Advanced Mathematical Methods WS 2017/18

4 Mathematical Statistics

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

Wirtschafts- und Sozialwissenschaftliche Fakultät

Outline: Mathematical Statistics

- 4.1 Measure spaces
- 4.2 Random Variables
- 4.3 pdf and cdf
- 4.4 Expectation, Variance and Moments

Readings

A. Papoulis and A. U. Pillai. *Probability, Random Variables and Stochastic Processes*.

Mc Graw Hill, fourth edition, 2002 Chapters 1-4

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs I: Concept of random variables, probability mass function, expected value, variance https://www.youtube.com/watch?v=3MOahpLxj6A
- Continuous RVs: probability density function, cumulative distribution function, expected value, variance https://www.youtube.com/watch?v=mHfn 7ym6to

Notation: Ω

- fundamental measure (or probability, or sample) space
- \blacktriangleright consists of all points (singletons) ω possible as the outcome to an experiment

Definition: Event

An Event A is a subset of Ω . The empty event \emptyset and the whole space Ω are also events.

Definition: Topological space

A topological space (Ω, \mathcal{F}) is a space Ω together with a class \mathcal{F} of subsets of Ω . The members of the set \mathcal{F} are called open sets. \mathcal{F} has the property that unions of any number of the sets in \mathcal{F} (finite or infinite, countable or uncountable) remain in \mathcal{F} , and intersections of finite numbers of sets in \mathcal{F} also remain in \mathcal{F} . The closed sets are those whose complements are in \mathcal{F} .

Definition: Sigma-Algebra

 ${\mathcal F}$ is a sigma algebra if

- (i) $A_k \in \mathcal{F}$ for all k implies $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$,
- (ii) $A \in \mathcal{F}$ implies $\bar{A} \in \mathcal{F}$,
- (iii) $\emptyset \in \mathcal{F}$.

Theorem: Properties of a Sigma-Algebra

If \mathcal{F} is a sigma algebra, then

- (iv) $\Omega \in \mathcal{F}$,
- (v) $A_k \in \mathcal{F}$ for all k implies $\bigcap_{k=1}^{\infty} A_k \in \mathcal{F}$.

Definition: Measurable space

A pair (Ω, \mathcal{F}) where the former is a set and the latter a sigma-algebra of subsets of Ω is called a measurable space.

Definition: Probability measure

A probability measure is a measure P in the measurable space (Ω, \mathcal{F}) which satisfies the following properties:

- (i) $P(A) \ge 0$ for all A
- (ii) $P(\Omega) = 1$
- (iii) $P(\emptyset) = 0$
- (iv) $P(\bar{A}) = 1 P(A)$
- (v) monotonicity, subadditivity

Definition: Probability space

The triple $(\Omega, \mathcal{F}, \mathcal{P})$ is called a probability space.

Theorem: Conditional probability

For $B \in \mathcal{F}$ with P(B) > 0, $Q(A) = P(A \mid B) = P(A \cap B)/P(B)$ is a probability measure on the same space (Ω, \mathcal{F})

4.2 Random Variables

Definition: Measurable function

Let f be a function from a measurable space (Ω, \mathcal{F}) into the real numbers. The function f is measurable if for each Borel set $B \in \mathcal{B}$, the set $\{\omega; f(\omega) \in B\} \in \mathcal{F}$.

Definition: Random variable

A random variable X is a measurable function from a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ into the real numbers \mathbb{R} .

Probability distribution function: discrete case

$$f_X(x) = P(X = x)$$

requirements:

- ▶ $0 \le P(X = x) \le 1$
- $\sum_{x} f_X(x) = 1$

(Probability) Density function: continuous case

it holds that
$$P(X = x) = 0$$

requirements:

$$P(a \le X \le b) = \int_a^b f_X(x) \, \mathrm{d}x \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$$

Definition: Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is defined to be the function $F_X(x) = P(X \le x)$, for $x \in \mathbb{R}$. to get the cdf:

discrete:

$$F_X(x) = \sum_{X \le x} f_X(x) = P(X \le x)$$

continuous:

$$F_X(x) = \int\limits_{-\infty}^x f_X(t) \,\mathrm{d}t$$

Properties

(i)
$$F_X(+\infty) = 1$$
; $F_X(-\infty) = 0$

- (ii) $F_X(x)$ is a nondecreasing function of x: if $x_1 < x_2$, $F_X(x_1) \le F_X(x_2)$ note: the event $\{X \le x_1\}$ is a subset of $\{X \le x_2\}$
- (iii) if $F_X(x_0) = 0$, then $F_X(x) = 0 \quad \forall \quad x \leq x_0$
- (iv) $P(X>x)=1-F_X(x)$ events $\{X\leq x\}$ and $\{X>x\}$ are mutually exclusive and $\{X\leq x\}\cup\{X>x\}=\Omega$
- (v) $F_X(x)$ is continuous from the right: $\lim_{x\to a^+} F_X(x) = F_X(a)$
- (vi) $P(x_1 \le X \le x_2) = F_X(x_2) F_X(x_1)$

Expectations of a random variable

$$E[X] = \begin{cases} \sum_{x_i} x f_X(x_i) & \text{if } x \text{ is discrete} \\ \infty & \int_{-\infty}^{\infty} x f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

g(X) a measurable function of x, then:

$$E[g(X)] = \begin{cases} \sum_{\substack{X \\ X \\ -\infty}} g(x) f_X(x_i) & \text{if } x \text{ is discrete} \\ \int_{-\infty}^{X} g(x) f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

Calculation rules

- \triangleright E[a] = a
- $\triangleright E[bX] = b \cdot E[X]$
- ▶ linear transformation E[a + bX] = a + bE[X]
- $E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)]$

Variance of a random variable

let
$$g(X) = (X - E[X])^2$$

$$Var[X] = \sigma^2 = E[(X - E[X])^2]$$

$$= \begin{cases} \sum_{X} (x_i - E[X])^2 f_X(x_i) & \text{if } x \text{ is discrete} \\ \sum_{X} (x_i - E[X])^2 f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

Calculation rules

- Var[a] = 0
- ightharpoonup Var[X + a] = Var[X]
- $ightharpoonup Var[bX] = b^2 Var[X]$
- $Var[a + bX] = b^2 Var[X]$

important result:

$$Var[X] = E[X^2] - E[X]^2$$

Standardization

an important transformation: standardization of a random variable \boldsymbol{X}

let
$$g(X) = \frac{X - \mu}{\sigma} = Z$$

$$Z = \frac{X - \mu}{\sigma} = \frac{-\mu}{\sigma} + \frac{1}{\sigma}X$$

$$\Rightarrow E[Z] = 0$$

$$\Rightarrow Var[Z] = 1$$

Chebychev Inequality

for any random variable X with finite expected value μ and finite variance $\sigma^2>0$ and a positive constant k

$$P(\mu - k\sigma \le X \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

Skewness and Kurtosis

central moments of a random variable:

$$\mu_r = E[(X - \mu)^r]$$

as r grows, μ_r tends to explode

solution: normalization

- skewness coefficient: $\gamma = \frac{E[(X \mu)^3]}{\sigma^3}$
- kurtosis: $\kappa = \frac{E[(X \mu)^4]}{\sigma^4}$ often reported as excess kurtosis $\kappa 3$