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Prawitz conjectured that intuitionistic first-order logic is complete with respect to a no-

tion of proof-theoretic validity [1,2,3]. We show that this conjecture is false. The notion of
validity obeys the following standard conditions, where S refers to atomic bases (systems of
production rules):
1. �S A ∧ B ⇐⇒ �S A and �S B . 4. Γ � A ⇐⇒ For all S: (�S Γ=⇒ �S A).
2. �S A ∨ B ⇐⇒ �S A or �S B . 5. If Γ � A and Γ, A �S B , then Γ �S B .
3. �S A→ B ⇐⇒ A �S B .

Any semantics obeying these conditions satisfies the generalized disjunction property:

For every S: if Γ �S A ∨ B , where ∨ does not occur positively in Γ, then either
Γ �S A or Γ �S B .

This implies the validity (�) of Harrop’s rule ¬A→ (B ∨C )/(¬A→B)∨ (¬A→C ), which
is admissible but not derivable in intuitionistic logic.
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The principle of definition by recursion on a wellfounded relation [1], can be stated as

follows: Let A be any set and let P be the set of all partial functions from A to some set B .
Let G : A× P → B be any function and let R ⊆ A× A be any binary relation.
Fact 1 (Montague): IfR is wellfounded onA then there exists a unique functionf: A→ B

such that

∀x ∈ A (f(x) = G(x, f �xR)), (1)

where xR = {y ∈ A | y R x}.
If R is not wellfounded on the entire domain A, an obvious way of extending this method

of definition is to identify a proper subsetW of A on which R is wellfounded and to apply
the principle to this set. The usual choice forW is the wellfounded part of R, defined as the
set of all R-wellfounded points of A.
In my talk, after examining several different strategies to prove Fact 1, I will present a

new approach to extend this method of definition to all kinds of binary relations. We look at
subsets X of A on which R is not necessarily wellfounded, yet there exists a unique function


