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Abstract
In the tradition of Dummett-Prawitz-style proof-theoretic semantics,
which considers validity of derivations or proofs as one of its core
notions, this paper sketches an approach to proof-theoretic validity
based on elimination rules and assesses its merits and limitations.
Some remarks are made on alternative approaches based on the
idea of dualizing connectives and proofs, as well as on definitional
reflection using elimination clauses.

1 Introduction
Following Gentzen’s dictum that “the introductions represent so-to-speak
the ‘definitions’ of the corresponding signs” (Gentzen, 1934/35, p. 189),
many approaches to proof-theoretic semantics (see Schroeder-Heister,
2012b) consider introduction rules to be basic, meaning giving, or self-
justifying, whereas the elimination inferences are justified as valid with
respect to the given introduction rules. The roots of this conception are
threefold: First there is a verificationist theory according to which assert-
ibility conditions of a sentence constitute its meaning. This seems to un-
derly not only to a large extent the semantic conceptions of Dummett and
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Prawitz, which are the most developed ones in this respect, but the whole
movement of intuitionism. Even if it is not directly connected to the verifi-
cationism of the early Wittgenstein and the Vienna circle, there are strong
reminiscences of their positions in verificationist proof-theoretic seman-
tics. There is a justificationist and verificationist bias in certain branches
of constructive semantics and philosophy of mathematics. The second
point is the idea that we must distinguish between what constitutes the
meaning and what are the consequences of this meaning, in order to cope
with the ‘paradox of inference’ (Cohen & Nagel, 1934, Ch. 9, § 1); see the
discussion in Dummett (1975). For an inference to be informative, not
every inference can be definitional. The informative inferences are estab-
lished by reflection on the meaning of the expressions involved, without
being meaning-constituting themselves. Whereas introduction steps are
meaning giving, the remaining valid inferences give novel insight beyond
what is ‘definitionally’ already contained in the premisses. The third point,
which is closely connected to the first, is the primacy of assertion over
other speech acts such as assuming or denying, which is implicit in most
approaches to proof-theoretic semantics. In Prawitz’s definition of validity,
and in intuitionistic semantics in general, assumptions are placeholders
for proofs or constructions, and negation is reduced to implying absurdity.
This yields a general bias towards positive forward reasoning, which is
reflected in the primacy of forward-directed introductions (for a criticism
of this approach see Schroeder-Heister, 2012a). To some extent this view
is also implicit in the clause-based theory of definitional reflection (Hall-
näs, 1991; Schroeder-Heister, 1993), as clauses are directed from bodies
to heads, that is, from defining conditions towards defined atoms. The
non-determinism in clauses, i.e., the fact that several clauses may define
the same atom (which in logic we have, for example, with the introduc-
tion rules for disjunction) emphasizes this directedness. Whereas the use
of a single clause is simply the application of a definition, definitional re-
flection extracts additional content from an expression with respect to the
definition as a whole, which can be viewed as generating valid informative
inferences.

The division between introductions and eliminations suggests to ex-
change their roles and thus to consider elimination rules rather than intro-
duction rules as the basis of proof-theoretic semantics. Such an approach
would be nearer to a falsificationist methodology in Popper’s sense. The
philosophical problems and shortcomings of verificationism, which cannot
be discussed here, would be strong arguments in favour of this alterna-
tive. The second point mentioned in the previous paragraph is indifferent
with respect to the primacy of introduction or elimination rules, as it only
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says that there must be one part of the rules which is meaning giving and
another one which is informative, so one may as well choose the elimi-
nation rules as meaning giving. The third point, the primacy of assertion,
would be replaced with the Popperian claim that conjectures and therefore
assumptions are primary to assertions.

This possibility has been intensively discussed by the main advocates of
verificationist semantics. In Dummett it often runs under the heading of
a ‘pragmatist’ theory of meaning and has received considerable credit in
some of his publications such as Dummett (1976)1. Some technical ideas
towards a proof-theoretic semantics based on elimination rather than in-
troduction rules have been sketched by Dummett (1991, Ch. 13). A pre-
cise definition of validity based on elimination inferences is due to Prawitz
(1971, 2007). In slightly improved form, it will be presented in Section 3.
As its background, we recall the validity definition based on introduction
rules.

