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1 Basic protological concepts

The first part of the Operative Logic is entitled “Protologic” as it is conceptually prior

to, and more general than logic. It is a theory of formal systems (calculi) and develops

general principles for establishing the admissibility of inference rules in such systems.

Logic in the narrower sense is a particular application of admissibility theory dealing

with logical constants and with the iteration of admissibility.

1.1 Calculi

Lorenzen starts with elementary calculi (OL, §1) which permit to generate words

(strings of signs) over an arbitrary (finite) alphabet. The elements of the alphabet

are called atoms, the words are called sentences (“Aussagen”). A calculus K is speci-

fied by giving certain initial formulas (“Anfänge”) A and rules A1, . . . , An →A, where

an initial formula is the limiting case of a rule (for n = 0). In the following, we also write

“→A” for an initial formula. We also speak of primitive inference rules and (in the

premiss-free case) of axioms, if we want to make clear that they are the rules on which

inferences in K are based.2 Formulas are words composed of atoms and variables. The

variables occurring in formulas are either eigenvariables (OL, p. 16) or object variables

(OL, pp. 26f.). Eigenvariables of K can be substituted only with sentences derived in

K itself, whereas object variables are to be substituted with sentences of a different

calculus. Obviously, if a rule contains eigenvariables, the substitution instances of a

rule are defined simultaneously with the derivations in K. For example, if

K1

{

→| (R1)

x→ x | (R2)

is a calculus with the eigenvariable x, then in the derivation
R1

|
R2

||
R2

|||

the second line is obtained from the first one by using the substitution instance | → ||

of R2, which is only defined after the first line has been derived (and thus | becomes

substitutable for x). Similarly, the step from the second to the third line is based on

the substitution instance || → ||| of R3 which relies on that || has already been derived

and is thus substitutible for x. Lorenzen needs this approach based on eigenvariables

as for him the specification of any domain proceeds via calculi and rules, which means

that one has always to begin with a calculus for which no external substitution range

for object variables is given. When object variables standing for sentences derivable in

a calculus K0 are used in K, it is presupposed, of course, that each atom of K0 is an

2Lorenzen avoids the term “axiom” because of traditional connotations of something being “evi-

dent”, see OL, p. 7.
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atom of K. As a matter of terminology, we call a formula or rule closed, if it contains

no variable, and open otherwise.

It is obvious that this approach is closely related to the formalist ideas of Post (1921)

and Curry (1952). As formulas are just strings of atoms and variables, Lorenzen starts

with an arbitrary word structure rather than the functor-argument structure common

in logic. This makes his approach particularly general. The most appropriate more

modern point of view would be to look at his calculi as inductive definitions (see Aczel

1977). Concerning the foundations of mathematics, Lorenzen’s Operative Logic can be

viewed as a programme to embed mathematics into a theory of inductive definitions.

1.2 Admissibility

The main concept on which logic is based is admissibility (OL, §2). This notion, which

was coined by Lorenzen, has entered logical textbooks as a standard proof-theoretic

concept. A rule R is called admissible in a calculus K, if its addition to the primitive

rules of K — resulting in an extended calculus K + R — does not enlarge the set of

derivable sentences. If `KA denotes the derivability of A in K, then R is admissible

in K if

`K+RA implies `KA (1)

for every sentence A. However, as for Lorenzen admissibility is the central concept

on which the notion of implication is based, he cannot give the implication (1) as

its definition. Rather, admissibility is given an operative meaning by reference to the

notion of an elimination procedure (OL, §3). R is admissible in K, if every application of

R can be eliminated from every derivation in K+R. The implicational relation between

existential statements expressed in (1) is reduced to the insight that a certain procedure

reduces any given derivation in K +R in such a way that the resulting derivation does

no longer use R. According to Lorenzen, this is the sort of insight (evidence) on

which constructive logic and mathematics is based. It goes beyond the insight that

something is derivable in K, but is still something which has a “definite” meaning. It

is the admission of this sort of evidence which makes Lorenzen an intuitionist rather

than a formalist. In its various variants, intuitionism has been based on the notion of

a procedure or construction. The interpretation of implication in the BHK-semantics

of the logical signs is based on it, as are more formalized notions like realizability. In

proposing the admissibility of rules as based on elimination procedures, Lorenzen adds

a new perspective to this concept.

Admissibility is to be distinguished from the derivability from assumptions. Loren-

zen puts strong emphasis on this (obvious) fact, as this makes admissibility theory an

enterprise, which is not merely formalistic in the sense of verifying formal derivations.
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For example, given the calculus

K2

{

→ n < n |

m < n → m < n |

with m, n being object variables for lists of strokes (i.e., sentences derivable in K1),

then the rule m < n → m | < n | is admissible but not derivable (Lorenzen 1959,

p. 170). Here, for sentences A1, . . . , An, A, the derivability of a rule A1, . . . , An →A

in a calculus K means that A1, . . . , An `K A, i.e., A is derivable from A1, . . . , An

as assumptions. An open rule is derivable, if all its closed substitution instances are

derivable. For example, ||||<||| is not derivable in K2 from the assumption |||<||. The

standard proof-theoretic example of a rule admissible but not derivable is that of the

cut rule in the first-order sequent calculus.

Lorenzen establishes five basic protological principles for the generation of admis-

sibility statements. Due to lack of space, we only sketch the three of them which are

immediately relevant to logic. The two further principles — the induction principle

and the equality principle —, though highly relevant, have their main application in

the foundation of mathematics. For rules R1, . . . , Rn, R we follow Lorenzen in using

the notation R1, . . . , Rn `K R to express that R can be eliminated from derivations in

K by using R1, . . . , Rn as additional rules of inference. In particular, this means that

R is admissible, if R1, . . . , Rn are admissible.3

1.2.1 The deduction principle

Though the admissibility of a rule does not imply its derivability, the converse, which

is called the deduction principle (OL, p. 26), is true. If for every closed substitution

instance A′

1, . . . , A
′

n
→A′ of a rule A1, . . . , An →A we have A′

1, . . . , A
′

n
`K A′, then

A1, . . . , An →A is an admissible rule of K. As an elimination procedure, we just have

to replace every application of A1, . . . , An →A by the derivation of A′ from A′

1, . . . , A
′

n

for the appropriate instance A′

1, . . . , A
′

n
→A′ of A1, . . . , An →A.

It should be noted that the deduction principle is not a formal introduction rule for

an implication statement. Lorenzen does not consider Gentzen-style natural deduction

rules like

[A]

...
B

A→B

where an assumption can be discharged. Rather, establishing the admissibility of the

rule A1, . . . , An →A is a metalinguistic procedure which involves a step of reflection. It

3Lorenzen also characterizes R1, . . . , Rn `K R as the admissibility of R in the calculus K extended

with R1, . . . , Rn as additional primitive rules (OL, pp. 24, 40). This is, however, a non-monotonic

notion, and not what Lorenzen intends.
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can be turned into a formal assertion of a sentence only in a so-called “meta-calculus”

(see Section 2.1).

