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2.1 Real valued and vector-valued functions

A function whose domain is a subset U of Rm, m ≥ 1 and whose
range is contained in Rn is called a real-valued function (scalar
function) of m variables if n = 1 and a vector-valued function
(vector function) of m variables if n > 1
Notation:

I f : U ⊆ Rm → R describes a scalar function
I F : U ⊆ Rm → Rn describes a vector function
I a scalar function assigns a unique real number

f (x) = f (x1, x2 · · · xm) to each element x = (x1, x2 · · · xm) in
its domain U

I a vector function assigns a unique vector
F (x) = F (x1, x2 · · · xm) ∈ Rn to each x = (x1, x2 · · · xm) ∈ U
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2.1 Real valued and vector-valued functions

We write:

F (x1, x2 · · · xm) = (F1(x1, x2 · · · , xm), · · · ,Fn(x1, x2 · · · , xm))
or = (F1(x), · · · ,Fn(x))

I F1 · · ·Fn are the component functions of F (and
real-valued functions of x1 · · · xm)
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2.1 Real valued and vector-valued functions

Examples:

I Distance function:
f (x , y , z) =

√
x2 + y2 + z2 measures the distance from the

point (x , y , z) to the origin.
→ real-valued function of three variables defined on U = R3

I Projection function:
F (x , y , z) = (x , y) is a vector-valued function of three
variables that assigns to every vector (x , y , z) ∈ R3 its
projection (x , y) onto the xy -plane in
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1.2 Derivatives

Open sets in Rm:
A set U ⊆ Rm is open in Rm if and only if all of its points are
interior points
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2.2 Derivatives

Partial Derivative:
Let f : U ⊆ Rm → R be a real valued function of m variables
x1, x2 · · · , xm defined on an open set U in Rm

Partial derivative (real-valued function)

∂f

∂xi
(x1, x2 · · · , xm) = lim

h→0

f (x1, · · · , xi + h, · · · , xm)− f (x1, · · · , xi , · · · , xm)
h

,

if the limit exists.
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2.2 Derivatives

Derivative of a function of several variables:
F : U ⊆ Rm → Rn

DF (x) =


∂F1
∂x1

(x) ∂F1
∂x2

(x) . . . ∂F1
∂xm

(x)
∂F2
∂x1

(x) ∂F2
∂x2

(x) . . . ∂F2
∂xm

(x)
...

...
...

∂Fn
∂x1

(x) ∂Fn
∂x2

(x) . . . ∂Fn
∂xm

(x)


Provided that all partial derivatives exist at x
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2.2 Derivatives

The i − th column is the matrix

∂F
∂xi

(x) = F xi (x) =


∂F1
∂xi

(x)
∂F2
∂xi

(x)
...

∂Fn
∂xi

(x)


which consists of partial derivatives of the component functions
F1, · · · ,Fn with respect to the same variable xi , evaluated at x
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2.2 Derivatives

Gradient:
Consider the special case f : U ⊂ Rn → R
Here Df (x) = [ ∂f∂x1

, · · · , ∂f
∂xn

] is a 1× n matrix

We can form the corresponding vector ( ∂f
∂x1
, · · · , ∂f

∂xn
), called the

gradient of f and denoted by ∇f .
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2.2 Derivatives

Higher order derivatives:
Suppose that f : U ⊂ Rn → R has second order continuous

derivatives
(

∂2f
∂xi∂xj

)
(x0), for i , j = 1, · · · , n, at a point x0 ∈ U.

The Hessian of f is given as
∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

...
∂2f

∂xn∂x1
. . . ∂2f

∂xn∂xn
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2.3 Differentiation of linear and quadratic forms

For a given n × 1 vector a and any n × 1 vector x , consider the
real-valued linear function f (x) = a′x . The derivative of f with
respect to x is

∂f (x)
∂x

= a′.

For a quadratic form Q(x) = x ′Ax the derivative of Q with respect
to x is

∂Q(x)
∂x

= 2x ′A.
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2.4 Taylor series approximations
Single-variable case

Suppose that at least k + 1 derivatives of a function f (x) exist and
are continuous in a neighborhood of x0. Taylor’s theorem asserts
that

f (x0 + h) =
k∑

i=0

f (k)(x0)

i !
hi + Rk(x0, h)

where

Rk(x0, h) =

x0+h∫
x0

(x0 + h − τ)k

k!
f (k+1)(τ)dτ.
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2.4 Taylor series approximations
Multi-variable case

Theorem: First-order Taylor formula

Let f : U ⊂ Rn → R be differentiable at x0 ∈ U. Then

f (x0 + h) = f (x0) +
n∑

i=1

hi
∂f

∂xi
(x0) + R1(x0,h),

where R1(x0,h)/d(h)→ 0 as h → 0 in Rn.
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2.4 Taylor series approximations
Multi-variable case

Theorem: Second-order Taylor formula

Let f : U ⊂ Rn → R have continuous partial derivatives of third
order. Then

f (x0 + h) = f (x0) +
n∑

i=1

hi
∂f

∂xi
(x0)

+
1
2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj
(x0) + R2(x0,h),

where R2(x0,h)/d(h)2 → 0 as h → 0.
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