2 The introductions-based approach: Derivation
structures, justifications and atomic systems

The definition of validity refers to a general notion of derivation struc-
tures and reductions that justify derivations, as well as to atomic systems.
We refer to the version that is given in Schroeder-Heister (2006, 2012b),
which is an interpretation of Prawitz’s notion of proof-theoretic validity.
We consider only the constants of positive propositional logic (conjunc-
tion, disjunction, implication). We assume that an atomic system S is given
as determining the derivability of atomic formulas, which is the same as
their validity. A formula over S is a formula built up by means of logical
connectives starting with atoms from S. We want to define the valid-
ity of a derivation which proceeds from formulas over S as assumptions
to a formula over S as conclusion. Such a derivation is not necessarily
a derivation in a given formal system: We want to tell of an arbitrary
derivation whether it is valid or not. We propose the term “derivation
structure” for such an arbitrary derivation. (Prawitz uses various termi-
nologies, such as “[argument or proof] schema” or “[argument or proof]
skeleton”.) Derivation structures are candidates for valid derivations. More
precisely, a derivation structure is a formula tree which resembles a natu-
ral deduction tree with the difference that it is composed of arbitrary rules.
Such rules can have arbitrary and arbitrarily many premisses, and each

1However, the main theses of this paper were withdrawn in the preface to Dummett
(1993).
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premiss may depend on assumptions which are discharged at this step. So
the general form of an inference rule is the following, where the square
brackets indicate assumptions which can be discharged at the application
of the rule:
[C11, . . . , C1m1 ]

A1 . . .
[Cn1, . . . , Cnmn ]

An ,
B

in short:
[Γ1]

A1 . . .
[Γn]

An .
B

Obviously, the standard introduction and elimination rules are particular
cases of such rules. As a generalization of the standard reductions of
maximal formulas it is supposed that certain reduction procedures are
given. A reduction procedure transforms a given derivation structure into
another one. A set of reduction procedures is called a derivation reduc-
tion system and denoted by J . Reductions serve as justifying procedures
for non-canonical steps. These are steps, which are not self-justifying,
i.e., which are not introduction steps. Therefore a reduction system J is
also called a justification. Reduction procedures must satisfy certain con-
straints such as closure under substitution. As the validity of a derivation
not only depends on the atomic system S but also on the derivation re-
duction system used, we define the validity of a derivation structure with
respect to the underlying atomic basis S and with respect to the justifica-
tion J . A canonical derivation structure is a derivation structure which
uses an introduction rule in the last step. It is called open, if it depends on
undischarged assumptions, otherwise it is called closed.
Definition: Validity based on introduction rules

(i) Every closed derivation in S is S-valid with respect to J (for every
J ).

(ii) A closed canonical derivation structure is S-valid with respect to
J , if its immediate substructure A

D
B

is S-valid with respect to J .

(iii) A closed non-canonical derivation structure is S-valid with respect
to J , if it reduces, with respect to J , to a canonical derivation
structure, which is S-valid with respect to J .

(iv) An open derivation structure
A1 . . . An

D
B

, where all open assump-
tions of D are among A1, . . . , An, is S-valid with respect to J , if for
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every extension S′ of S and every extension J ′ of J , and for ev-
ery list of closed derivation structures Di

Ai
(1 ≤ i ≤ n), which are

S′-valid with respect to J ′,
D1 Dn

A1 . . . An

D
B

is S′-valid with respect to

J ′.

(See Prawitz, 1973, p. 236; 1974.; p. 73; 2006).
In clause (iv), the reason for considering extensions J ′ of J and of

extensions S′ of S is a monotonicity constraint. Derivations should re-
main valid if one’s knowledge incorporated in the atomic system and in
the reduction procedures is extended. The consideration of such exten-
sions, which can be found in Prawitz (1971), is a point of deviation of this
exposition from later definitions given by Prawitz.

The S-validity of a generalized inference rule
[Γ1]

A1 . . .
[Γn]

An

B

with respect to a justification J means that for all derivations
Γ1

D1

A1

, . . . ,
Γn

Dn

An

,
which are S′-valid with respect to J ′ for extensions S′ and J ′ of S and J ,
respectively, the derivation

(1)
[Γ1]

D1

A1 . . .

(1)
[Γn]

Dn

An (1)
B

is S′-valid with respect to J ′. For a simple inference rule
A1 . . . An

A

this means that it is valid with respect to J , if the one-step derivation
structure of the same form is S-valid with respect to J .

