EBERHARD KARLS
 UNIVERSITAT TUBINGEN
 Wirtschafts- Und SOZIALWISSENSCHAFTLICHE FAKULTÄT

Chair of Statistics, Econometrics and Empirical Economics PD Dr. Thomas Dimpfl

S414
Advanced Mathematical Methods

Exercises

Linear Algebra

Exercise 1 Quadratic Form

Given the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -2 \\
1 & 2
\end{array}\right)
$$

a) Determine the definiteness of the quadratic form $Q=\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}$.
b) Explain in two sentences maximum what this means for the graph $\left\{\left(x_{1}, x_{2}, Q\right) \mid Q=\right.$ $\left.\left(x_{1} ; x_{2}\right) \boldsymbol{A}\left(x_{1} ; x_{2}\right)^{\prime}\right\}$.

Exercise 2 Quadratic Form

Write the quadratic form

$$
Q=4 x_{1}^{2}+4 x_{1} x_{2}-x_{2}^{2}
$$

in matrix notation and determine its definiteness.

Exercise 3 Sign definiteness

Express each quadratic form below as a matrix product involving a symmetric coefficient matrix:
a) $q=3 u^{2}-4 u v+7 v^{2}$
b) $q=u^{2}+7 u v+3 v^{2}$
c) $q=8 u v-u^{2}-31 v^{2}$
d) $q=6 x y-5 y^{2}-2 x^{2}$
e) $q=3 u_{1}^{2}-2 u_{1} u_{2}+4 u_{1} u_{3}+5 u_{2}^{2}+4 u_{3}^{2}-2 u_{2} u_{3}$
f) $q=-u^{2}+4 u v-6 u w-4 v^{2}-7 w^{2}$

Exercise 4 Sign definiteness

Given a quadratic form $u^{\prime} D u$. where D is 2×2, the characteristic equation of D can be written as:
$\left|\begin{array}{cc}d_{11}-r & d_{12} \\ d_{21} & d_{22}-r\end{array}\right|=0 \quad\left(d_{12}=d_{21}\right)$
Expand the determinant; express the roots of this equation by use of the quadratic formula and deduce the following:
a) No imaginary number (a number involving $\sqrt{-1}$) can occur in r_{1} and r_{2}.
b) To have repeated roots, the matrix D must be in the form of $\left(\begin{array}{ll}c & 0 \\ 0 & c\end{array}\right)$
c) To have either positive or negative smidefiniteness, the determinant of the matrix D must vanish, i.e. $|D|=0$.

Solution Exercise 1:

a) positive definite

Solution Exercise 2:

$\boldsymbol{Q}=\boldsymbol{x}^{\boldsymbol{\prime}} \boldsymbol{A} \boldsymbol{x}$ with $A=\left(\begin{array}{cc}4 & 2 \\ 2 & -1\end{array}\right)$
\boldsymbol{A} is indefinite

Solution Exercise 3:

Quadratic form: $q=\mathbf{x}^{\prime} \mathbf{A x}$
a)

$$
q=\binom{-u}{v}^{\prime}\left(\begin{array}{ll}
3 & 2 \\
2 & 7
\end{array}\right)\binom{-u}{v}
$$

b)

$$
q=\binom{u}{v}^{\prime}\left(\begin{array}{cc}
1 & 3.5 \\
3.5 & 3
\end{array}\right)\binom{u}{v}
$$

c)

$$
q=\binom{u}{v}^{\prime}\left(\begin{array}{cc}
-1 & 4 \\
4 & -31
\end{array}\right)\binom{u}{v}
$$

d)

$$
q=\binom{x}{y}^{\prime}\left(\begin{array}{cc}
-2 & 3 \\
3 & -5
\end{array}\right)\binom{x}{y}
$$

e)

$$
q=\left(\begin{array}{c}
u_{1} \\
-u_{2} \\
u_{3}
\end{array}\right)^{\prime}\left(\begin{array}{lll}
3 & 1 & 2 \\
1 & 5 & 1 \\
2 & 1 & 4
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
-u_{2} \\
u_{3}
\end{array}\right)
$$

f)

$$
q=\left(\begin{array}{c}
u \\
v \\
-w
\end{array}\right)^{\prime}\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -4 & 0 \\
3 & 0 & -7
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
-w
\end{array}\right)
$$