1.2.2 The inversion principle

The inversion principle (OL, pp. 30f.)is the most relevant principle for logic. It governs

the relationship between introduction and elimination rules for logical constants (in the

Operative Logic only used for conjunction, disjunction and existential quantification,

see Section 2.3). The term “inversion principle” was later adopted by Prawitz (1965)

in his theory of natural deduction (see Section 3). For simplicity, we just consider the

propositional case without object variables. Suppose the calculus K is given by the

following rules, where for each i (1 ≤ i ≤ n), Γi stands for a list of sentences:

K











Γ1 →A
...

Γn →A

Then the following holds for any sentence C:

(IP) Γ1 →C, . . . , Γn →C `K A→C

The validity of this principle is easily seen: An application of A→C leads from A to C,

where A can only be derived in K according to one of the ‘introduction rules’ Γi →A

for A. So we have the following situation:

Γi Γi →A
A

A→C
C

Obviously, this an be replaced with

Γi Γi →C
C

thus eliminating the application of A→C. Since Γi →C is available for every i, this

elimination procedure works in any case no matter from which Γi the sentence A was

introduced in the first place.

Reading the calculus K as an inductive definition, this principle can be regarded as

an interpretation of the extremal clause sometimes used to finish an inductive definition

(“nothing else is A”): Everything that follows from each defining condition of A,

follows from A itself. Note, however, that this principle is not laid down as a primitive

rule interpreting the inductive definition, but is proved by means of an elimination

procedure. This elimination procedure, in eliminating an application of A→C, removes

A as a ‘maximum sentence’ which is first introduced by means of Γi →A and then

eliminated by means of A→C. In the case of n = 1, this principle amounts to the

‘direct’ inversion of a rule. Suppose

A1, . . . , An →A
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is the only primitive rule of K having A as its head. Then from

A1, . . . , An →C `K A→C

we obtain the admissibility of the rules:

A→A1

...

A→An

by choosing C in turn to be A1, . . . , An and using the fact that A1, . . . , An →Ai is

trivially admissible.

The inversion principle is not of much use when restricted to sentences. Even for the

treatment of propositional logic, variables for sentences are necessary. Unfortunately,

Lorenzen’s formulation for the case with object variables is mistaken, and his own

(in the second edition of OL) and others’ (e.g., Lorenz 1980) attempts at repairing it

failed as well. Hermes (1959) gives a correct version which suffers, however, from certain

deficiencies of the general framework, which are due to the fact that unification theory

and resolution-based reasoning was not known yet. Schroeder-Heister (2007) presents

an examination of these approaches and a comparison with more modern principles,

in particular with the prinpiple of definitional reflection developed by Hallnäs and

Schroeder-Heister (1990/91) in the context of logic programming and later used as

general definitional device (Schroeder-Heister (1993, 2008a), Hallnäs (1991, 2006).

1.2.3 The underivability principle

The underivability principle (OL, pp. 36f.) says that, if the sentence A is not derivable

in K, then any rule A→B is admissible in K. The reason for this result is simply

that, if the premiss A of A→B is underivable in K, then A→B cannot be applied to

a derivable sentence of K, so A→B can be added to the primitive rules of K without

generating new derivable sentences. Lorenzen does not consider the underivability

principle as a limiting case of the inversion principle, for the case in which there is no

defining rule for A available in K, but considers it a principle of its own. Obviously,

the underivability principle can be used as the basis of the intuitionistic absurdity rule

and the intuitionistic concept of negation, although it is not entirely clear whether this

is intended by Lorenzen (see Section 2.4). In any case, this principle is needed at other

places in his protologic, e.g., within his theory of inequality (OL, pp. 89f.)

2 Lorenzen’s foundation of intuitionistic logic

An investigation of Lorenzen’s foundation of mathematics would now study his theory

of abstraction in connection with his theory of inductive definitions, in particular his

idea of transfinitely iterating inductive definitions through the handling of language

levels (“Sprachschichten”). Here, we discuss his justification of deductive logic based
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on the admissibility principles mentioned, in particular on the inversion principle, and

relate it to proof-theoretic semantics in the sense of Dummett and Prawitz. For sim-

plicity, we focus on the propositional case. Universal quantification essentially behaves

like implication, and existential quantification like conjunction or disjunction.

Lorenzen divides his discussion into that of consequence logic (OL, §6), which con-

tains his treatment of implication (and universal quantification), of conjunction and

disjunction (and existential quantification) (OL, §7) and of negation (OL, §8). The

separation of the treatment of implication from that of conjunction and disjunction

indicates that there is a fundamental split between two sorts of connectives. He even

speaks of implication (and universal quantification and negation) as “improper” log-

ical constants as opposed to the “proper” ones of conjunction and disjunction (and

existential quantification) (OL, p. 172).

As a matter of terminology, we speak of “implication” throughout when → is

used as a sentence-forming operator (rather than a rule arrow), whereas Lorenzen

in the Operative Logic does not use any specific terminology, and in his later writings

propagates the term “subjunction” (and “adjunction” for “disjunction”). Furthermore,

we use a tree-like notation of derivations in contradistinction to Lorenzen’s linear one.

Finally, we only consider closed rules, i.e., rules without variables, and identify open

rules with the sets of their instances, thus admitting that the set of primitive rules of

a calculus is infinite. When we speak of the finite specification of calculi, this is to be

understood in the sense of a specification by means of finitely many rule schemata.

2.1 Consequence logic and the theory of meta-calculi

Lorenzen’s theory of implication is based on the idea that an implicational sentence

A→B expresses the admissibility of the rule A→B, so the assertion of an implication

is justified if this implication, when read as a rule, is admissible. In this sense an impli-

cation expresses a meta-statement about a calculus. This has a clear meaning as long

as there is no iteration of the implication sign. In order to cope with iterated impli-

cations, Lorenzen develops the idea of finitely iterated meta-calculi. In the following,

we try to built a coherent theory based on his scarce remarks on the specification of

meta-calculi. We take the freedom to deviate from his notation and terminology, and

to extend it whenever this seems appropriate to us.

From the beginning, we have to consider the possibility that calculi are extended

with inference rules for additional constants, and that such extensions are available

at any meta-level. We speak of a definitional extension and of constants defined in

this extension, as it is the intention of such an extension to fix their meaning. In

practice, these constants will be conjunction and disjunction [and existential quantifi-

cation] (see Section 2.3). A definitional extension consists of formation rules F and

primitive inference rules D, where F
n and D

n are the formation rules and primitive

inference rules, respectively, for level n. We assume that at each level n, the formation
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rules F
n determine how to construct a level-n-sentence from atomic level-n-sentences,

where in F
n these atomic level-n-setences are not specified, but are just represented by

variables. Starting from a basic calculus K and a definitional extension with formation

rules F, we define level-n-sentences and level-n-rules, and the sentences and rules of

each meta-calculus MnK as follows.

Level-n-sentences and level-n-rules:

(i) Every sentence of K is a level-0-rule.

(ii) Every level-n-rule is an atomic level-n-sentence.

(iii) Every atomic level-n-sentence is a level-n-sentence.