This gives rise to a corresponding notion of consequence (see also
Prawitz, 1985). Instead of saying that the rule

A1 . . . An

A
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is S-valid with respect to J , we may say that A is a consequence of
A1, . . . , An with respect to S and J (A1, . . . , An |=S,J A). If this holds
for any S, we may speak of universal consequence with respect to J
(A1, . . . , An |=J A); and finally, if there is some J such that we have uni-
versal consequence with respect to J , then we may speak of logical con-
sequence (A1, . . . , An |= A).

If for J we choose the standard reductions of intuitionistic logic, then
all derivations in intuitionistic logic are valid with respect to J , thus estab-
lishing the soundness of intuitionistic logic with respect to introductions-
based proof-theoretic semantics. We may ask if the converse holds, namely
whether, given that a derivation D is valid with respect to some J , there is
a derivation in intuitionistic logic with the same end-formula and without
any open assumptions beyond those already open in D. That intuitionis-
tic logic is complete in this sense has been conjectured by Prawitz (see
Prawitz, 1973, 2014). This conjecture is not without problems as results by
Sandqvist (2009) and Piecha et al. (2014) indicate.

3 Validity based on elimination rules
In the approach based on elimination rules, the elimination inferences
are considered ‘self-justifying’, and the introduction rules are justified with
respect to them. The reductions need not to be changed for that pur-
pose. The standard reductions for the logical constants can serve for the
justification of the introductions from the eliminations as well. However,
additional reductions must be considered which correspond to the permu-
tative reductions in natural deduction. In this section, we speak of validityEas validity based on elimination rules in contradistinction to validityI as va-
lidity based on introduction rules.

The idea behind validityE is that, if all applications of elimination rules
to the complex end-formula A of a derivation structure D yield S-validEderivation structures or reduce to such (with respect to a justification J ),
then D is itself S-validE (with respect to J ). This suggests the following
definition for positive propositional logic:
Definition: Validity based on elimination rules
(i) Every closed derivation in S is S-validE with respect to J (for every

J ).
(ii∧) A closed derivation structure D

A∧B is S-validE with respect to J ,
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if the closed derivation structures D
A∧B
A

and D
A∧B
B

are S-validE

with respect to J , or reduce to derivation structures, which are
S-validE with respect to J .

(ii→ ) A closed derivation structure D
A→B

is S-validE with respect to
J , if for every extension S′ of S and for every extension J ′ of J , and
for every closed derivation structure D′

A
, which is S′-validE with

respect to J ′, the (closed) derivation structure D
A→B

D′
A

B
is

S′-validE with respect to J ′, or reduces to a derivation structure,
which is S′-validE with respect to J ′.

(ii∨) A closed derivation structure D
A∨B is S-validE with respect to J ,

if for every extension S′ of S and every extension J ′ of J , and
for all derivation structures

A
D1

C

and
B
D2

C

with atomic C , which
are S′-validE with respect to J ′ and which depend on no assump-
tions beyond A and B, respectively, the (closed) derivation struc-

ture
D

A∨B

(1)
[A]

D1

C

(1)
[B]

D2

C (1)
C

is S′-validE with respect to J ′, or

reduces to a derivation structure, which is S′-validE with respect
to J ′.

(iii) A closed derivation structure D
A

of an atomic formula A, which is
not a derivation in S, is S-validE with respect to J , if it reduces
with respect to J to a derivation in S.

(iv) An open derivation structure
A1 . . . An

D
B

, where all open assump-
tions of D are among A1, . . . , An, is S-validE with respect to J , if
for every extension S′ of S and every extension J ′ of J , and for
every list of closed derivation structures Di

Ai
(1 ≤ i ≤ n), which are
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S′-validE with respect to J ′,
D1 Dn

A1 . . . An

D
B

is S′-validE with respect

to J ′.

Clause (iv) is identical with clause (iv) in the definition of introductions-
based validity in Section 2, i.e., open assumptions in derivations are in-
terpreted in the same way as before, namely as placeholders for closed
valid derivations. Note that clause (iii) is needed, as we do not have here
the notion of a canonical derivation. In the definition of validity based on
introduction rules, the case considered in clause (iii) was a special case of
non-canonical derivations. Clauses (i) and (iii) can be conjoined to form
the single clause

(i/iii) A closed derivation structure D
A

of an atomic formula A is S-
validE with respect to J , if it reduces with respect to J to a deriva-
tion in S.

The validityE of an inference rule as well as the notions of consequence
and logical consequence are defined exactly as in the introductions-based
approach of Section 2.

