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Readings

A. Papoulis and A. U. Pillai. Probability, Random Variables and
Stochastic Processes.
Mc Graw Hill, fourth edition, 2002 Chapter 8
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Online References

MIT Course on Probabilistic Systems Analysis and Applied
Probability (by John Tsitsiklis)

I Lecture 25: Classical Inference III
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http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/video-lectures/lecture-25-classical-inference-iii-course-overview/


Hypothesis testing

Ingredients:

I null hypothesis H0, alternative hypothesis H1

I significance level α (given)

2 possible errors:
I α - error/ type 1 error:

reject a correct (null) hypothesis
I β - error/ type 2 error:

do not reject a wrong (null) hypothesis
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Two ways of testing

θ unknown parameter in the population

1. H0 : θ = θ0
H1 : θ 6= θ0
→ two-sided test

2. H0 : θ ≤ θ0 H0 : θ ≥ θ0
H1 : θ > θ0 H1 : θ < θ0
→ one-sided test
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Distribution of the test statistic under the Nullhypothesis
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Distribution given the true parameter
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I fq(q, θ0): distribution
under the H0

I fq(q, θ): distribution
given the true θ
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I Under H1, the most likely values of q are on the right of
fq(q, θ0).

I We therefore reject H0 if q > c (with rejection area [c ,∞])
I We select α: P(q > c|H0) = α → c = q1−α

and don’t reject H0 if q < q1−α

Operating characteristic:

β(θ)︸︷︷︸
depends on θ, the true parameter

=

c∫
−∞

fq(q, θ)dq

→ can’t be controlled
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Ideal Situation:
α = β = 0
for H0: θ = θ0 and H1: θ > θ0

Probability to reject the Nullhypothesis
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Ideally:

I don’t reject H0 as long as the true value θ is smaller than θ0
I reject as soon as θ is greater than θ0

α: at the intersection:

if α is small, the chances to reject H0 are small if θ is only slightly
bigger than θ0

The faster the probability to reject H0 increases (steeper red line),
the better.

Hence: power of the test
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What does significant really mean?

statistical significance

I does not answer the question wether the null hypothesis is
wrong or right

I does not indicate how (un-) likely the null hypothesis is
I only controlled by maximum probability to run into type 1

error (α)
I provides no control over probability of type 2 error (β)

goal: for α given

→ minimal β
→ minimal α + β

→ maximal 1− β
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t-Test

estimated parameters β̂1 . . . β̂k

1. define H0, e.g. H0 : βk = β̄k

2. define H1, e.g. H1 : βk 6= β̄k

3. believe in law of large numbers and CLT
4. construct test statistic

t =
β̂k − β̄k
s.e.(β̂k)

∼ t(N − K ) under H0

5. choose significance level α
6. compare t and critical value

compare t and empirical p-value
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Confidence Interval

construct a confidence interval around β̂k
→ interval for β̄k , for which H0 : βk = β̄k cannot be rejected

CI (βk , α) =
[
β̂k − tα

2
· s.e.(β̂), β̂k + tα

2
· s.e.(β̂)

]
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Testing linear hypotheses: Wald test

Multiple Hypotheses (#r) for multiple parameters (k)

R︸︷︷︸
#r×k

β︸︷︷︸
k×1

= r︸︷︷︸
#r×1

under H0:

Rβ̂ →
p

r Rβ̂
a∼ N(0,RVar(β̂)R ′)

(Rβ̂ − r)′(RVar(β̂)R ′)−1(Rβ̂ − r)
a∼ χ2(#r)︸ ︷︷ ︸

Wald test statistic for linear hypotheses

–13–


	Statistical Inference