(iv) Every expression generated from atomic level-n-sentences by means of the forma-

tion rules F
n is a level-n-sentence.

(v) If A1, . . . , An, A are level-n-sentences, then A1, . . . , An →A is a level-(n+1)-rule.

Sentences and rules of MnK:

(i) Every level-(n + 1)-rule is a rule of MnK.

(ii) Every level-n-sentence is a sentence of MnK.

We write MK for M1K. However, in our terminology, M0K is not just K, but the defi-

nitional extension of K (in practice: K extended with conjunction and disjunction [and

existential quantification]). Although, syntactically, level-n-rules and level-n-sentences

are the same, they are associated with different systems. As it transforms level-n-

sentences into a level-n-sentence, a level-(n + 1)-rule is a rule of MnK, whereas a

level-(n + 1)-sentence is a sentence of Mn+1K. So the basic idea is that every rule

over sentences of MnK is at the same time an atomic sentence of Mn+1K. To avoid

parentheses, Lorenzen uses dots to indicate precedence. For example,

→A; B1, B2 →C →̇ E →F

is a level-2-rule (and thus a rule of MK), and at the same time an atomic level-2-

sentence (and thus a sentence of M2K).

A→B1 ∧B2 →̇ →C ,̈ →E1 ∧̇ D1, D2 →E2 →̇ F →G →̈ →H →̇ I → J

is a level-3-rule (and thus a rule of M2K), and at the same time an atomic level-3-

sentence (and thus a sentence of M3K), where it is supposed that conjunctions are

available (at least) at levels 0 and 1. Lorenzen also uses a notation with unequal levels

such as A →̇B →C. This is just shorthand for →A →̇B →C, and analogously for

similar notations.

It remains to specify the primitive inference rules of MnK with respect to a de-

finitional extension D. The primitive inference rules D
n available at level n govern
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the expressions formed by means of F
n and are called definitional rules. These rules

transfer level-n-sentences into level-n-sentences, i.e. they have the form of level-(n+1)-

rules. In practice D
n will contain the introduction rules for conjunction and disjunction

[and existential quantification] (see Section 2.3). As the rules of D
n are considered de-

finitional, they are expected to be conservative, i.e., they must not extend the class

of primitive sentences, which are derivable in MnK without using D
n.4 In practice

this requirement is trivially fulfilled, as the introduction rules considered only generate

non-atomic level-(n + 1)-sentences, i.e., sentences containing the constant introduced.

Concerning atomic sentences,, the primitive inference rules of M0K are just the

primitive rules of K. For Mn+1K, Lorenzen extends the usual notion of a finitely

specified calculus in favour of a system of which it is only required that every atomic

sentence derivable in Mn+1K, when read as a level-(n+1)-rule, be admissible in MnK

(OL, p. 42). This means that we may add an admissible rule of M0K (i.e., K extended

with rules D
0 for defined constants) as an axiom to MK, an admissible rule of MK as

an axiom to M2K etc. At first glance this looks like a set-theoretic closure notion of

admissibility, at least for the implicational fragment without definitional extension, in

which all sentences are atomic and thus have the form of rules: The rules admissible in

K form the class of axioms of MK; the rules which do not properly extend this class,

form the class of axioms of M2K; and so on. However, even at higher levels, and even

in the purely implicational case, Lorenzen wants to keep the idea that admissibility

is tied to an operative elimination procedure. Therefore, Mn+1K is to contain not

only axioms but also proper inference rules (in addition to the definitional rules of

D
n+1), namely certain rules of which it has been shown beforehand that they lead

from admissible level-n-rules to admissible level-n-rules. Once we have shown this for

a particular rule (by means of an elimination procedure!), we may, so to speak, store

this result as a primitive inference rule and establish further sentences of Mn+1K by a

formal derivation. For example, the admissibility of

(I) A1, . . . , Ak →Ai (1 ≤ i ≤ k)

is obvious for any calculus K, so all rules of this form can be taken as axioms of MK

and therefore of any Mn+1K. Furthermore, since for Γ as A1, . . . , Ak,

(Γ→B1), (Γ→Bm), (B1, . . . , Bm →A) `K Γ→A

holds for any K, we may use the rule

(II) Γ→B1; . . . ; Γ→Bm; B1, . . . , Bm →A →̇ Γ→A

as a primitive inference rule of MK and therefore of any Mn+1K. Rules like (I) and

(II), which are available for any calculus K, are called universally admissible (OL,

4Instead of the now common term “conservative”, Lorenzen uses the term “relatively admissible”.
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pp. 42–44). Now we can, for example, establish die admissibility of the level-2-rule

A→B1; B1, B2 →B →̇ A, B2 →B

by formally deriving A, B2 →B from A→B1 and B1, B2 →B in MK using (I) and

(II) (OL, p. 43).

Hence, even if the meta-calculi are not fully formalized by specifying finite sets of

axioms and rules, certain formal rules are available even in the implicational fragment,

which allow for formal derivations. Meta-calculi are open systems in the sense that

inference principles once justified may be used as formal rules.

So far, as formal rules of the meta-calculi, we have discussed definitional rules D
n

and universally admissible inference principles like (I) or (II). Further rules result from

the admissibility principles, especially from the the inversion principle. For example,

if, for sentences A, B and C, K contains the rules
{

A→C

B →C

then the inversion principle says that

A→D, B →D `K C →D

which justifies to use the rule

A→D; B →D →̇ C →D

as a primitive rule of MK (and at the same time as an axiom of M2K). In gen-

eral, each admissibility principle discussed in Section 1.2 generates formal inferences in

appropriate meta-calculi.

Viewed in this way, in a meta-calculus a variety of formal rules is available. There-

fore, even though it is an open system, the protological admissibility principles are ap-

plicable to a meta-calculus directly. For example, the deduction principle holds without

restriction: If in MnK we can formally prove A from A1, . . . , Ak (for level-n-rules alias

MnK-sentences A1, . . . , Ak, A), we have established the sentence A1, . . . , Ak →A as an

axiom of Mn+1K. Even the inversion principle, though in general dependent on a fixed

set of rules and therefore non-monotonic, can be used at the meta-level in certain cases,

namely if we know that, in the open system, there cannot be further introduction rules

for a sentence C beyond those of a certain form. This can be achieved by definition,

e.g., when C is a conjunction or disjunction, so that the elimination inferences inverting

the introduction rules for conjunction and disjunction are available at any level.

Furthermore, as a universal principle to generate formal level-(n + 1)-rules from

admissible level-n-rules, we may use that →A1, . . . , →Ak →̇ →A is a derivable rule

of Mn+1K if A1, . . . , Ak →A is admissible in MnK. This results from

→A1, . . . , →Ak A1, . . . , Ak →A

→A
,
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which is an application of the universally admissible rule (II), by removing the level-1-

axiom (= admissible rule of K) A1, . . . , Ak →A.5 We call this the principle of lifting.

In particular, since →A is admissible in MnK iff A is derivable in MnK, →A is

derivable in Mn+1K iff A is derivable in MnK. When we use the downwards direction

of this law, we speak of downlifting.