It is crucial that the minor premisses C in the application of ∨-elimina-
tion (and similarly for ∃-elimination, if we deal with quantifiers) are atomic,
otherwise the induction over the end-formulas of derivations, on which
this definition is based, would break down. Prawitz (1971, Appendix A.2),
eliminations-based definition of validity was without clauses for disjunction
(and existential quantification), as he had not been aware at the time that
for the purpose of defining validity the restriction to atomic C is sufficient
(repeated in Schroeder-Heister, 2006). The revised proposal with atomic
C was published in Prawitz (2007). There he refers to the fact that also
Dummett (1991, Ch. 13), in his remarks on a “pragmatist” theory of mean-
ing with an inverse justification based on elimination rules uses atomic C .
The fact that one can do without complex C is closely related to the fact
that the definability of first-order logical constants in second-order propo-
sitional ∀→ -logic, which was first observed by Prawitz (1965, Ch. 5), can
already be obtained in predicative second-order ∀→ -logic in the sense
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that the latter proves the introduction and elimination rules for the de-
fined connectives as shown by Ferreira (2006, see also Ferreira & Ferreira
2013)2.

The condition “or reduces to a derivation structure, which is S′-validEwith respect to J ′” at the end of clauses (ii→ ), (ii∧), (ii∨) is called the ‘re-
duction condition’. It corresponds to the basic intuition of proof-theoretic
validity semantics that a derivation is valid, if it is of a certain form or
reduces to such a form. It simplifies certain proofs such as that of the
validityE of the introduction inferences. However, it can be omitted with-
out loss of definitional power, since both with and without the reduction
condition we can show that a derivation structure is validE if and only if
it reduces to a validE derivation structure. In fact, in the original notion
of validityE envisaged by Dummett and defined by Prawitz (and also in
corresponding notions of computability) the notion of reduction does not
come in until the atomic stage is reached. In any case a reduction condi-
tion must be contained in clause (iii) which governs derivations of atomic
sentences.

The standard reductions, which remove maximum formulas, are not
sufficient to show that all introduction and elimination rules are valid. Due
to the restriction that C must be atomic, we now have to justify in particular
the ∨-elimination rule for nonatomic C . For that we need reductions,
which correspond to permutative reductions in natural deduction. For
example, in order to show that

D
A∨B

(1)
[A]

D1

C1∧C2

(1)
[B]

D2

C1∧C2 (1)
C1∧C2

is valid, given that D, D1 and D2 are valid, we need to use reductions
according to which

D
A∨B

(1)
[A]

D1

C1∧C2

(1)
[B]

D2

C1∧C2 (1)
C1∧C2

Ci

reduces to
D

A∨B

(1)
[A]

D1

C1∧C2

Ci

(1)
[B]

D2

C1∧C2

Ci (1)
Ci .

2This fact was independently discovered by Sandqvist.
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The rule of importation

(Rimp)
A→ (B→C)

A∧B→C

is an instructive example to compare the justifications based on validityIvs. validityE . For validityE , we would now need the following reduction as
a justification:

D
A→ (B→C)

A∧B→C
D′
A∧B

C
reduces to

D
A→ (B→C)

D′
A∧B
A

B→C

D′
A∧B
B

C .
We do not need any of the standard reductions, which means that impor-
tation is valid with respect to the justification consisting of this reduction
alone.

In order to justify (Rimp) with respect to validityI , we would rely on a
similar reduction:

D
A→ (B→C)

A∧B→C

reduces to
D

A→ (B→C)

(1)

[A∧B]

A

B→C

(1)

[A∧B]

B
C (1)

A∧B→C .
However, we would need to use in addition the standard reductions of
conjunction and implication in order to justify the (∧E) and (→E) steps
involved (see the supplement to Schroeder-Heister, 2012b). In both cases
we must use a reduction that unfolds a single step into a succession of
more elementary steps.

It is not entirely clear which logic we obtain by the eliminations-based
approach. From the remarks above it is clear that we can justify the rules
of intuitionistic logic, which means that intuitionistic logic is sound with
respect to this semantics. In view of our definitional clause for disjunction,
it is natural to consider atomic second-order propositional logic Fat as
the formal system corresponding to eliminations-based semantics. This
system, in which A∨B is interpreted as ∀X((A→X)→ ((B→X)→X)),
where the universal quantifier runs over atomic propositions only, has
been studied by Ferreira (2006). Though it does not contain disjunction
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as a primitive sign, it satisfies the disjunction property for the second-
order interpretation of disjunction. In fact, Ferreira & Ferreira (2014) could
show that it is equivalent to intuitionistic logic. However, whether Fat

and thus intuitionistic logic is complete with respect to eliminations-based
semantics is not obvious and can be questioned. As mentioned before,
there are arguments that problematize Prawitz’s completeness conjecture
for intuitionistic logic with respect to introductions-based proof-theoretic
semantics. Depending on certain assumptions about the form of atomic
systems and on the way of dealing with hypothetical proofs3, there are
actually counterexamples to completeness (see Piecha et al., 2014; Piecha,
2015). These counterexamples can be adapted to the eliminations-based
approach, as the handling of atomic systems and hypothetical proofs does
not differ between the two approaches.

