Advanced Mathematical Methods

WS 2018/19

1 Linear Algebra

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

Outline: Linear Algebra

1.9 Quadratic forms and sign definitness

Readings

- Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis. Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 26: Symmetric matrices and positive definiteness https://www.youtube.com/watch?v=umt6BB1nJ4w
- Lecture 27: Positive definite matrices and minima - Quadratic forms
https://www.youtube.com/watch?v=vF7eyJ2g3kU

1.9 Quadratic forms and sign definitness

Definitions

- Degree of a polynomial
- Form of nth degree
- special case: quadratic form

$$
Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}
$$

1.9 Quadratic forms and sign definitness

A quadratic form $Q\left(x_{1}, x_{2}\right)$ for two variables x_{1} and x_{2} is defined as

$$
Q\left(x_{1}, x_{2}\right)=\underset{(1 \times 2)(2 \times 2)(2 \times 1)}{\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}=\sum_{i=1}^{2} \sum_{j=1}^{2} a_{i j} x_{i} x_{j}
$$

where $a_{i j}=a_{j i}$ and, thus,
with the symmetric coefficient matrix $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right]$

1.9 Quadratic forms and sign definitness

Graph of the positive definite form $Q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$

Graph ot the negative definite form $Q\left(x_{1}, x_{2}\right)=-x_{1}^{2}-x_{2}^{2}$

Graph of the indefinite form $\mathrm{Q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{2}-\mathrm{x}_{2}^{2}$

Graph of the positive semidelinite form $Q\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{2}$

Graph of the negative semidefinite form $Q\left(x_{1}, x_{2}\right)=-\left(x_{1}+x_{2}\right)^{2}$

1.9 Quadratic forms and sign definitness

The quadratic form associated with the matrix \mathbf{A} (and thus the matrix \mathbf{A} itself) is said to be
positive definite, if $Q=x^{\prime} A x>0 \quad$ for all $x \neq 0$ positive semi-definite, if $Q=x^{\prime} A x \geq 0$ for all x negative definite,
if $Q=x^{\prime} A x<0 \quad$ for all $x \neq 0$ negative semi-definite, if $Q=x^{\prime} A x \leq 0 \quad$ for all x

Otherwise the quadratic form is indefinite.
Note: For any quadratic matrix \mathbf{A} it holds that $\mathbf{x}^{\prime} \mathbf{A x}=\mathbf{x}^{\prime} \mathbf{B x}$ with $\mathbf{B}=0,5 \cdot\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$ symmetric.

1.9 Quadratic forms and sign definitness

The quadratic form $Q(x)$ is

- positive (negative) definite, if all eigenvalues of the matrix \mathbf{A} are positive (negative): $\lambda_{j}>0\left(\lambda_{j}<0\right) \forall j=1,2, \ldots, n$;
- positive (negative) semi-definite, if all eigenvalues of the matrix \mathbf{A} are non-negative (non-positive): $\lambda_{j} \geq 0$ $\left(\lambda_{j} \leq 0\right) \forall j=1,2, \ldots, n$ and at least one eigenvalue is equal to zero;
- indefinite, if two eigenvalues have different signs.

1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
2) If \mathbf{A} is positive definite, then \mathbf{A}^{-1} exists and is positive definite.
3) If \mathbf{X} is $n \times k$, then $\mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{X} \mathbf{X}^{\prime}$ are positive semi-definite.
4) If \mathbf{X} is $n \times k$ and $\operatorname{rk}(\mathbf{X})=\mathbf{k}$, then $\mathbf{X}^{\prime} \mathbf{X}$ is positive definite (and therefore non-singular).