Thus Lorenzen’s much criticized doctrine of meta-calculi is perfectly sensible when a

meta-calculus Mn+1K is viewed as an open system, which not only collects admissible

level-n-rules as axioms, but in which general admissibility principles can be used as

formal rules of inference. Thus derivations in the open system MnK with respect to a

definitional extension D proceed by the following primitive inference rules.

Primitive rules of MnK:

(i) Every rule admissible in MnK can be chosen as an axiom of Mn+1K.

(ii) Every rule that leads from rules admissible in MnK to rules admissible in MnK

can be chosen as a primitive inference rule of Mn+1K.

(iii) Every rule of D
n is a primitive rule of MnK.

If clause (iii) is lacking, i.e., in the purely implicational case, then in every Mn+1K,

all admissible rules of Mn+1K may be considered to be derivable. However, as we

have an open system, it is not intended that these inference rules are available as

primitive rules. As primitive rules one would rather choose those rules, of which it

has already been demonstrated that they lead from admissible rules to admissible

rules of MnK. Derivability and admissibility are distinct anyway at the ground level

(i.e., in K), and also when a definitional extension is present. For example, when

the definitional extension contains introduction rules for conjunction, the elimination

rules for conjunction are available as primitive rules only at the next higher level (see

Section 2.3).

Besides (I) and (II), Lorenzen considers the universally admissible rules of impor-

tation and exportation to be fundamental (OL, p. 46).

(III) A1; . . . ; Am →̇ Am+1, . . . , An → A →̈ A1; . . . ; Am−1 →̇ Am, . . . , An → A

A1; . . . ; Am−1 →̇ Am, . . . , An → A →̈ A1; . . . ; Am →̇ Am+1, . . . , An → A

Based on our discussion, the following notions of a valid sentence and a valid con-

sequence can be destilled out of Lorenzen’s theory (Lorenzen himself does not use a

concept of validity):

5This follows by using (II). Lorenzen only remarks that this rule is admissible in Mn+1K (Lorenzen

1955, 44).
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Lorenzen’s concept of validity:

(i) A level-n-sentence A is valid with respect to K and D, if it is derivable in MnK.

(ii) A level-n-sentence A is a valid consequence of level-n-sentences A1, . . . , An with

respect to K and D, if A1, . . . , An →A is a valid level-(n + 1)-sentence, i.e. a

sentence derivable in Mn+1K and therefore a rule admissible in MnK.

(iii) A level-(n + 1)-sentence is valid with respect to D, if for every K it is valid with

respect to K and D, i.e., if A is universally admissible with respect to D as a

level-(n + 1)-rule.

(iv) A level-(n+ 1)-sentence is logically valid, if it is valid with respect to D, where D

contains exactly the introduction rules for the logical operators (see Section 2.3).

(v) A level-(n + 1)-sentence is a valid sentence of positive implicational logic, if it is

valid with respect to D = ∅.

This is not a formalistic definition of validity, as it is not reducible to derivability

in a fully formalized system, but relates to open meta-calculi. It is not an exclusively

semantical definition either, as it is based on fully formalized derivations on the ground

level and rule-based definitional extensions at all levels. This position in between a

formalistic way of thinking and an exclusively semantical approach puts Lorenzen’s

theory into a close relationship to proof-theoretic semantics in the Dummett-Prawitz-

style (see Section 3).

Lorenzen finally arrives at the positive implicational calculus governed by the rules

I–III, which is the intuitionistically accepted part of implicational logic. However, he

cannot prove that there are no valid sentences beyond those derivable in positive impli-

cational logic. He proves some sort of closure property of the system which is, however,

different from semantic completeness6. So Lorenzen is faced with a completeness con-

jecture he cannot prove, quite similar to the one later made by Prawitz (1973, p. 246).

It should also be noted that Lorenzen does not fully distinguish between implication

as a connective and consequence as a relation between sentences. Consequence is an

admissibility statement which at the same time can be asserted as a formal sentence.

This is due to the fact that by means of a reflection step, any admissibility statement

can be formally expressed at the next higher level as a sentence. This reflection step is

not an inference step within a single system, which, as we shall argue, is a fundamental

weakness of Lorenzen’s approach (see Section 3.2).

2.2 Digression on Lorenzen and natural deduction

Since according to Lorenzen, establishing an implication always means a jump to a

higher level, we are not allowed to pass from A to B in K whenever A→B is admis-

sible. For example, if K is extended with A, B →A∧B as an introduction rule for

6Although Lorenzen claims that this property is near to completeness (OL, p. 49)
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conjunction, the elimination A∧B →A is admissible in this extension; however, as a

primitive inference rule, we are only entitled to use it at the meta-level. This means

that

A∧B

A

would not be a valid step at the ground level. However,

→A∧B

→A

would be a correct step at the meta-level due to lifting. This shows that there are

derivable rules of the form →A1; . . . ; →Ak →̇ →A at the meta-level, whose object-

level counterparts A1, . . . , Ak →A are only admissible. The meta-level complements the

object level by making admissible rules available (in ‘lifted’ shape) as formal derivation

rules.

The fact that for every rule A1, . . . , Ak →A derivable (and therefore admissible) in

K the rule →A1; . . . ; →Ak →̇ →A can be assumed as a primitive rule of MK, shows

that any derivation D of A from A1, . . . , Ak in K can be represented as a derivation

of →A from →A1, . . . , →Ak in MK. This means that even reasoning in natural

deduction can be formally reconstructed within Lorenzen’s framework, even though

originally no formal inference rules are available that discharge assumptions. The

introduction rule for implication can be made understandable in the meta-calculus by

means of

[→A]

...
→B

A→B

(2)

Since A→B is admissible in K whenever →B is derivable from →A in MK, we can

safely add (2) to MK and create a natural-deduction-style → -introduction rule.

Using (2), and denoting by
m
→ A the m-fold iteration of the arrow, we can even

associate with any natural-deduction derivation of A from A1, . . . , Ak a derivation of
m
→A from

m1→A1, . . . ,
mk→Ak in MnK for certain m1, . . . , mk, m, n, where the iterations

of the arrow not only equalize the (possibly different) levels of A1, . . . , Ak, A, but where

the numbers m1, . . . , mk, m also depend on the levels of the sentences internally reached

within the natural-deduction derivation.7

Therefore, it would be wrong to claim that Lorenzen’s way of reasoning is entirely

foreign to the idea of natural deduction. The basic difference is that in Lorenzen A→B

7In fact, we might consider a system which switches between the different levels. In that case the

arrow would have to be treated as a kind of modal operator. We would always be allowed to pass

from →A to A, but from A to →A only if all assumptions are prefixed with → .
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means that the derivability of B follows from that of A (i.e., →B from →A), not that

B itself follows from A itself. This means that the semantical content of A→B is

properly kept. Even according to Dummett and Prawitz, the semantical meaning of

an open derivation of B from A consists in that a (valid) closed derivation of B can be

generated given a (valid) closed derivation of A.