It should be remarked that there is a notion of computability based
on elimination rules used in proofs of (strong) normalization which corre-
sponds to the eliminations-based notion of validity. Actually, this notion is
more common in presentations of this topic than computability based on
introductions-based(see, for example, Troelstra & Schwichtenberg, 2000,
Ch. 6.6).

4 Co-implication and other alternatives
The intuition behind the approach based on elimination rules is that a
derivation is valid, if the result of the application of each possible elim-
ination rule to its end-formula is valid. This means that even a closed
derivation is not valid due to its actual form or to the form to which it can
be reduced (as in the introductions-based approach), but due to appending
further inference steps to it. Its validity depends on that of the immediate
consequences we can reach starting with this derivation. So one might call
it a consequentialist view of validity. This is an original approach, which
brings a fresh idea into proof-theoretic validity. It must be noted, however,
that basic tenets of introductions-based validity concepts are kept. Among
those is the primacy of closed derivatons and the interpretation of open
derivations. In both validity conceptions the definition of validity starts
with closed derivations. And in both conceptions the validity of an open
derivation is defined via the substitution of closed derivations for the open
assumptions in open derivations, as expressed by the fact that clause (iv)
of the definition of validity, which deals with open derivations, is identical

3All counterexamples assume that we consider arbitrary extensions of atomic systems
when interpreting hypothetical proofs — an assumption now longer made by Prawitz.
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in both of them. This means that both are biased towards assertions (by
means of closed derivations), whereas assumptions are just placeholders
for what can be asserted by means of closed derivations. It is assertions
which, in the eliminations-based approach, are justified by their conse-
quences. It is definitely not the case that assumptions receive a stronger
stance in this sort of theory.

Therefore the approach sketched here is not the only possible and per-
haps not even the most genuine way of putting elimination rules first. An
eliminations-based approach which reverses the conceptual priority be-
tween assertions and assumptions would be one which considers deriva-
tions from assumptions to be primary. Such an approach can be obtained
by dualizing the introductions-based approach by putting “deriving from”
rather than “deriving of” in front. One would then develop ideas such
as the following: A closed derivation from A should be a derivation of
absurdity from A (corresponding to the fact that a closed derivation in
the standard conception can be viewed as a derivation from truth), and a
derivation A

D
B

should be justified, if, for every closed valid derivation B

D′

from B,
A
D
B

D′
is a closed valid derivation from A. A full dualization would

even lead to some variant of a single-assumption/multiple-conclusion logic,
whose derivations are branching downwards rather than upwards. A
closed derivation from A, in which all downward branches end with ab-
surdity, might be called a closed refutation of A. If one of these branches
ends with a formula B different from absurdity, it is an open refutation
of A in the sense that replacing B with a closed refutation of B yields a
closed refutation of A. Such approaches would lead to rules for logical
constants which are dual to the standard ones. Conjunction (as the dual
of disjunction) would be the constant that is canonically refuted by a refu-
tation of A as well as by one of B, disjunction (as the dual of conjunction)
would be the constant that is canonically refuted by a refutation of both A
and B etc. Co-implication would come in as the dual of implication, which
is canonically refuted by an open refutation of B to A, that is, of B given a
refutation of A, and so on. This leads essentially to an approach in which
usual derivation trees are written upside down, the concept of derivation
is interchanged with that of refutation, etc. It corresponds to a system of
dual-intuitionistic logic, in which connectives are replaced with their duals,
and in particular implication by co-implication. However, structurally, the