2.3 Conjunction and disjunction

Lorenzen’s treatment of conjunction and disjunction (and existential quantification)

proceeds by adding introduction rules for these connectives to a calculus K and showing

that the corresponding elimination inferences are admissible. Assuming that ∧ and

∨ do not occur as atome of K, then given the additional rules










A, B →A∧B

A→A∨B

B →A∨B

the rules

A∧B →A

A∧B →B

and

A→C; B →C →̇ A∨B →C

are admissible. They are both straightforward applications of the inversion principle.

For ∨ this is obvious, for ∧ this becomes obvious if we infer ∧-elimination from

A, B →C →̇ A∧B →C

using the universally admissible rules A, B →A and A, B →B, which are instances of

(I). Combining these rules with the laws of consequence logic, the system of positive

intuitionistic propositional logic is obtained.

It should be noted that these rules are available at any level. For example, if

A, B, C, D are sentences of K, we can infer A→B ∧̇C →D from A→B and C →D in

MK, etc. This means in particular, as the conjunction sign is a fresh symbol at every

level, that by means of inversion we obtain the elimination rule at this level. This is

an example of an application of the inversion principle within a open (i.e., not fully

formalized) system.

Besides conjunction and disjunction rules intrinsic to every level, there are lifted

translations of the introduction and elimination rules of the lower levels available. In

MK, from →A and →B we can infer both →A ∧̇ →B (by conjunction introduction

in MK) and →A∧B (by conjunction introduction in K, lifted to MK). Conversely,

from →A∧B we can infer both →A and →B (by lifting ∧ -elimination, which is

admissible in M0K, to MK) and thus →A ∧̇ →B. From →A ∧̇ →B we do not

obtain →A∧B, as ∧̇ -elimination in only admissible in MK but not derivable.
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Lorenzen was the first to formulate an inversion principle in sufficient detail and to

apply it to infer elimination rules from introduction rules. This is one of the lasting

achievements of his Operative Logic.

2.4 Negation

As one would expect, negation is introduced via absurdity. Define a falsum sentence

⊥8 as a sentence such that ⊥→A is admissible for every sentence A of K. Then the

negation ¬A of A is defined as A→⊥. This is unambiguous as for any two falsum

sentences ⊥, ⊥′, the rules ⊥→⊥′ and ⊥′ →⊥ are admissible. Together with the

laws of implication and the admissibility of ex falso quodlibet, we obtain intuitionistic

propositional logic in the usual way.

Since a falsum sentence is by definition a sentence for which ex falso quodlibet

holds, the underivability principle does not formally enter the theory of negation. In

fact, Lorenzen presupposes that a falsum sentence is always available in the calculus

considered, or that otherwise we could find a surrogate ad hoc9. However, if we have

to construct a falsum sentence on the basis of the given calculus K, we would enlarge

K by a fresh constant ⊥ without an introduction rule. When applied to the empty

set of introduction rules for ⊥, the underivability principle establishes ⊥ as a falsum

sentence. By presupposing a falsum sentence to be given in the underlying calculus

K, Lorenzen actually argues in favour of minimal logic with ex falso quodlibet being

a property of K and not of its extension with logical constants.10 This is even more

surprizing as Lorenzen uses the underivability principle anyway, namely in his theory

of equality (OL, pp. 89f.). As an explanation we can only speculate that for Lorenzen

a symbol which does not occur in any rule does not have an operative meaning.

2.5 Classical logic

To interpret classical logic within his framework, Lorenzen uses an adaptation of

Gödel’s double-negation translation devised by E. Wette (OL, pp. 80–84). He shows

that, when starting from a basic calculus K0, all whose sentences A are stable in that

the double-negation law ¬¬A→A is valid, i.e., A→⊥→̇⊥→̈A is admissible in M2K,

then the following holds. Suppose K is an extension of K0 such that the heads of all

primitive rules of K, which are not at the same time primitive rules of K0, do not

belong to K0. (This trivially implies that K is a conservative extension of K0.) Then

8Lorenzen uses the notation
∧

(OL, 1st ed.) or
c

(OL, 2nd ed.), but does not give it a name.

9By the latter he means the conjunction of the propositions under consideration (see OL, pp. 63,

75).

10The careful reading of §8 of OL supports this view. There Lorenzen speaks of the “complete”

reduction of negation to implication (OL, p. 75). On the other hand, in §5 he speaks of the underiv-

ability principle as the justification of ex falso quodlibet (OL, p. 37). So there is some tension between

different views.

Cerisy article,Cerisy 03



Schroeder-Heister: Lorenzen 17

every sentence of K0 derived in K by means of classical principles (e.g., by assum-

ing the double-negation law ¬¬B →B or the tertium non datur B ∨¬B for arbitrary

sentences B of K) is already derivable in K0, i.e., the classical extension of K is a

conservative extension of K0.

3 Lorenzen’s approach and Dummett-Prawitz-style proof-

theoretic semantics

Lorenzen’s idea to justify certain inference rules by admissibility proofs, and in par-

ticular his inversion principle as a central tool, is closely related to Dummett’s and

Prawitz’s approaches towards proof-theoretic semantics. Technically, these approaches

are based on proof-theoretic ideas and results originally developed by Prawitz (1965) in

the context of natural deduction and later extended and used by Tait (1967), Martin-

Löf (1971), Girard (1971) and Prawitz (1971) in the context of logic and type theories,

in particular in proofs of strong normalization. Philosophically, they received much un-

derpinning within Dummett’s (1991)11 ‘verificationist’ theory of meaning. They can be

traced back to Gentzen’s remark that the introduction inferences in natural deduction

may be viewed as definitions, and the elimination inferences as a sort of consequences

thereof (Gentzen, 1934/35, p. 189). Prawitz (1965) used Lorenzen’s term “inversion

principle” to describe the relationship between introduction and elimination rules in

general, not only for the cases of conjunction and disjunction [and existential quantifi-

cation], in which Lorenzen used the inversion principle. In the following we compare

Prawitz’s notion of validity with Lorenzen’s notions of admissibility and derivability

in meta-calculi..12 We do not include a discussion of Martin-Löf’s approach, which is

in the same spirit, since due to his distinction between proofs as acts and proofs as

objects he adds an additional layer of understanding which is beyond the scope of our

paper.13

3.1 Prawitz’s definition of valdity

The following we give a simplified version of Prawitz’s definition of validity for posi-

tive propositional logic (i.e., logic based on implication, conjunction and disjunction).

Prawitz defined the validity of derivations with respect to atomic systems. We may

11Dummett (1991) is a convenient reference as it contains the essence of Dummett’s logical semantics

in monograph form. Dummett’s basic papers on the philosophical basis of intuitionistic logic date

back to the 1970s (see Schroeder-Heister 2005, which contains an extensive bibliography).

12For a detailed discussion of Prawitz’s notion of validity and the notion of proof-theoretic semantics

in general see Schroeder-Heister (2006) and Kahle & Schroeder-Heister (2006). As original papers by

Prawitz, see, e.g. Prawitz (1973, 1974, 1978, 1985, 2006).