12
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standard approach and its dual are the same — writing derivations upside
down is not really an essential change. So if we want to obtain any con-
ceptual gain from the consideration of dual concepts, we should be able
to develop a joint system for both notions. A genuine elimination-rule ap-
proach might be desirable if one wanted to logically elaborate ideas like
Popper’s falsificationism by establishing refutation as the basis of reason-
ing. However, it is still not entirely clear what such an approach, which
was already discussed by Popper (1948) and whose proof theory was ini-
tiated by Prawitz (1965, Appendix B.2), should look like formally. It would
be a justification of what is now called ‘bi-intuitionistic logic’, which in-
corporates both implication and co-implication (see Wansing, 2008, 2013;
Tranchini, 2012; Kapsner, 2014, and the references therein).4

Under normal circumstances, multiple-conclusion proof systems go be-
yond intuitionistic logic. However, by means of certain restrictions con-
cerning the dependencies between formulas, constructivity in the intuition-
istic sense can be enforced. Such systems have been studied by de Paiva
& Pereira (1995, 2005). It would be a worthwhile task to turn this idea
into some form of proof-theoretic semantics, which keeps track of such
dependencies in the form of semantic conditions.

5 Consequentialism and definitional reflection
Definitional reflection adapts basic ideas concerning harmony and inver-
sion from the logical realm to the realm of clausal definitions of atoms,
inspired by a proof-theoretic interpretation of logic programming (Hallnäs,
1991; Schroeder-Heister, 1993, 2012b). In the simplest case, a definition is
a finite list of clauses of the form

b1, . . . , bn ⇒ a

where b1, . . . , bn, a are atoms. A finite set of clauses with the same head a




b11, . . . , b1n1⇒ a...
bk1, . . . , bknk

⇒ a

is called a definition of a. Then the rules of definitional closure says
that we may pass along any definitional clause from its body to its head,

4A proof-theoretic approach, which does not consider co-implication but mixes standard
implication with conjunction and disjunction (which are dual to one another) is hinted at
in Dummett (1991, Ch. 13), and has been worked out (and improved) in detail by Litland
(2012).
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yielding rules
bi1 . . . bin1

a
. . . bk1 . . . bknk

a

which correspond to introduction rules in logic. The powerful rule of
definitional reflection says that anything that can be obtained from each
defining condition of a can be obtained from a itself, which corresponds
to the idea of elimination inferences:

a

[b11, . . . , b1n1 ]

C . . .

[bk1, . . . , bknk
]

C
C .

Even though the rules of definitional closure and reflection come as a pair,
without any of them primary over the other, there is some implicit bias
towards introductions since clauses are directed. Definitional closure is
interpreted as expressing the direction from definiens to definiendum, and
definitional reflection as expressing the opposite direction. Changing this
bias and inverting it, would have to be a radical reform of what a definition
looks like. We would then have to consider ‘consequential’ clauses which
determine the consequences of a given atom, such as





a⇒ b1...
a⇒ bm .

Definitional closure would then express reasoning along these consequen-
tial clauses

a

b1
. . .

a

bm

which correspond to elimination inferences, and definitional reflection
would be an introduction rule telling that a can be introduced from all
possible definitional consequences taken together

b1 . . . bm

a .
To make this approach reasonably expressive, we would have to consider
also complex conclusions of consequential clauses rather than just atoms
bi. A multiple-conclusion clause

a ⇒ c1, . . . , cn
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would then be interpreted by a reflection rule like

a

[c1]

C . . .

[cn]

C
C .

If we have more than one multiple-conclusion clause, we would have
to consider an appropriate list of reflection (elimination) rules. Alterna-
tively, we could just consider single clauses, but with structural implications
(rules) as conclusion, be means of which we can code in principle what
can be expressed, e.g., by disjunction. Such a clause would, e.g. be

a⇒ ((c1 ⇒ p), . . . , (cn ⇒ p)⇒ p)

for a fresh variable p. This leads to an eliminations-based approach for
atomic rules corresponding to the one discussed in Section 3 for the
case of logical constants. It dualizes the notion of a definition, but not
the concept of a derivation, which is, as before, a concept of derivation
of single formulas from (possibly) multiple assumptions. A complete du-
alization using single-assumption / multiple-conclusion derivations would
trivialize the whole notion by just exchanging the right and left sides of
definitions and the assumptions and conclusions of derivations, as does
the dual-intuitionistic approach mentioned in Section 4. Using multiple-
assumptions / multiple-conclusion derivations based on both standard def-
initional clauses and consequential ones should lead to an atomic frame-
work corresponding to bi-intuitionistic logic. Such a theory still needs to
be worked out. Particular attention should be paid to the question, which
connections to logic programming and inductive definitions remain, and,
therefore, how far definitional reasoning keeps the computational content
which is inherent in forward-directed clauses.5
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