13It might be mentioned that Per-Martin Löf’s definition of computability is closely related to

Prawitz’s definition discussed below. However, although it was conceived earlier, Prawitz’s definition

is not merely an adaptation of it. For a discussion of this issue see Schroeder-Heister (2006).
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identify such an atomic system with a calculus in Lorenzen’s sense, although we are

aware that Prawitz from the very beginning uses a term-formula structure rather than

an arbitrary word structure. This difference is not really essential when it comes

to logic and logical constants. Here and in the following we speak of “derivations”

throughout, even though these ‘derivations’ are intended to carry a meaning and to

be epistemologically significant. The term “proof” will only be used in the context

of metalinguistic considerations. As the concept of a valid derivation presupposes a

neutral idea of derivation which includes invalid ones, by a derivation we understand

a tree-like structure composed of arbitrary inference steps which, in the context of

Prawitz-validity, may discharge assumptions. The introduction rules for the logical

connectives are considered to be valid by definition, i.e., introduction rules are “self-

justifying” in Dummett’s terminology (Dummett 1991, p. 251). Furthermore, it is

assumed that certain reduction procedures are available which reduce derivations to

other derivations of the same end formula (from the same or less open assumptions). In

a more elaborated form these procedures form a parameter of the definition of validity.

Here we assume for simplicity that they are implicitly fixed. Typically, the standard

reductions used in normalization proofs are assumed to be given, but other reductions

can be thought of as well. A derivation using an introduction rule in the last step is

called canonical.

Prawitz’s definition of validity

(i) Every closed derivation in the atomic system is valid.

(ii) A closed canonical derivation is valid, if its immediate subderivations are valid.

(iii) A closed noncanonical derivation is valid, if it reduces to a valid canonical deriva-

tion.

(iv) An open derivation
A1 . . . An

D
A

is valid, if for every list of closed valid derivations

Di

Ai

(1 ≤ i ≤ n), the derivation

D1 Dn

A1 . . . An

D
A

is valid.

The following three basic features of this definition deserve to be pointed out.

(i) The definition applies to derivations, not just to rules. The validity of a rule

A1 . . . An

A
results as a limiting case, if that rule is considered a one-step deriva-

tion with the open assumptions A1, . . . , An and the end formula A. This rule

is valid, if for all valid closed derivations
Di

Ai

(1 ≤ i ≤ n), the closed derivation
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D1 Dn

A1 . . . An

A

is valid. So the validity of a rule is explained in terms of the validity

of derivations, rather than the other way round, according to which a derivation

would be valid if it consists of applications of valid rules. In that whole deriva-

tions and not rules are the primary focus, Prawitz’s definition of validity is global

rather than local.

(ii) Closed derivations are semantically prior to open ones. A valid open deriva-

tion of A from A1, . . . , An is semantically interpreted as something that yields a

valid closed derivation of A when supplemented with valid closed derivations of

A1, . . . , An. This means that open assumptions in natural deduction derivations

are interpreted as placeholders for closed derivations. If we call closed derivations

categorical and open derivations hypothetical, we may speak of the priority of the

categorical over the hypothetical.

(iii) The definition of validity rests on the distinction between canonical and non-

canonical derivations. Canonical derivations are valid if they end with an intro-

duction step applied to valid premiss derivations, whereas non-canonical deriva-

tions are valid, if they reduce to valid canonical derivations. For this canonical

vs. non-canonical distinction it is crucial that a natural-deduction model of

derivation is chosen, as only there a genuine introduction rule for implication is

available.

Comparing Prawitz’s approach with Lorenzen’s, there are both similarities and differ-

ences.

Ad (i) Lorenzen’s approach is definitely no global. The validity predicate assigned

to him in Section 2.1 means the validity of a rule in the sense of its admissibility

— or the derivability of this rule read as a sentence in a meta-calculus — rather

than the validity of a derivation as a whole. When we described meta-calculi

as open systems, we nevertheless understood them as something in which to

proceed from axioms according to certain rules. So validity as derivability in

a meta-calculus ultimately requires the justification of certain inference rules.

However, this difference is not so big as it might appear at first glance. If we

consider a rule a one-step derivation, then the Prawitz-validity of this derivation

means essentially the same as admissibility: We have to demonstrate that it

does not extend the class of valid closed derivations, i.e. that it is admissible

as a rule with respect to this class.14 Conversely, we could extend Lorenzen’s

definition of the admissibility of a rule to that of the admissibility of a derivation

14This is made clear in Moriconi & Tesconi (2008). See also Schroeder-Heister (2008b).
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by considering any derivation
A1, . . . , An

D
A

of A from A1, . . . , An to be admissible,

if the rule A1, . . . , An →A is admissible. In practice, when applying Prawitz’s

definition of validity, the relevant reduction cases are the standard elimination

inferences, which are one-step derivations, and most of the more complicated

derivations would, even in Prawitz conception, be handled as composed of single

steps which are justified as separately. That a Prawitz-valid derivation establishes

a Lorenzen-valid sentence or rule, and vice versa, is shown in the appendix.

Ad (ii) In Lorenzen, too, closed derivations are primary as compared to open deriva-

tions. That A→B is admissible in K means that any application of A→B can

be eliminated from a closed derivation in K + {A→B}. Otherwise the crucial

distinction between admissible and derivable inference rules would break down.

In this respect both Lorenzen and Prawitz unequivocally belong to the intuition-

istic tradition of defining a construction in the categorical sense first and then

define a hypothetical construction by the transmission of the categorical concept.

This is, incidentally, also the position of classical semantics, in which the cat-

egorical concept of truth (in a structure) is defined first, and the hypothetical

concept of consequence is defined by reference to the transmission of truth. An

alternative position, which takes the concept of consequence primary, would go

beyond both Lorenzen’s and Prawitz’s conception of validity, and also beyond

the classical view of truth as the basis of consequence. Such ideas are developed

in Hallnäs (1991, 2006), Schroeder-Heister (1993, 2004, 2008a) and Schroeder-

Heister & Contu (2005).

Ad (iii) As the canonical vs. non-canonical distinction constitutes the fundamental

difference between the two approaches, this point is dealt with in a separate

section.

3.2 Implication and the canonical vs. non-canonical distinction

The distinction between canonical and non-canonical derivations, which figures promi-

nently in Dummett-Prawitz-style semantics, has an analogue in Lorenzen’s conception

only in the cases of conjunction and disjunction [and existential quantification], but

not in the case of implication [and negation and universal quantification]. For conjunc-

tion and disjunction proper introduction rules are given, and corresponding elimination

inferences are established by applying the inversion principle. The split between con-

junction/disjunction and implication is for Lorenzen one between proper and improper

connectives and constitutes a difference between proper calculi and improper meta-

calculi. For Lorenzen, establishing an implication A→B means either a reflection step

resulting from establishing the admissibility of the rule A→B, or by inferring A→B
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in the meta-calculus using inference principles available there (such as the universally

admissible rules like (I) – (III), or the inversion principle IP), which are themselves

based on such reflection steps. Semantically, Prawitz’s definition of validity is in the

same spirit, as the validity of an open derivation is defined in a way corresponding to

an admissibility statement. However, for Prawitz-validity it is crucial that for implica-

tion there is a formal canonical introduction step available in analogy to conjunction

and disjunction, namely the formal step from an open derivation
A
D
B

to the assertion

of A→B. This is a syntactical step within an extension of the basic system, which

is possible in a natural-deduction style framework permitting the discharging of as-

sumptions. The syntactic application of the → -introduction rule is different from any

semantic validity (or admissibility) claim. From the standpoint of Prawitz’s concep-

tion, Lorenzen’s introduction of implication as an assertion in the meta-calculus passes

directly to the semantical level. From the standpoint of Lorenzen’s conception, Prawitz

adds an intermediate syntactical step when defining the validity of a derivation of an

implication.

There are at least three points Prawitz can claim in his favour.

(i) Uniformity. Implication is treated on par with conjunction and disjunction. Cor-

respondingly, the inversion principle can be applied to generate the elimination

inferences for all logical constants, whereas in Lorenzen it applies only to conjunc-

tion and disjunction [and existential quantification], which are the distinguished

constants with explicit introduction rules.

Commentary. Uniformity is not a value in itself. Even according to Prawitz, the

distinguished character of implication remains present in the way open derivations

are handled. The natural-deduction-style introduction rule for → forces him to

combine the validity of open derivations with that of closed derivations in a joint

inductive definition, and to deal with the introduction rules at the same level as

the rules justified as valid. Lorenzen’s idea to interpret implication by a jump to

the meta-calculus separates these levels. For him the rule A∧B →A, as a rule

justified by the inversion principle, would reside as an axiom only in the meta-

calculus unlike the rule A, B →A∧B which ‘defines’ conjunction and is therefore

already available in the basic definitional extension of K.

(ii) Direct vs. indirect derivations. A basic feature of Dummett-Prawitz-style proof-

theoretic semantics is the distinction between direct and indirect closed deriva-

tions. A direct derivation arrives at its conclusion by means of a ‘self-justifying’

inference step and is thus called canonical, whereas an indirect derivation is one

that reduces (= can be transferred) to such a form and is called non-canonical.

The distinction between canonical and non-canonical derivations corresponds to
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the one between direct and indirect knowledge or evidence. This crucial episte-

mological distinction is lacking in Lorenzen in the case of implication.

Commentary. For implication a distinction between direct and indirect deriva-

tions can even be drawn within Lorenzen’s conception in a natural way. An

implication sentence A→B can be asserted (i) as an axiom of MK based on a

demonstration of the admissibility in K of the rule A→B, or (ii) by means of

a formal derivation in MK using axioms and rules already shown to be valid.

(i) is a direct derivation of A→B as it relies on a demonstration of admissibility,

whereas (ii) is an indirect derivation as it relies on other admissibility demon-

strations carried out beforehand, e.g., on proofs that certain rules are universally

admissible. An indirect derivation according to (ii) has the feature that it reduces

to a direct one according to (i) by spelling out the admissibility proofs relied on,

thus arriving at an admissibility proof of A→B. So the postulate that there be a

direct vs. indirect distinction does not speak unequivocally in favour of Prawitz.

(iii) Behaviourally significant knowledge of meaning. Proof-theoretic semantics in the

Dummett-Prawitz tradition is an epistemological approach to semantics, accord-

ing to which we must distinguish between mere knowledge of meaning and infer-

ences correctly drawn on the basis of this knowledge. This knowledge of meaning

must manifest itself in observable behaviour. This manifestation is the correct ap-

plication of introduction inferences. It presupposes that introduction inferences

are solely structurally and thus syntactically specified, and therefore decidable

patterns. This condition is not met in Lorenzen, as even the ‘direct’ establish-

ment of an implication such as A∧B →A is not a syntactical step but rests on

the insight into a (elimination) procedure.

Commentary. This is the decisive argument against Lorenzen’s treatment of im-

plication. As Lorenzen requires even of a most direct derivation of an implication

sentence that an admissibility proof be carried out, there is no behaviourally sig-

nificant way of showing that a reasoner knows the meaning of implication. The

proper epistemological approach demands that a certain part of the semantically

correct usage be behaviourally significant. Syntactically specified introduction

rules satisfy exactly this requirement. In a Gentzen-style introduction rule for

implication the conclusion A→B captures a structural feature of the deduction,

namely that there is a derivation of B from A, still independent of whether this

hypothetical derivation itself is valid, quite analogously to the fact that, e.g.,

the introduction rule for a conjunction A∧B captures the structural feature

that there is a pair of derivations, one of A and one of B, still independent of

the validity of the derivations of A and B themselves. Even though in Dummett-

Prawitz-semantics the validity of a hypothetical derivation is defined by reference
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to a transformation procedure, i.e., in a way closely related to admissibility, the

canonical derivation of the corresponding implication is based on a separate syn-

tactical step from a hypothetical derivation to a derivation of an implication. For

example, though the validity of the one-step derivation

A∧B

A

rests on a transformation, establishing the implication A∧B →A rests on an

additional canonical introduction step:

[A∧B](1)

A
(1)

A→B

Dummett-Prawitz-semantics is based on a subtle analysis of the epistemological

content of a derivation which goes beyond the standard intuitionistic way em-

bodied in BHK-semantics and in Lorenzen-style semantics. Like BHK-semantics,

Lorenzen’s semantics of implication is an attempt to give an epistemological se-

mantics of implication without paying sufficient respect to the way knowledge

of meaning manifests itself. Although Lorenzen puts much emphasis on the

operative handling of syntactic figures, the manifestation-free intuitionistic epis-

temology is not overcome by Lorenzen.

3.3 Lorenzen’s way out: Dialogue games

Lorenzen’s turn away from operative logic to dialogical logic and game-theoretical

semantics can be seen as a way out of these deficiencies. As dialogue semantics dis-

tinguishes between matters of games and matters of strategies, we can assign the

knowledge of meaning to the game level and the validity of consequence statements to

the strategy level. Someone who masters the syntactically specified game rules for the

logical connctives would be considered to know their meaning, whereas the availability

of a strategy, which needs the handling of a constructive procedure (thus resembling

admissibility), would be responsible for the logical facts which turn out to hold. There

are some indications in Lorenzen’s texts supporting this view.15

If this is correct, then both Dummett-Prawitz-style proof-theoretic semantics and

Lorenzen-style dialogical semantics would be ways out of the shortcomings of the op-

erative approach (and of the intuitionistic BKH-approach as well). Both Dummett-

Prawitz semantics and dialogical semantics would be epistemological approaches doing

justice to the requirement of a behavioural manifestation of meaning.

15See Lorenzen (1961) and Lorenz (2001).
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4 Appendix: Prawitz-validity vs. Lorenzen-validity

First we define a translation which assigns to each sentence and rule of positive propo-

sitional logic a level-n-sentence in Lorenzen’s sense, which essentially means equalizing

unequal implication levels. Let
m
→ denote the m-fold iteration of the arrow, and let

`(A) := n, if A is a Lorenzen-style level-n-sentence (i.e., `(A) is the level of A).

Translation of sentences of positive propositional logic into Lorenzen-style sentences:

A′ := A, if A is atomic.

(A �B)′ :=
m
→ A′

�
n
→ B′,

where m= max(0, `(B′) − `(A′)), n = max(0, `(A′) − `(B′)), if � is ∧ or ∨ .

(A1, . . . , Ak →Ak+1)
′ :=

m1→ A′

1, . . . ,
mk→ A′

k
→

mk+1

→ A′

k+1

where mi = max(0, max(`(A′

1), . . . , `(A
′

k+1)) − `(A′

i
))

Conversely, to each level-n-sentence in Lorenzen’s sense we assign a sentence of positive

propositional logic, which essentially means replacing the comma by conjunction and

removing rules without premisses:

Translation of Lorenzen-style sentences into sentences of positive propositional logic:

A∗ := A, if A is atomic.

(A �B)∗ := A∗
�B∗, if � is ∧ or ∨ .

(A1, . . . , Ak →A)∗ := A∗

1 ∧ . . . ∧A∗

k
→ A∗

(→A)∗ := A∗

We assume that the notions of validity are relativized to a fixed atomic calculus K

and that the definitional extension D considered for Lorenzen-validity contains the

introduction rules for conjunction and disjunction at every level, and nothing else.

Then we can show the following:

Theorem. For all sentences of positive propositional logic A1, . . . , Ak, A the following

holds:

(i) There is an open Prawitz-valid derivation
A1, . . . , Ak

D
A

iff (A1, . . . , Ak →A)′ is

Lorenzen-valid.

(ii) There is a closed Prawitz-valid derivation D
A

iff A′ is Lorenzen-valid.

Proof. We first remark that the second assertion can be viewed as a special case of the

first one for empty k = 0, since →A is a Lorenzen-valid level-(n + 1)-sentence [i.e.,

a rule admissible in MnK] iff A is a Lorenzen-valid level-n-sentence [i.e., a sentence

derivable in MnK]. We prove (i) simultaneously by induction on the complexity of
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A1, . . . , Ak, A. For a closed derivation of an atomic sentence, which is a derivation in

K, nothing is to show.

Suppose A is a conjunction A1 ∧A2, and a closed Prawitz-valid derivation of A is

given. Then according to the definition of Prawitz-validity, this derivation reduces to

one of A using ∧ -introduction in the last step. We apply the induction hypothesis to its

premiss derivations and obtain Lorenzen-style derivations of A′

1 and A′

2 in appropriate

meta-calculi. If they are of unequal levels, we use lifting to obtain derivations of
m1→ A′

1 and
m2→ A′

2 in the same meta-calculus, from which by ∧ -introduction in this

meta-calculus we obtain A′. Conversely, if A′

1 ∧A′

2 is Lorenzen-valid, then there is a

Lorenzen-style derivation in the appropriate meta-calculus using the ∧ -introduction

rule in the last step. From its premiss derivations we obtain derivations of A′

1 and A′

2

(using downlifting if necessary). Application of the induction hypothesis gives us closed

Prawitz-valid derivations of A1 and A2, and thus a closed Prawitz-valid derivation of

A by means of ∧ -introduction. — If A is a disjunction, we argue analogously.

Suppose A is an implication A1 →A2, and a closed derivation of A is given. Then

this derivation is — or reduces to — a derivation using → -introduction in the last

step, with a Prawitz-valid derivation
A1

D
A2

as its premiss. By induction hypothesis we

know that (A1 →A2)
′ is Lorenzen-valid. Conversely, suppose that (A1 →A2)

′ is a

Lorenzen-valid level-(n + 1)-sentence, i.e., that it is derivable in Mn+1K. We know

that (A1 →A2)
′ has the form

m1→ A′

1 →
m2→ A′

2 for appropriate m1 and m2, i.e., that

it is an atomic level-(n + 1)-sentence, i.e., that it has the form of a level-(n + 1)-rule.

Therefore, its derivability in Mn+1K implies that it is (as a rule) admissible in MnK,

i.e., we can transform every derivation (in MnK) of
m1→ A′

1 into one of
m2→ A′

2. Since

by induction hypothesis we know that, if there is a closed valid Prawitz-derivation D′

A1

,

then A′

1 is Lorenzen-valid, i.e. derivable in the appropriate metacalculus, we also know

(by lifting) that, if there is a closed valid Prawitz-derivation D′

A1

,
m1→ A′

1 is derivable in

MnK. Transforming this derivation into one of
m2→ A′

2, and observing that this yields

a derivation of A′

2 in the appropriate meta-calculus (using downlifting, if necessary),

by induction hypothesis we obtain a closed Prawitz-valid derivation of A2. This yields

a closed Prawitz-valid derivation of the form

[A1]

A2

A1 →A2

where the one-step derivation from A1 to A2 is justified by the procedure just described.

Now suppose there is an open Prawitz-valid derivation
A1, . . . , Ak

D
Ak+1

. To show

that (A1, . . . , Ak →Ak+1)
′ is Lorenzen-valid, we suppose that (A1, . . . , Ak →Ak+1)

′ is a

level-(n+1)-sentence and that derivations in MnK of
m1→ A′

1, . . . ,
mk→ A′

k
are given. By
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downlifting (if necessary), we know that there are derivations of A′

1, . . . , A
′

k
in appro-

priate meta-calculi, which means that A′

1, . . . , A
′

k
are Lorenzen-valid. By induction hy-

pothesis there are closed Prawitz-valid derivations
D1

A1

,. . .,
Dk

Ak

. Combining them with the

open Prawitz-valid derivation which is given, yields a closed Prawitz-valid derivation of

Ak+1, from which by induction hypothesis we conclude that A′

k+1 is Lorenzen-valid. By

applying lifting (if necessary), we obtain that
mk+1

→ A′

k+1 is Lorenzen-valid, i.e., deriv-

able in MnK. Conversely, suppose that (A1, . . . , Ak →Ak+1)
′ is Lorenzen-valid. Then

we know that, for some n, (A1, . . . , Ak →Ak+1)
′ is an an atomic level-(n + 1)-sentence

of the form
m1→ A′

1, . . . ,
mk→ A′

k
→

mk+1

→ A′

k+1. Since it is derivable in Mn+1K, it is

(as a rule) admissible in MnK, i.e., we can transform every list of derivations in MnK

of the level-n-sentences
m1→ A′

1, . . . ,
mk→ A′

k
into a derivation in MnK of

mk+1

→ A′

k+1.

By applying the induction hypothesis (and lifting, if necessary), we obtain a proce-

dure which transforms every list of closed Prawitz-valid derivations
D1

A1

,. . .,
Dk

Ak

into a

closed Prawitz-valid derivation of Ak+1. Thus the open one-step derivation
A1 . . . Ak

Ak+1

is Prawitz-valid.

Theorem. A level-n-sentence A is Lorenzen-valid iff for the sentence A∗ there is a

closed Prawitz-valid derivation.

Proof. This follows from the previous result by observing that for any level-n-sentence

A, we have that (A∗)′ is the same as A modulo lifting, i.e., modulo replacing subsen-

tences B with a lifted form
k
→ B.
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